Benchmarking Travel Time and Demand Prediction Methods Using Large-scale Metro Smart Card Data

Iyad Zimmo1, Daniel Hörcher1*, Ramandeep Singh1, Daniel J. Graham1

1 Transport Strategy Centre, Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
* Corresponding author, e-mail: d.horcher@imperial.ac.uk

Received: 23 March 2023, Accepted: 26 April 2023, Published online: 21 June 2023

Abstract
Urban mass transit systems generate large volumes of data via automated systems established for ticketing, signalling, and other operational processes. This study is motivated by the observation that despite the availability of sophisticated quantitative methods, most public transport operators are constrained in exploiting the information their datasets contain. This paper intends to address this gap in the context of real-time demand and travel time prediction with smart card data. We comparatively benchmark the predictive performance of four quantitative prediction methods: multivariate linear regression (MVLR) and semiparametric regression (SPR) widely used in the econometric literature, and random forest regression (RFR) and support vector machine regression (SVMR) from machine learning. We find that the SVMR and RFR methods are the most accurate in travel flow and travel time prediction, respectively. However, we also find that the SPR technique offers lower computation time at the expense of minor inefficiency in predictive power in comparison with the two machine learning methods.

Keywords
machine learning, urban public transport, demand prediction, smart card data

1 Introduction
Information and Communication Technologies (ICT) are widely applied in the public transport sector; common examples include vehicle automation, electronic fare collection, and safety and security processes. These digital solutions in public transport operations generate vast volumes of data. In this paper we focus on the utilisation of smart card ticketing data. Smart card data (SCD) is a popular source of information in the emerging literature of transport planning and economics, primarily because it records many characteristics of the observed demand patterns and user behaviour almost immediately, which enables short-term or even real-time decision making. By capturing
1. the volume of travellers at every entry and exit point of the public transport network, and
2. the speed of movement between the tap-in and tap-out locations,
analysts will be able to predict travellers flows and travel times in real-time with high precision, which can be extremely valuable for both the operator (e.g., see Drabicki et al. (2021); Hörcher and Graham (2021); Sun et al. (2014)) and the traveller in preparation for unexpected events such as sudden demand shocks or delays. The literature documents many quantitative prediction methods in the context of public transport demand and travel speed, but very few of them are utilised by transit agencies. At the same time, operators are challenged in dealing with big data arise from issues related to storage, transmission, management, processing, analyses, visualisation, security, privacy and many others (Bahsoon et al., 2017).

The short-run prediction of demand characteristics has recently become increasingly relevant in the well-known context of the COVID-19 pandemic (Tirachini and Cats, 2020). The risk of infection in public transport is determined by two travel attributes: the duration of the trip and the occupancy rate of the vehicle taken, assuming that the occupancy rate is inversely proportional to the average distance between passengers (Hörcher et al., 2022). Naturally, risk-averse passengers intend to reduce the trip duration as well as the prevailing level of crowding as much as possible. If a social distancing regulation...
is in place, operators are also obliged to monitor the level of crowding and keep it within a predetermined threshold – and even if such regulation is not in place, operators might be interested in keeping occupancy rates low to limit the dissatisfaction of customers. Based on our experience from metro benchmarking activities managed by the Transport Strategy Centre (TSC) at Imperial College London, most urban rail operators are currently unable to make network-level, real-time demand predictions and monitor the likely violation of social distancing rules using automated data sources such as SCD.

The core objective of this study is to provide a guide for metro operators and researchers assisting them on readily available demand and travel time prediction methods that can be utilised without substantial investment in software tools or computing capacity. Using a comprehensive smart card dataset from a large Asian metro operator, we test the performance of four demand prediction methods:

- semiparametric regression,
- random forest regression,
- support vector machine regression, and
- multivariate linear regression.

Simple implementations of these quantitative prediction methods are available in R, the open-source statistical coding environment. The contribution of this study is benchmarking the performance of these well-known methods for the specific case of demand and travel time prediction in urban rail transport. This way we synthesise isolated attempts to develop prediction methods with SCD and form recommendations for their direct implementation in practical forecasting exercises. One of the main messages of this work is that there is no universal prediction method for public transport-specific decision support; the present paper concludes with specific recommendations for ridership and travel speed estimation.

1.1 The surrounding literature

The empirical literature of transport science is rich in prediction-oriented research, especially since the introduction of large-scale data sources. Comprehensive reviews of data mining methods in the context of public transport operations are available in Ghofrani et al. (2018), Koutsopoulos et al. (2019), and Pelletier et al. (2011). In this paper we focus on short-term prediction models; for long-term demand forecasting, the four-stage approach to traffic modelling (de Dios Ortúzar and Willumsen, 2011) and the use of demand elasticities (Blainey and Preston, 2013) are the commonly accepted methods in transport science.

For short-term prediction, in the past decade there has been a surge of methodological developments in nonparametric artificial intelligence techniques, including neural networks, genetic algorithms, Kalman filtering, and clustering methods. In general, the literature on machine learning (ML) techniques relies on data on historical passenger flows, travel costs, and temporal factors such as the time of the day. In Section 1.1, we first review the existing ML studies on travel flow prediction, and then we turn to travel time or speed forecasting.

