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Abstract

Urban mass transit systems generate large volumes of data via automated systems established for ticketing, signalling, and other 

operational processes. This study is motivated by the observation that despite the availability of sophisticated quantitative methods, 

most public transport operators are constrained in exploiting the information their datasets contain. This paper intends to address 

this gap in the context of real-time demand and travel time prediction with smart card data. We comparatively benchmark the 

predictive performance of four quantitative prediction methods: multivariate linear regression (MVLR) and semiparametric regression 

(SPR) widely used in the econometric literature, and random forest regression (RFR) and support vector machine regression (SVMR) 

from machine learning. We find that the SVMR and RFR methods are the most accurate in travel flow and travel time prediction, 

respectively. However, we also find that the SPR technique offers lower computation time at the expense of minor inefficiency in 

predictive power in comparison with the two machine learning methods.
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1 Introduction
Information and Communication Technologies (ICT) are 
widely applied in the public transport sector; common 
examples include vehicle automation, electronic fare col-
lection, and safety and security processes. These digital 
solutions in public transport operations generate vast vol-
umes of data. In this paper we focus on the utilisation of 
smart card ticketing data. Smart card data (SCD) is a pop-
ular source of information in the emerging literature of 
transport planning and economics, primarily because 
it records many characteristics of the observed demand 
patterns and user behaviour almost immediately, which 
enables short-term or even real-time decision making. 
By capturing 

1.	 the volume of travellers at every entry and exit point 
of the public transport network, and 

2.	 the speed of movement between the tap-in and tap-
out locations, 

analysts will be able to predict travellers flows and 
travel times in real-time with high precision, which 
can be extremely valuable for both the operator (e.g., 

see Drabicki  et  al. (2021); Hörcher and Graham  (2021); 
Sun et al. (2014)) and the traveller in preparation for unex-
pected events such as sudden demand shocks or delays. The 
literature documents many quantitative prediction meth-
ods in the context of public transport demand and travel 
speed, but very few of them are utilised by transit agen-
cies. At the same time, operators are challenged in dealing 
with big data arise from issues related to storage, trans-
mission, management, processing, analyses, visualisation, 
security, privacy and many others (Bahsoon et al., 2017).

The short-run prediction of demand characteristics 
has recently become increasingly relevant in the well-
known context of the COVID-19 pandemic (Tirachini and 
Cats,  2020). The risk of infection in public transport is 
determined by two travel attributes: the duration of the 
trip and the occupancy rate of the vehicle taken, assum-
ing that the occupancy rate is inversely proportional to 
the average distance between passengers (Hörcher et al., 
2022). Naturally, risk-averse passengers intend to reduce 
the trip duration as well as the prevailing level of crowd-
ing as much as possible. If a social distancing regulation 
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is in place, operators are also obliged to monitor the level 
of crowding and keep it within a predetermined thresh-
old – and even if such regulation is not in place, opera-
tors might be interested in keeping occupancy rates low to 
limit the dissatisfaction of customers. Based on our expe-
rience from metro benchmarking activities managed by 
the Transport Strategy Centre (TSC) at Imperial College 
London, most urban rail operators are currently unable 
to make network-level, real-time demand predictions and 
monitor the likely violation of social distancing rules 
using automated data sources such as SCD.

The core objective of this study is to provide a guide for 
metro operators and researchers assisting them on readily 
available demand and travel time prediction methods that 
can be utilised without substantial investment in software 
tools or computing capacity. Using a comprehensive smart 
card dataset from a large Asian metro operator, we test the 
performance of four demand prediction methods:

•	 semiparametric regression,
•	 random forest regression,
•	 support vector machine regression, and 
•	 multivariate linear regression.

Simple implementations of these quantitative predic-
tion methods are available in R, the open-source statis-
tical coding environment. The contribution of this study 
is benchmarking the performance of these well-known 
methods for the specific case of demand and travel time 
prediction in urban rail transport. This way we synthesise 
isolated attempts to develop prediction methods with SCD 
and form recommendations for their direct implementa-
tion in practical forecasting exercises. One of the main 
messages of this work is that there is no universal predic-
tion method for public transport-specific decision support; 
the present paper concludes with specific recommenda-
tions for ridership and travel speed estimation.

