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Abstract

Autonomous vehicles are in the main focus for automotive companies and urban traffic engineers as well. As their penetration rate in 

traffic becomes more and more pronounced due to improvement in sensor technologies and the corresponding infrastructure, new 

methods for autonomous vehicle controls become a necessity. For instance, autonomous vehicles can improve the performance of 

urban traffic and prevent the formation of congestions with the usage of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 

communication based control methods. One of the key area for improvement is centralized intersection control for autonomous 

vehicles, by which traveling times can be reduced and efficiency of traffic flow can be improved, while safety of passengers can 

be guaranteed through constraints built in the centralized design. The paper presents the analysis of a Model Predictive Control 

(MPC) method for the coordination of autonomous vehicles at intersections by comparing it with an offline constraint optimization 

considering time and energy optimal intervention of vehicles. The analysis has been evaluated in high-fidelity simulation environment 

CarSim, where the speed trajectories, traveling times and energy consumptions have been compared for the different methods. 

The simulations show that the proposed time-optimal MPC intersection control method results in similar traveling times of that 

given by the time-optimal offline constraint optimization, while the energy optimal optimization re-quires significantly more time for 

the autonomous vehicle to achieve. Due to the possibility of a congestion forming in the latter case, the proposed centralized MPC 

method is more applicable in real traffic scenarios.
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1 Introduction
An emerging field of scientific research is connected to 
the development of autonomous vehicle technologies. 
The aim of these studies is to develop new methods based 
on state-of-the-art sensor and communication technolo-
gies by which the control of autonomous vehicles can pro-
vide enhanced safety and better efficiency. One of the key 
motivation in the development of autonomous vehicle con-
trol strategies in urban traffic scenarios is to prevent colli-
sion among vehicles at intersections, which is considered 
the most safety critical areas in urban traffic due to the 
high number of fatal crashes.

In conventional traffic scenarios with human-driven 
vehicles, ordering of vehicles and management of traf-
fic is evaluated by traffic lights or traffic rules, which the 

driver has to follow. As intelligent transportation systems 
along with autonomous vehicle technology gain more and 
more attention, several research focus on the coordina-
tion and control of vehicles using autonomous functions 
or advisory systems at non-signalized intersection (Chen 
and Englund, 2016). These intersection control methods 
aim to guarantee collision-free passage of the vehicles by 
developing multi-agent systems (Dresner and Stone, 2008; 
Zohdy and Rakha, 2012).

Generally, an optimization problem is formed and solved 
using different methods including convex optimization 
(Murgovski et al., 2015) or Mixed-Integer Linear Program 
(Fayazi et al., 2017). For example, a real-time optimal inter-
section control system has been introduced (Bichiou and 
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Rakha, 2019) for autonomous vehicles, where the formu-
lated optimization is subjected to dynamic and static con-
straints and uses Pontryagin's minimum principle and con-
vex optimization to give a solution minimizing the trip time.

Several methods apply Model Predictive Control (MPC) 
for centralized and decentralized intersection coordina-
tion (Kneissl et al., 2018; Qian et al., 2015; Riegger et al., 
2016; Yao and Zhang, 2018). For example, a distributed 
MPC approach has been introduced (Katriniok et al., 
2017), where the non-convex distributed control problem 
is solved in parallel by applying constraint prioritization.

In recent years, several studies apply artificial intelli-
gence (AI) approaches in the design of intersection con-
trols. Support vector machine, linear regression, and deep 
learning algorithms has been adapted for the coordination 
of autonomous vehicles at urban traffic scenarios such as 
intersection crossings (Chen et al., 2019a; 2019b).

Moreover, several study focus on optimizing network-wide 
performance of autonomous vehicle based urban traffic by 
considering microscopic dynamics in junctions and macro-
scopic model for the whole traffic (Tettamanti et al., 2017).

The motivation of the present paper is to analyze the 
efficiency of a centralized MPC method introduced earlier 
(Mihály et al., 2020). The proposed method has the advan-
tage of real-time implementation possibility due to the 
simplified optimization procedure based on a first-in-first-
out (FIFO) strategy. However, as the proposed strategy 
relies on some simplification in vehicle dynamics and con-
straints are given based on traffic engineering aspect, the 
efficiency of the method needs to be validated by compar-
ison with other global optimization solutions. Thus, in the 
paper three different methods have been compared through 
a simulation example in CarSim environment: firstly, the 
operation of the centralized MPC method has been stud-
ied, secondly an offline optimization has been evaluated 
minimizing traveling time, finally the same optimization 
has been carried out with the aim to minimize control 
energy requirement from autonomous vehicles.

2 Intersection controller
2.1 MPC intersection control
In the proposed MPC intersection control method, a non- 
signalized four direction intersection is considered sepa-
rated into different sections, as illustrated in Fig. 1. A cen- 
tralized intersection controller is responsible for the coor-
dination of AVs using V2V and V2I communication meth-
ods and different on-board sensors (radar, Lidar, GPS, 
etc.) of the AVs. It is assumed, that the central intersection 

coordinator can receive position and velocity data from 
AVs and can transmit longitudinal acceleration request 
signals for the vehicles controlled.