Bai et al. (2017) develop a deep fusion approach to predict short-term bus passenger flow, by fusing deep belief networks corresponding to flow patterns differentiated by behavioural, temporal, and transport management factors. Using bus data from Guangzhou, China, their approach outperforms nonparametric models. A series of papers focus on flow prediction during special events when demand is more volatile than under regular conditions (see Chen et al. (2020); Li et al. (2017); Ni et al. (2017); Pereira et al. (2015); Xue et al. (2022) among others). Guo et al. (2019) propose fusing support vector regression (SVR) and short-term memory neural networks for the prediction of abnormal passenger flows, in general. Ding et al. (2016) extend the analysis to multimodal public transport provision. Their gradient boosting decision trees approach predicts metro demand in combination with data on transfer behaviour at adjacent bus stops. A more recent incarnation of interpretable tree-based methods is the XGBoost model of Zou et al. (2022).

Among the most refined nonparametric regression methods, artificial neural networks (ANN) appear as an agile and adaptive method for forecasting with enhanced function mapping capabilities (Zhang et al., 1998). However, a comparison study later concludes that the performance of Gaussian maximum likelihood methods is still comparable to ANN (Tang et al., 2003). Ling et al. (2018) analyse predicted passenger flows on the Shenzhen subway network under different traffic conditions extrapolating back-propagation in a multilayer perception model and then compare this against the following: SVR model with a linear kernel function, gradient boosted regression tree model training data in parallel, and historical average model. Their study concludes a better prediction performance at relatively stable passenger flows with the SVR model, however, the multi-layer perception model is more reliable with irregular patterns in passenger flows.

1 Beside an abundance of nonparametric methods, deterministic prediction approaches such as the route choice model of Lee et al. (2022) are still active research areas.
Similarly, Sun et al. (2015) propose Wavelet-SVR model which is then compared to both Wavelet-ANN and EMD-BPN models. The Wavelet-SVR model yields better forecasting performance on a data set from the Beijing subway system. Yang et al. (2021b) show the superiority of a long short-term memory network (LSTM) and wavelet over ARIMA, nonlinear regression and traditional LSTM models.

Several studies use ML methods to predict travel times (or, inversely, travel speed) in a transport network. Bin et al. (2006) estimate bus arrival times with bus movement data from Dalian, China. A SVR model with three-variable representing the route, current route travel time and nearest next route travel time was found to be superior to a constructed three-layer standard ANN. Methods from both queuing theory and ML are merged by Gal et al. (2017) to improve the accuracy of travel time predictions, using historical and real-time data from the Dublin bus network. Their results reveal the accuracy gains of fusions between the snapshot method originating from queuing theory and ML methods.

Based on the rapid evolution of ML methods, it may be argued that more elementary statistical and econometric methods have been surpassed. Naturally, the linearity assumption in standard linear regression modelling causes severe limitations in predictive power. Fully parametric statistical models may include nonlinear relationships with a predefined functional form, however in the volatile environment of spatio-temporal demand fluctuations in public transport, it is unlikely that predefined and static functional forms can achieve high performance. The modelling technique of semiparametric regression presents a viable framework in the context of transit prediction applications enabling the modelling of explanatory variables without a pre-specified functional form. Furthermore, the method has been adapted to enable fast analysis of large data sets Ruppert et al. (2009).

As a summary, Table A1 in Appendix provides an overview of the strengths and weaknesses of the previously discussed families of models used for transport demand prediction in the literature. A key point is that we find the semiparametric regression and ML methods’ performance is unknown in the context of public transport applications. The remainder of this paper addresses this particular gap in the literature, thus providing a practical aid for transport operators seeking effective prediction methods for short-term demand and travel time forecasting.

1.2 Structure of the paper

The rest of the paper is organised as follows: Section 3 presents the model frameworks for four types of models that are trialled, namely:

1. semiparametric regression,
2. random forest regression,
3. support vector machine (SVM) regression, and
4. multivariate linear regression.

We give an overview of the dataset used in the analysis in Section 2 and present the results in Section 4. Finally, Section 5 concludes with a summary of our main findings, and provides suggestions for future research directions.

2 Data

The data utilised in this paper are obtained from a major metro system in Asia. This metro system operates in one of the cities with the highest rates of public transport usage. In the analysis, SCD that tracks individual trips made on the metro network from 2013 and 2014 are used. Over this period, 11 lines and 87 stations were in operation. The SCD include locations and timestamps of the origin and destination taps for each trip a passenger has performed, but transfers are not recorded. Two time periods are selected for analysis: one is 3 months beginning July 2013, and the other is 3 months beginning July 2014. All train journeys from 2013 are used in training the models, while all train journeys in 2014 are used to test the models.

The timestamps of smart card records are accurate to one second. The spatial and other socio-economic dimensions are indicated by time-invariant properties, including:

- anonymous card ID,
- entry and exit station codes,
- transaction type (entry/exit),
- passenger type,
- train direction, and
- fare prices, with or without discounts.

Note that in this paper our focus is restricted to travel time prediction under regular (undisrupted) conditions. For a comprehensive coverage of disruption detection, the interested reader is referred to Zhang et al. (2022).