1.1 The surrounding literature
The empirical literature of transport science is rich in pre-
diction-oriented research, especially since the introduc-
tion of large-scale data sources. Comprehensive reviews 
of data mining methods in the context of public trans-
port operations are available in Ghofrani  et  al. (2018), 
Koutsopoulos et al. (2019), and Pelletier et al. (2011). In this 
paper we focus on short-term prediction models; for long-
term demand forecasting, the four-stage approach to traf-
fic modelling (de Dios Ortúzar and Willumsen, 2011) and 
the use of demand elasticites (Blainey and Preston, 2013) 
are the commonly accepted methods in transport science. 

For short-term prediction, in the past decade there has 
been a surge of methodological developments in nonpara-
metric artificial intelligence techniques, including neu-
ral networks, genetic algorithms, Kálmán filtering, and 
clustering methods.1 In general, the literature on machine 
learning (ML) techniques relies on data on historical pas-
senger flows, travel costs, and temporal factors such as the 
time of the day. In Section 1.1, we first review the existing 
ML studies on travel flow prediction, and then we turn to 
travel time or speed forecasting.

Bai et al. (2017) develop a deep fusion approach to pre-
dict short-term bus passenger flow, by fusing deep belief 
networks corresponding to flow patterns differentiated 
by behavioural, temporal, and transport management 
factors. Using bus data from Guangzhou, China, their 
approach outperforms nonparametric models. A series 
of papers focus on flow prediction during special events 
when demand is more volatile than under regular con-
ditions (see Chen et  al. (2020); Li  et  al. (2017); Ni  et  al. 
(2017); Pereira et al. (2015); Xue et al. (2022) among oth-
ers). Guo  et  al. (2019) propose fusioning support vector 
regression (SVR) and short-term memory neural networks 
for the prediction of abnormal passenger flows, in general. 
Ding et al. (2016) extend the analysis to multimodal public 
transport provision. Their gradient boosting decision trees 
approach predicts metro demand in combination with data 
on transfer behaviour at adjacent bus stops. A more recent 
incarnation of interpretable tree-based methods is the 
XGBoost model of Zou et al. (2022).

Among the most refined nonparametric regression meth-
ods, artificial neural networks (ANN) appear as an agile and 
adaptive method for forecasting with enhanced function map-
ping capabilities (Zhang et al., 1998). However, a compari-
son study later concludes that the performance of Gaussian 
maximum likelihood methods is still comparable to ANN 
(Tang et al., 2003). Ling et al. (2018) analyse predicted pas-
senger flows on the Shenzen subway network under different 
traffic conditions extrapolating back-propagation in a multi-
layer perception model and then compare this against the fol-
lowing: SVR model with a linear kernel function, gradient 
boosted regression tree model training data in parallel, and 
historical average model. Their study concludes a better pre-
diction performance at relatively stable passenger flows with 
the SVR model, however, the multi-layer perception model 
is more reliable with irregular patterns in passenger flows. 

1 Beside an abundance of nonparametric methods, deterministic predic-
tion approaches such as the route choice model of Lee et al. (2022) are 
still active research areas.
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Similarly, Sun  et  al. (2015) propose Wavelet-SVR model 
which is then compared to both Wavelet-ANN and EMD-
BPN models. The  Wavelet-SVR model yields better fore-
casting performance on a data set from the Beijing subway 
system. Yang et al. (2021b) show the superiority of a  long 
short-term memory network (LSTM) and wavelet over 
ARIMA, nonlinear regression and traditional LSTM models.

Several studies use ML methods to predict travel 
times (or, inversely, travel speed) in a transport net-
work.2 Bin  et  al. (2006) estimate bus arrival times with 
bus movement data from Dalian, China. A SVR model 
with three-variable representing the route, current route 
travel time and nearest next route travel time was found 
to be superior to a constructed three-layer standard ANN. 
Methods from both queuing theory and ML are merged 
by Gal et al. (2017) to improve the accuracy of travel time 
predictions, using historical and real-time data from the 
Dublin bus network. Their results reveal the accuracy 
gains of fusions between the snapshot method originating 
from queuing theory and ML methods. 