The detailed description of the MPC intersection con-
trol algorithm is introduced in earlier paper (Mihály et al., 
2020), thus here only a brief summary of the operation is 
given. The iterative computation of the prescribed accel-
eration signals, are given as follows: first, each for each 
vehicle entering the intersection a maximal safe veloc-
ity and acceleration is determined based on the turning 
intention, the geometry of the intersection and the esti-
mated road surface friction. Next, an acceleration value is 
determined for each AV, buy which the maximal velocity 
for the given vehicle trajectory can be reached. A safety 
constraint is set in order to avoid collisions among vehi-
cles, which limits only one AV at a time in the conflict 
zone. Thus, predicted entry and exit times for each AV 
are calculated based on their initial positions and speeds 
along with their planned trajectories in the intersection. 
The MPC coordination method is based on the analysis 
of time-overlaps for AVs in the conflict zone, iteratively 
adjusting prescribed acceleration to eliminate time over-
laps. Finally, when a new AV enters the intersection, the 
algorithm applies the vehicle tracking mode until the pre-
vious vehicle exits the conflict zone of the intersection. 
If this happens, the above the procedure must be repeated 
with the new initial conditions for all vehicles in the inter-
section control zone. Hence, the complexity of the calcu-
lation does not evolve with the number of vehicles, as only 
four AVs take part in the detailed MPC procedure at the 
same time. By using an appropriately small sampling time 

Fig. 1 Intersection scenario for the centralized MPC method
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for the optimization algorithm, the real-time application of 
the proposed method is possible.

2.2 Simulation based on time and energy optimization
The simulation-based constraint optimization aims to find 
optimal acceleration values for the AVs by which total 
traveling time or energy consumption can be minimized, 
while collisions can be avoided. The constraint optimiza-
tions running in MATLAB and CarSim environment is 
depicted in Fig. 2 and Fig. 3 and is operating as follows:

• Upper and lower bounds for the acceleration values 
are calculated for all AVs based on their trajectories, 
which are used as constraints for the optimization.

• The constrained optimization algorithm evaluates 
the CarSim intersection simulation with the given 

initial conditions applying different constant accel-
eration values, which are the variables needed to be 
found in the minimization procedure.

The objective function of the minimization algorithm 
for the time-optimal solution is given as the total traveling 
time of the AVs. Note, that the simulation ends in case the 
last AV exits the intersection conflict zone. The objective 
function of the minimization algorithm for the energy-op-
timal solution is the total actuated energy of the AVs during 
the simulation. Thus, for the energy optimal solution brak-
ing and propulsion forces of AVs are both considered.

Note, that the safety constraint is realized by adding 
a large number to the objective function in case the inter-ve-
hicular distance of the AVs falls below 3 meters, in which 
case the algorithm discards the corresponding acceleration 
values. Note, that the value of this inter-vehicular safety dis-
tance can be tuned in order to reach either a more optimal 
solution with higher risk of collision due to sensor noises 
and thus unpunctual vehicle data, or vice versa.

The constrained optimization runs the predefined 
CarSim intersection simulation iteratively until it founds 
the best acceleration values for the AVs by which a local 
minimum for the traveling time or energy consumption 
can be reached.

A more detailed description of the Pattern Search Algo- 
rithm has already been introduced (Lewis and Torczon, 2000; 
Torczon, 1997).

3 Simulation results and discussion
The proposed real-time optimal MPC intersection con-
trol method has been compared to the results of the two 
offline optimization performed in CarSim environment: 
the time-optimal and energy optimal solution.

For the simulation, a typical four directional intersec-
tion has been designed in CarSim, similar to that illus-
trated in Fig. 1. The four simulation vehicle has been 
selected with the parameters of a conventional midsize 
vehicle with 1600 kg of mass and 2.7 m of wheelbase, 
while their initial position has been set to 50 m from the 
origin of the intersection, as depicted in Fig. 4. Note, that 
their initial velocities and their turning intention differ: 
Vehicle 1 (green) approaches the intersection entering 
zone at 30 km/h and heads straight on, Vehicle 2 (yellow) 
arrives at 20 km/h and turns left, Vehicle 3 (blue) enters 
the intersection at 40 km/h and heads straight on, while 
Vehicle 4 (red) is the slowest with an initial velocity of 
10 km/h and turning left.

Fig. 2 Time-optimal optimization in CarSim environment

Fig. 3 Energy-optimal optimization in CarSim environment



212|Farkas et al.
Period. Polytech. Transp. Eng., 51(3), pp. 209–215, 2023

The ordering of the autonomous vehicles along with 
their velocity trajectories has been coordinated with the 
MPC control method by the central coordinator in the first 
case using a sampling time of 0.1 seconds. Here, Vehicle 3 
having the highest initial velocity crosses the intersection 
first, as depicted in Fig. 5. Next, Vehicle 1 drives through 
the intersection shortly after Vehicle 3 left the conflict 
zone, as depicted in Fig. 6. Thirdly, Vehicle 2 crosses the 
intersection and turns left, see Fig.7. Finally, Vehicle 4 
drives through the intersection by turning left, where the 
simulation ends as it leaves the conflict zone, see Fig. 8. 