3 Autoregressive (integrated) moving average (i.e., ARMA and ARIME) were introduced very early for transport prediction exercises, first to provide short-term forecasts of traffic flows (see, for example, Ahmed and Cook (1979)). To account for periodic variations of traffic states, a seasonal ARIMA (SARIMA) was developed (Williams and Hoel, 2003). This particular model proved to outperform the historical average model and the Kalman filter model which were introduced by Okutani and Stephanedes (1984) to the urban traffic control system of Minneapolis-St Paul and Nagoya City.
The data sets have been converted from a disaggregate individual level to OD-based aggregates by averaging for 15-minute intervals. Table 1 provides descriptive statistics for the dataset we use for prediction. The mean travel time (tap-in/tap-out) is 34.4 minutes, and its distribution is surprisingly symmetric between the 1st and 3rd quartiles. The mean travel demand within 15-minute is 1448 passengers per OD pair. This variable is right-skewed, meaning that a significant proportion of total ridership is concentrated in a limited number of spatio-temporal markets. This observation is consistent with regular demand patterns in metro systems. The distribution of the fares paid is also right-skewed. The proportion of adult ticket holders is 74.9% in the average 15-minute block, but their share takes very low or very high values at the extrema of the distribution.

3 Methods
Sections 3.1 to 3.3 present the methods used in the development and comparison of the models. First, the theoretical frameworks for each model are presented. Second, we outline the model development process involving data cleaning, explanatory variable selection, and data selection for training, validation, and testing. Third, we present the model evaluation criteria.

All calculations have been performed using R statistical analysis software on an Intel Core i7 CPU at 2.8 GHz, 16 Gb of RAM. Details of the specific R packages used are given in the discussion of the model frameworks.

3.1 Model frameworks
In the following presentation of model frameworks, the response variable is denoted as y_{ij}. Since two types of analyses will be undertaken, the response y_{ij} refers to

1. passenger flows per time period i along origin-destination route j and
2. mean journey times per time period i along origin-destination route j.

The time periods i are defined in 15-minute intervals. The explanatory variables are denoted by x_{ij}; further details on the definition of these is given in Section 3.2.2.

<table>
<thead>
<tr>
<th>Key variables</th>
<th>Min</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time (s)</td>
<td>179</td>
<td>1257</td>
<td>1902</td>
<td>2063</td>
<td>2710</td>
<td>9971</td>
</tr>
<tr>
<td>Travel demand</td>
<td>128</td>
<td>849</td>
<td>1341</td>
<td>1448</td>
<td>2027</td>
<td>7400</td>
</tr>
<tr>
<td>Price</td>
<td>0</td>
<td>5.0</td>
<td>7.7</td>
<td>9.3</td>
<td>10.9</td>
<td>84.6</td>
</tr>
<tr>
<td>Proportion of adults</td>
<td>0</td>
<td>0.635</td>
<td>0.818</td>
<td>0.749</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3.1.1 Semiparametric regression
Semiparametric regression is a statistical regression method that enables the modelling of flexible non-linear relationships between dependent and independent variables without the need to define the relationships parametrically a priori. The flexible relationships are generated via basis functions that take the form of thin plate regression splines. The splines are interpolation functions that fit the data points, with a "wiggliness" penalty that represents the trade-off between alignment with data points and smoothness. The regression models adhere to a generalised additive mixed model (GAMM) structure, as the spline functions possess a structure that represent the sum of a linear predictor and random effects. Model fitting is based on the penalised iteratively reweighted least squares (PIRLS) fitting technique, and restricted maximum likelihood (REML) optimisation is used to estimate the model parameters. Further information on the underlying theory of semiparametric modelling can be found in Wood (2017) and Wood et al. (2015).

In the context of our models, the general equation is Eq. (1):

$$g(y_{ij}) = \alpha + \sum_{k=1}^{K} f_k(x_{w,ij}) + \sum_{m=1}^{M} \beta_{m} x_{p,ij} + \epsilon_{ij},$$

where $g()$ is a link function, α is the model constant, f_k are the smooth basis functions based on penalised thin plate regression splines of the independent variables $x_{w,ij}$ modelled non-parametrically, β_m are the coefficient values for the independent variables $x_{p,ij}$ modelled parametrically with a linear form, and ϵ_{ij} is the model error term such that $\epsilon_{ij} \sim N(0, \sigma^2)$. In generating the final model form, we investigate different specifications for the underlying family distribution, the link functions, the number of knots (or turning points) for the regression splines, and we also trial different combinations of linear and spline forms for the independent variables (refer to Section 4.1 for further details). Once the optimal values have been determined using the training and validation data, we use these to generate predictions for observations of x_{ij} in the test data set. The "bam" package in R (Wood et al., 2015) is used to perform the semiparametric regression modelling.

3.1.2 Random forest
Random forest is a ML method based on the regression tree algorithm. This algorithm involves partitioning the original data set based on the values of the independent variables. Partitions are undertaken such that the sum of squared
errors is minimised, and the number of partition levels is dependent on a trade-off between fitting and over-fitting the data. The final form of the regression tree is attained when the smallest feasible final partition regions are generated; these regions are termed leaves. The predicted value of the dependent variable in each leaf is a constant calculated as the mean value of all observations in the leaf.

The random forest algorithm involves taking bootstrap samples of the data and fitting regression trees to each sample. For continuous forms of the dependent variable, as is the case in our analysis, the predicted value of the dependent variable is calculated by taking the mean of the predicted values generated by the bootstrap sample of regression trees. The algorithm can be summarised as follows (Breiman, 2001; Hastie et al., 2017):

- Take a bootstrap sample of size \(N_b \) from the training data;
- Generate a random forest tree \(T_n \) from the bootstrap sample as follows:
 1. For each terminal node, randomly select \(m \) independent variables from the total number of independent variables \(p \);
 2. Determine the optimal variable/split point;
 3. Split the node into two further nodes;
 4. Repeat steps 1. to 3. at each terminal node until the minimum number of nodes for the tree is reached.
- Repeat 1st main step "Take a bootstrap …" and 2nd main step "Generate a random …" for all bootstrap samples \(b = 1 \ldots B \).

The random forest prediction for a new point \(x_j \) in the test data set is then generated as follows:

\[
\hat{y}_{RF} (x_j) = \frac{1}{B} \sum_{b=1}^{B} T_b (x_j) \tag{2}
\]

According to Hastie et al. (2017), a default value for \(m \) should be \(p/3 \) where \(p \) is the number of independent variables, and the minimum node size which sets the depth of the regression tree should be 5. We trial different values of \(m \) and \(n_{min} \) to arrive at a final model form; further details are given in Section 4.1. The "randomForest" (Liaw and Wiener, 2002) and "ranger" (Wright and Ziegler, 2017) packages are used to run the algorithms.

3.1.3 Support vector machines
Support vector machines are ML algorithms for classification or regression applications. Since the dependent variables are continuous in our analysis, we adopt the methodology for support vector machine regression.

In simple linear regression, the objective is to minimise error in the model, i.e. to minimise the sum of the squared errors between the fitted and observed data. In support vector machine regression, the objective is to minimise the coefficient vector and the error term is specified to have an allowable error margin. To further improve the model fit, slack variables can be incorporated; these are defined as values that fall outside the error margin, which are to be minimised. The general form of the support vector machine regression optimisation problem is summarised as follows (Drucker et al., 1996):

\[
\begin{align*}
\min_{w,b,c} & \quad 0.5w^T w + C \sum_{i=1}^{N} \xi_i + \sum_{i=1}^{N} \epsilon_i^* \\
\text{subject to} & \quad w^T x_i + b - y_i \leq \epsilon + \xi_i, \\
& \quad y_i - w^T x_i - b \leq \epsilon + \epsilon_i^*, \\
& \quad \xi_i, \epsilon_i^* \geq 0, \quad i = 1, \ldots, N,
\end{align*}
\]

where \(\phi() \) is a kernel function that maps the independent variables into a higher dimensional space for separation (if necessary), \(w \) is a vector of parameters for the independent variables to be minimised, \(b \) is the intercept, \(\xi_i \) and \(\epsilon_i^* \) are slack variables, \(\epsilon \) is the allowable error margin such that \(\epsilon > 0 \), and \(C \) is a tuning or "cost" parameter for the slack variables such that \(C > 0 \). To generate the final model form, we investigate different kernel function types, and different values of \(\epsilon \) and \(C \). Further details are given in Section 4.1. The optimal regression parameters \(w \) and \(b \) generated from the final form are then used to calculate predictions for observations of \(x_j \) in the test data set. The support vector machine regression algorithms are implemented using the "e1071" package in R.

3.1.4 Multivariate linear regression
As a baseline model type for comparison, we also generate linear regression models using ordinary least squares fitting. Under this framework, the relationship between dependent and independent variables is linear. The general equation is Eq. (4), as follows:

\[
y_j = \alpha + \sum_{k=1}^{K} \beta_k x_{jk} + \epsilon_j, \quad \epsilon_j \sim N(0, \sigma_j^2), \tag{4}
\]

where \(\alpha \) is the model constant, \(\beta_k \) are the coefficients for \(k = 1 \ldots K \) dependent variables modelled linearly, and \(\epsilon_j \) is the random error term such that \(\epsilon_j \sim N(0, \sigma_j^2) \). The linear regression models are generated using the "base" package in R.

3.2 Model development

3.2.1 Data cleaning

A summary of the data cleaning process prior to developing the prediction models is outlined in Fig. 1. Observations were removed in cases of duplicate entries, erroneous records, outliers, and those with missing values in more than 60% of the following categories: data on temporal information, cost of trip, type of user, entry and exit stations, erroneous records comprised those with 0 or negative travel times.

For observations with less than 60% missing information and those with travel times greater than 10 times the average travel time but less than 10 hours, the missing values in the independent and/or dependent variables were calculated via mean imputation. As a result of the data cleaning process, approximately 1.2% of the observations were removed, and an approximately equivalent number of observations were restored via imputation.

It should be noted that feature engineering was also performed to standardise the variables that possessed large numeric ranges and mean values, however, this yielded minimal improvements, and so the original variable values were retained.

3.2.2 Independent variables

We included a number of independent variables to improve the predictive power of the models. The selection of the variables was based on the literature on passenger demand and travel time prediction and data availability. A summary of the variables is given in Table 2. Initially all variables were included in the models. Further refinement of variable selection was undertaken based on variable statistical significance for the linear and semiparametric models, and importance scores for the machine learning models. Further details are given in Section 4.1.