The velocity profiles of the autonomous vehicles coor-
dinated by the MPC controller are depicted in Fig. 9. It is 
well demonstrated, that in order to achieve a small travel-
ing time each AV accelerates to reach the desired veloc-
ity profile for their given trajectories. Thus, Vehicle 1 and 
Vehicle 3 heading straight accelerates trying to reach the 
speed limit without collision, thus their final velocities are 
the biggest as they leave the conflict zone. Vehicle 2 and 
Vehicle 4 follows them with approximately one seconds 
of time lag, as they have to limit their velocity to approx-
imately 28 km/h to meet the safety constraint of the left 
turn, while also avoid collision among each other.

The time interval spent in the conflict zone for the AVs 
is illustrated in Fig. 10. showing that total traveling time in 
this intersection scenario with the proposed MPC control 
is 10.45 seconds.

Next, the offline optimization detailed in Section 2.2 and 
illustrated in Fig. 2 has been evaluated with the same initial 

condition for the AVs. Note, that this constraint optimiza-
tion procedure cannot be applied for real-time applications, 
as the optimization process has significant computational 
time. Moreover, even small changes in initial conditions 
can result in different outcomes for vehicle acceleration, 
thus in this paper this method is only used for compari-
son. The result of the constraint optimization has been the 
following: Vehicle 1 and Vehicle 2 both have 0.0156 m/s2 
of longitudinal acceleration, Vehicle 4 uses 0.583 m/s2 of 
acceleration, while Vehicle 3 applies zero acceleration.

Fig. 4 Initial conditions for the AVs at intersection Fig. 5 First (blue) AV crossing intersection with MPC controller

Fig. 6 Second (green) AV crossing intersection with MPC controller
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The speed profiles of the AVs as a result of the offline 
time-optimal optimization is illustrated in Fig. 11. Note, 
that the ordering of the vehicles are similar of that given 
by the MPC method. For the given scenario, it is well 
illustrated that the total traveling time used for the cost 
function of the minimization procedure depends heav-
ily on the AV having the smallest initial velocity. Thus, 
Vehicle 4 is the only vehicle accelerating heavily, which 
results in a total traveling time of 10.35 seconds. Note, 
that this traveling time given by the offline-optimization is 

only 0.1 seconds better than that given by the time-optimal 
real-time MPC method.

The speed profiles of the AVs as a result of the offline en- 
ergy-optimal optimization is illustrated in Fig. 12. The or- 
dering of the vehicles are the same as in the real-time 
MPC and time-optimal optimization method, however, 
accelerations of AVs are closer to zero, in order to reduce 
control energy. This results in that Vehicle 4 leaves the 

Fig. 7 Third (yellow) AV crossing intersection with MPC controller

Fig. 8 Fourth (red) AV crossing intersection with MPC controller

Fig. 9 Speed trajectory of AVs crossing intersection MPC method

Fig. 10 Time spent in the conflict zone by AVs

Fig. 11 Speed trajectory of AVs with time-optimal method
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intersection conflict zone at 21.62 seconds, thus total trav-
eling time of AVs is more than twice as much as in case of 
the time-optimal solutions detailed above.

Next, the actuated energy (both braking and propul-
sion) has been compared for the three different methods, 
as illustrated in Fig. 13. As expected, the smallest amount of 
energy is required by the result of the offline energy-optimal 
optimization, followed by the time-optimal optimization 
method, with approximately four times more control energy 
required. Finally, the real-time MPC method required sig-
nificantly more control energy, as AVs are accelerated to the 
possible biggest velocities given by the constraints.

Note, that actuated energies are only calculated until 
AVs leave the conflict zone of the intersection, thus the 
real total actuated energy of the AVs may vary signifi-
cantly, as they might speed up after leaving the conflict 
zone. Hence, depending on the traffic environment, the 
total actuated energy for AVs might come close to each 
other considering the consumption of the exiting zone, 
which is not included in this analysis.

4 Conclusion
In the paper an MPC intersection control method for 
autonomous vehicles has been analyzed by comparing 
the operation of the MPC coordination to the results of 
two different offline optimizations performed in CarSim 
environment. For the proposed four-directional intersec-
tion scenario it has been shown, that the suggested base-
line MPC coordination method performs very close to the 
offline time-optimal constraint optimization. However, 
as it requires more control energy by the AVs, future work 
should include the consideration of preceding vehicles in 
the intersection exiting zone in order to avoid unnecessary 
accelerations of the vehicles.
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Fig. 12 Speed trajectory of AVs with energy-optimal method Fig. 13 Actuated control energy for the different methods
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