3.2.3 Training, validation, and test sets

The cleaned data were split into training, validation, and test data sets. The percentage of data in each set was 80%, 10%, and 10%, respectively. This framework of data partitioning is widely accepted in the literature on predictive algorithms, for example, Wang et al. (2018). A summary of the counts in each data set is given in Fig. 2.

3.3 Model evaluation criteria

We use the conventional goodness-of-fit metrics used in machine learning applications to evaluate the predictive performance of the models including the root mean square
error (RMSE), the mean absolute percentage error (MAPE), the coefficient of determination (R^2), and likelihood-based criteria including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Models with lower values of RMSE, MAPE, AIC, and BIC, and higher values of R^2 indicate a better fit. We also adopt two additional extensions of the RMSE and MAPE metrics termed the symmetric MAPE (SMAPE) and the normalised RMSE (NRMSE) to minimise the impact of outliers and generate more comparable evaluations (Li et al., 2018);
\[
\text{SMAPE} = \frac{1}{n} \sum_{y} \frac{|y_{y} - \hat{y}_{y}|}{0.5(y_{y} + \hat{y}_{y})} \times 100,
\]

and
\[
\text{NRMSE} = \left[\sum_{y} \left(y_{y} - \hat{y}_{y} \right)^2 / n \right]^{0.5} \left[\sum_{y} y_{y} / n \right]^{-1},
\]

where \(y_{y}\) is an observation of the dependent variable, \(\hat{y}_{y}\) is the predicted value of the observation, and \(n\) is the total number of observations. Each metric represents different aspects of model fit, and thus evaluating a range of metrics provides a better assessment of overall model performance.

4 Results

In the following presentation of the model results, we refer to each model by acronyms as follows: MVLR - multivariate linear regression, SPR - semiparametric regression, RFR - random forest regression, and SVMR - support vector machine regression. We additionally refer to the SPR, RFR, and SVMR models as the proposed models and the MVLR as the baseline model.

4.1 Final model forms

4.1.1 MVLR baseline models

Despite being the simplest model form, the baseline MVLR models performed well with adjusted \(R^2\) values of > 0.95. It should be noted that the performance of the models is greatly improved through the inclusion of lagged temporal variables, namely travel flows and travel times in the past day, month, and year in the travel demand and travel time models, respectively. The results for the final model forms of the baseline MVLR models are given in Tables 3 and 4.

4.1.2 SPR models

The development of the final form for the SPR models involved trialling different family distributions, link functions, and knot values for the regression splines, and trialling different combinations of linear and non-parametric

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coefficient value</th>
<th>Std error</th>
<th>(P)-value</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>entrytime_15_double</td>
<td>1.11E-01</td>
<td>4.78E-03</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>entst (dummy)</td>
<td>1.0E0 -- 5.0E1</td>
<td>Varies</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>extst (dummy)</td>
<td>1.0E0 -- 2.5E1</td>
<td>Varies</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>price_mean</td>
<td>-1.99E-01</td>
<td>4.02E-02</td>
<td>7.30E-07</td>
<td>***</td>
</tr>
<tr>
<td>price_median</td>
<td>2.86E-02</td>
<td>3.21E-02</td>
<td>3.70E-01</td>
<td></td>
</tr>
<tr>
<td>traveltime_adjusted_mean</td>
<td>-2.26E-03</td>
<td>4.39E-04</td>
<td>2.60E-07</td>
<td>***</td>
</tr>
<tr>
<td>traveltime_adjusted_median</td>
<td>3.50E-04</td>
<td>4.38E-04</td>
<td>4.20E-01</td>
<td></td>
</tr>
<tr>
<td>per_ADL</td>
<td>2.57E+00</td>
<td>6.92E-01</td>
<td>2.10E-04</td>
<td>***</td>
</tr>
<tr>
<td>per_CHD</td>
<td>1.09E+01</td>
<td>1.09E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_DIS</td>
<td>1.31E+00</td>
<td>1.19E+00</td>
<td>2.70E-01</td>
<td></td>
</tr>
<tr>
<td>per_SEN</td>
<td>1.29E+00</td>
<td>7.33E-01</td>
<td>7.70E-02</td>
<td></td>
</tr>
<tr>
<td>per_STD</td>
<td>8.63E-01</td>
<td>7.11E-01</td>
<td>2.20E-01</td>
<td></td>
</tr>
<tr>
<td>per_TRS</td>
<td>1.29E+00</td>
<td>5.35E+00</td>
<td>8.10E-01</td>
<td></td>
</tr>
<tr>
<td>EBD</td>
<td>8.24E+00</td>
<td>2.83E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_peak_period</td>
<td>6.89E+00</td>
<td>1.72E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>week-day1</td>
<td>2.50E+01</td>
<td>4.11E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>week-day2</td>
<td>-3.31E+01</td>
<td>1.11E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>ntickets_H1 (past 15-min)</td>
<td>9.74E-01</td>
<td>3.82E-04</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>temperature</td>
<td>7.93E-01</td>
<td>9.24E-02</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition1</td>
<td>-1.44E+01</td>
<td>2.46E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition2</td>
<td>-1.61E+01</td>
<td>4.19E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition3</td>
<td>-2.22E+01</td>
<td>5.15E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>wind</td>
<td>2.67E-01</td>
<td>2.84E-02</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>humidity</td>
<td>5.78E-01</td>
<td>2.58E-02</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.9557</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance notation: \(p\)-values 0, "****" 0.001, "***" 0.01, "**" 0.05, "," 0.1, "," 1.
spline forms for the independent variables. The results of the trials are given in Table 5. As shown in the table, the Poisson family distribution with a log function link generates the best performing model for travel demand, and the Gamma family distribution with a log function link generates the best performing model for travel times. The results for the final model forms of the SPR models is given in Tables 6 and 7. The variables that are significant in the SPR model of travel demand are also significant in the corresponding baseline MVLR model. For the SPR model of travel times, there are fewer significant variables than the corresponding baseline MVLR model;

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coefficient value</th>
<th>Std error</th>
<th>P-value</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>entrytime_15_double</td>
<td>3.73E-01</td>
<td>1.87E-02</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>entst (dummy)</td>
<td>-1.5E1 -- 2.0E1</td>
<td>Varies</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>ext (dummy)</td>
<td>-1.5E1 -- 2.0E1</td>
<td>Varies</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>price_mean</td>
<td>-1.65E+00</td>
<td>1.58E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>price_median</td>
<td>1.98E+00</td>
<td>1.25E-01</td>
<td>7.00E-01</td>
<td></td>
</tr>
<tr>
<td>traveltime_adjusted_mean</td>
<td>9.54E-01</td>
<td>5.32E-04</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>traveltime_adjusted_median</td>
<td>3.26E-02</td>
<td>5.25E-04</td>
<td>5.50E-01</td>
<td></td>
</tr>
<tr>
<td>per_ADL</td>
<td>-7.29E+01</td>
<td>2.70E+01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_CHD</td>
<td>-8.08E+01</td>
<td>4.24E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_DIS</td>
<td>-6.73E+01</td>
<td>4.66E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_SEN</td>
<td>-6.95E+01</td>
<td>2.87E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_STD</td>
<td>-5.73E+01</td>
<td>2.78E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_TRS</td>
<td>-5.48E+01</td>
<td>2.09E+01</td>
<td>8.80E-03</td>
<td></td>
</tr>
<tr>
<td>EBD</td>
<td>-1.01E+01</td>
<td>1.11E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>per_peak_period</td>
<td>1.66E+01</td>
<td>6.71E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>week-day1</td>
<td>3.08E+01</td>
<td>4.11E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>week-day2</td>
<td>4.56E+01</td>
<td>6.11E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>ntickets</td>
<td>-5.88E-02</td>
<td>1.50E-03</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>ntickets_H1 (past 15-min)</td>
<td>3.26E-02</td>
<td>5.25E-04</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>temperature</td>
<td>7.36E+00</td>
<td>3.61E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition1</td>
<td>-1.48E+01</td>
<td>9.62E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition2</td>
<td>-1.58E+01</td>
<td>1.64E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>weather_condition3</td>
<td>-3.99E+01</td>
<td>2.02E+00</td>
<td><2E-16</td>
<td>***</td>
</tr>
<tr>
<td>wind</td>
<td>-5.24E-01</td>
<td>1.11E-01</td>
<td>2.40E-06</td>
<td></td>
</tr>
<tr>
<td>humidity</td>
<td>1.13E+00</td>
<td>1.01E-01</td>
<td><2E-16</td>
<td>***</td>
</tr>
</tbody>
</table>

Adj. R-squared 0.9782

Significance notation: p-values 0, "****" 0.0001, "***" 0.001, "**" 0.05, "." 0.1, " " 1.

<table>
<thead>
<tr>
<th>Family</th>
<th>Link</th>
<th>Travel flows</th>
<th>Travel times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-sq. (adj.)</td>
<td>Residuals</td>
<td>R-sq. (adj.)</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Identity</td>
<td>0.957</td>
<td>2.00</td>
</tr>
<tr>
<td>Gamma</td>
<td>Log</td>
<td>0.91</td>
<td>6.00</td>
</tr>
<tr>
<td>Poisson</td>
<td>Log</td>
<td>0.959</td>
<td>4.00</td>
</tr>
<tr>
<td>Quasi</td>
<td>Identity, const. var.</td>
<td>0.957</td>
<td>2.00</td>
</tr>
<tr>
<td>Quasipoisson</td>
<td>Log</td>
<td>0.958</td>
<td>4.00</td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.9782</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance notation: p-values 0, "****" 0.0001, "***" 0.001, "**" 0.05, "." 0.1, " " 1.
namely, the variables capturing the user types of adults, child, disabled, seniors, students, and retired persons drop in significance.

4.1.3 RFR models

We first undertook trials to establish whether the models should be estimated using the "ranger" or "randomForest" package. As per Table 8, the "ranger" package outperformed the "randomForest" package in terms of processing time. Furthermore, we faced issues with the "randomForest" package in handling categorical predictors with more than 53 categories. Therefore, we adopted the "ranger" package for subsequent modelling. In the development of the final RFR model form, we investigated different combinations of the number of trees n and the number of independent variables to be selected in the generation of trees (m). The results of the trials are given in Fig. 3 (a)–(d). The optimal values of the parameters are as follows: $n = 250$ and $m = 10$.

In RFR model frameworks, the improvement in RMSE each time an independent variable is used as a node split is able to be quantified. This quantity is converted to an impurity score and reported as the variable's "importance".

The top five variables with the highest importance in the RF flows prediction model are $nticketsH1$, type of user, travel time, price and entry station. For the RF travel times model, the top five variables are $nticketsH1$, type of user, travel time, price and entry station.

4.1.4 SVMR models

In the generation of the SVMR models, different values of the following attributes were trialled: kernel types, the error margin ϵ, and the cost parameter C. The kernel types trialled included linear, polynomial, radial basis, and sigmoid kernels. The optimal form was found to be radial.

To determine the optimal ϵ and C values, we undertook a grid search with 10-fold cross-validation sampling, with the objective of minimising the RMSE scores. The darker coloured areas of the grid in Fig. 4 show the optimal values. For the travel demand model, the optimal values are $\epsilon = 0.26$ and $C = 8$. For the travel times model, the optimal values are $\epsilon = 0.2$ and $C = 80$. It is worth noting that if the default values of $\epsilon = 0.1$ and $C = 1$ were used, the goodness-of-fit performance of the SVMR model would fall far below the SPR and RFR models.
4.2 Comparison of performance

Table 9 summarises goodness-of-fit and computational performance when comparing the final model forms. For both travel demand and travel time models, the training and prediction computational time for the baseline MVLR models is shortest compared to other forms, however, the SPR, RFR, and SVRM models outperform the baseline MVLR model in terms of predictive power, as anticipated.

For the travel demand models, the SPR, RFR, and SVRM models have \(R^2 \) values that range 0.55–2.43% higher than the baseline MVLR model; the SVMR model has the highest score and SPRM the lowest. For the RMSE metric, the proposed models’ error ranges between 1–2 times less than the baseline MVLR model, with the SVMR again performing best and SPRM the worst.

For the NRMSE performance metric, the improvement in error is similar to that of the RMSE metric, however, the SPR model outperforms the others. The MAPE and SMAPE performance metrics reveal an error reduction of 2–3.5 times when compared to the baseline MVLR model, and the SVMR model performs best under these metrics.

In terms of computation time for the proposed models, the SPR model is fastest overall compared to the RFR and SVMR machine learning models.

For the travel time models, the \(R^2 \) of the proposed models ranges from 1.08–1.19% higher than the baseline MVLR model, with the SPR model demonstrating the highest \(R^2 \) and SVMR and RFR the lowest. For the RMSE and NRMSE, the error reduction in the proposed models range between 2.5–9 times, with the RFR model performing best. The MAPE and SMAPE scores show improvements to a similar degree as the RMSE and NRMSE scores. In terms of computational time, the SVMR and RF models are faster than the SPR model.

Overall, in terms of prediction accuracy, the results show that the semiparametric and machine learning methods outperform the baseline MVLR models. The SVMR
model yields the most accurate predictions of travel flows, and the RFR model performs best for travel time predictions. It should be noted that the SPR models demonstrate comparable performance to the machine learning models in terms of prediction accuracy. Moreover, the SPR models generally possess faster computation times than the machine learning models.

Fig. 3 Effect of the number of trees on (a) model fit – travel flows, (b) processing time – travel times, (c) model fit – travel times and (d) prediction error – travel times

Fig. 4 Hyperparameter optimisation grid plot: (a) travel flow and (b) travel time
4.3 Trip analysis

As a further extension to the analysis, we undertake a case study to compare the performance of the models for two selected routes differing in length. We analyse a short route, from station (#1) to station (#3), and a longer route, from station (#1) to station (#33). The length of the short route is 3.4 km with 1 intermediate stop, while the longer route is 7.4 km with 7 intermediate stops. The average peak/off-peak passenger flows of the short route are 2400/1280 passengers per 15 minutes, and 785/375 passengers per 15 minutes for the longer route. The average peak/off-peak travel times of the short route are 11/12 minutes, and 20/21.5 minutes for the longer route.

The predictions plotted against the actual travel flows and times for each route are presented in Figs. 5–8. As shown in Figs. 5–8, the models are effective for both route lengths, however, the models possess better performance for the longer route. This could be attributed to a lower degree of variance in travel times and travel flows for the longer route compared to the shorter route. A potential future area of research is to extend this case study to include additional routes to ascertain whether there are differences in prediction accuracy between shorter and longer routes in general. Besides, we observe that the performance of the travel time prediction models is varying at different times of the day and this can also be revisited in future research.

Table 9 Performance comparison of travel demand and travel time models

<table>
<thead>
<tr>
<th></th>
<th>Travel demand model</th>
<th></th>
<th>Travel time model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MVLR</td>
<td>SPR</td>
<td>RFR</td>
<td>SVMR</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9557</td>
<td>0.961</td>
<td>0.97867</td>
<td>0.97948</td>
</tr>
<tr>
<td>RMSE (passengers/seconds)</td>
<td>620.9099</td>
<td>324.884</td>
<td>206.4752</td>
<td>196.65759</td>
</tr>
<tr>
<td>NRMSE (%)</td>
<td>0.4407</td>
<td>0.16161</td>
<td>0.23447</td>
<td>0.21816</td>
</tr>
<tr>
<td>MAPE (%)</td>
<td>52.019</td>
<td>18.914</td>
<td>12.715</td>
<td>11.348</td>
</tr>
<tr>
<td>Training time (s)</td>
<td>11.44</td>
<td>146.02</td>
<td>183.36</td>
<td>461.15</td>
</tr>
<tr>
<td>Prediction time (s)</td>
<td>1.1</td>
<td>54</td>
<td>11.98</td>
<td>55.04</td>
</tr>
<tr>
<td>Capacity requirement (Mb)</td>
<td>608.63</td>
<td>81.3</td>
<td>1184.5</td>
<td>190.38</td>
</tr>
</tbody>
</table>

Fig. 5 Actual vs. predicted travel flows of various regression methods between stations #1 and #3
Fig. 6 Actual vs. predicted travel times of various regression methods between stations #1 and #3

Fig. 7 Actual vs. predicted travel flows of various regression methods between stations #1 and #33
5 Conclusions
The core aim of this paper is to document a benchmarking exercise of easily accessible econometric and machine learning methods and compare their performance in travel demand and travel time prediction in an urban rail system. Our analysis is motivated by the observation that smart card data and other automated data sources have become available for most public transport operators around the globe. However, in the absence of local expertise and/or published case studies in the academic sphere, most of them have to make considerable effort to turn these data sources into relevant sources of information. This paper delivers guidance in terms of what methods are available in open-source software packages and how their performance can be ranked in travel demand and travel time prediction.

The paper reports that among semiparametric regression (SPR), random forest regression (RFR), support vector regression (SVMR), and multivariate linear regression (MVLR), the SVMR and RFR models are the most accurate in travel flow and travel time prediction, respectively. Thus, these are the preferred models if accuracy is the most important criteria. We note that the SPR model demonstrates comparable performance in travel time prediction, and this method showcased shorter computation time, which might be a relevant factor when the predictions are used to support real-time operational decisions.

This illustrates that none of the four methods can be nominated as a dominant method in the context of public transport analysis.

Numerous operational strategies can be built on accurate real-time ridership and travel time predictions, with the aim of improving the overall efficiency of public transport provision. Amid unexpected demand shocks or headway deviations, real-time dispatching protocols can be designed to control the instantaneous speed of trains, shorten or increase the dwell times at stations, and designing entirely new service temporary timetables to react to fluctuating conditions. These tools have great potential to enhance performance within the network, thus reducing costs for both travellers and the public purse.

Our models can be improved by fusing socio-demographic data from census surveys and trip distances, to capture the foreseeable impact of social and economic trends on travel habits. For future work, the methodology utilised in this paper can be extended to account for crowding effects and traffic incidents within the network, which are expected to be important determinants of both travel demand and speed. Finally, other machine learning models could be added to our pool of benchmarked methods, for example deep learning (see Yang et al. (2021a), for a recent example) and ANN with backpropagation.

![Fig. 8 Actual vs. predicted travel times of various regression methods between stations #1 and #33](image-url)
References

Acknowledgement
The authors would like to thank MTR as a supporter of this research through data provision.

Table A1 Strengths and limitations of modelling methods

<table>
<thead>
<tr>
<th>General class of model</th>
<th>Input considerations</th>
<th>Outputs</th>
<th>Strengths/Limitations</th>
</tr>
</thead>
</table>
| **Mathematical analytical models** | Geographical and temporal data, trends, outliers, seasonality, station interdependencies, peak and off-peak travelling, elasticities | Travel demand and travel times | **Strengths**
Provides information on the dependence of results on parameters
Provides direct performance sensitivity information | **Limitations**
Mathematical formulation of complex models can be intractable
Mathematical analysis that establishes estimates of certain quantities cannot be used for different ones in some cases found challenging to automate |
| **Simulation models** | Similar to above | Traffic flow predictions | **Strengths**
Can be used to model complex systems
Hypothetical configurations
Accounts for dynamic behaviour, stochasticity
Full control of experimental conditions | **Limitations**
Simplification for analytical solution might be excessive
Postulation of components of a system without further analysis
Little information on the dependence of results on parameters
No direct performance sensitivity information |
| **Machine learning methods** | All of the above in addition to more information concerning mode attributes (travel times, travel time variability, costs, crowding levels). Image (photos and videos) analysis, e.g. satellite photos, street photos, video surveillance; Sentiment analysis of passengers of particular transport modes, e.g. social media data (hashtags, textual and image analysis); Financial transactions analysis and expenditure, e.g. financial statements. | Travel demand and travel times | **Strengths**
Typically, better at predictions under particular conditions.
Greater spatial and temporal coverage (depends on the data).
Capable of absorbing and processing more data (big data).
Capable of capturing a greater variety of data.
Capable of capturing non-linear effects. | **Limitations**
Uncertain performance in forecasting structural/step changes/unless such were included in the training data.
Data and processing power hungry.
Often lack transparency ("black box" problem).
Privacy considerations associated with using large volumes of high-resolution data. |