Based on the rapid evolution of ML methods, it may 
be argued that more elementary statistical and economet-
ric methods have been surpassed.3 Naturally, the linearity 
assumption in standard linear regression modelling causes 
severe limitations in predictive power. Fully parametric 
statistical models may include nonlinear relationships with 
a predefined functional form, however in the volatile envi-
ronment of spatio-temporal demand fluctuations in pub-
lic transport, it is unlikely that predefined and static func-
tional forms can achieve high performance. The modelling 
technique of semiparametric regression presents a viable 
framework in the context of transit prediction applications 
enabling the modelling of explanatory variables without 
a pre-specified functional form. Furthermore, the method 
has been adapted to enable fast analysis of large data sets 
Ruppert et al. (2009). 

2 Note that in this paper our focus is restricted to travel time predic-
tion under regular (undisrupted) conditions. For a comprehensive 
coverage of disruption detection, the interested reader is referred to 
Zhang et al. (2022).

3 Autoregressive (integrated) moving average (i.e., ARMA and 
ARIME) were introduced very early for transport prediction exercises, 
first to provide short-term forecasts of traffic flows (see, for example, 
Ahmed and Cook (1979)). To account for periodic variations of traffic 
states, a seasonal ARIMA (SARIMA) was developed (Williams and 
Hoel, 2003). This particular model proved to outperform the historical 
average model and the Kálmán filter model which were introduced by 
Okutani and Stephanedes (1984) to the urban traffic control system of 
Minneapolis-St Paul and Nagoya City.

As a summary, Table A1 in Appendix provides an over-
view of the strengths and weaknesses of the previously 
discussed families of models used for transport demand 
prediction in the literature. A key point is that we find the 
semiparametric regression and ML methods' performance 
is unknown in the context of public transport applications. 
The remainder of this paper addresses this particular gap 
in the literature, thus providing a practical aid for trans-
port operators seeking effective prediction methods for 
short-term demand and travel time forecasting.

1.2 Structure of the paper
The rest of the paper is organised as follows: Section  3 
presents the model frameworks for four types of models 
that are trialled, namely: 

1.	 semiparametric regression, 
2.	 random forest regression, 
3.	 support vector machine (SVM) regression, and 
4.	 multivariate linear regression. 

We give an overview of the dataset used in the analysis 
in Section 2 and present the results in Section 4. Finally, 
Section 5 concludes with a summary of our main findings, 
and provides suggestions for future research directions.

2 Data
The data utilised in this paper are obtained from a major 
metro system in Asia. This metro system operates in one of 
the cities with the highest rates of public transport usage. 
In the analysis, SCD that tracks individual trips made on 
the metro network from 2013 and 2014 are used. Over this 
period, 11 lines and 87 stations were in operation. The SCD 
include locations and timestamps of the origin and desti-
nation taps for each trip a passenger has performed, but 
transfers are not recorded. Two time periods are selected 
for analysis: one is 3 months beginning July 2013, and the 
other is 3 months beginning July 2014. All train journeys 
from 2013 are used in training the models, while all train 
journeys in 2014 are used to test the models.

The timestamps of smart card records are accurate to 
one second. The spatial and other socio-economic dimen-
sions are indicated by time-invariant properties, including: 

•	 anonymous card ID, 
•	 entry and exit station codes, 
•	 transaction type (entry/exit), 
•	 passenger type, 
•	 train direction, and 
•	 fare prices, with or without discounts. 



360|Zimmo et al.
Period. Polytech. Transp. Eng., 51(4), pp. 357–374, 2023

The data sets have been converted from a disaggregate 
individual level to OD-based aggregates by averaging for 
15-minute intervals. Table  1 provides descriptive statis-
tics for the dataset we use for prediction. The mean travel 
time (tap-in/tap-out) is 34.4  minutes, and its distribution 
is surprisingly symmetric between the 1st and 3rd quartiles. 
The mean travel demand within 15-minute is 1448 passen-
gers per OD pair. This variable is right-skewed, meaning that 
a significant proportion of total ridership is concentrated in 
a limited number of spatio-temporal markets. This observa-
tion is consistent with regular demand patterns in metro sys-
tems. The distribution of the fares paid is also right-skewed. 
The proportion of adult ticket holders is 74.9% in the aver-
age 15-minute block, but their share takes very low or very 
high values at the extrema of the distribution.

3 Methods
Sections 3.1 to 3.3 present the methods used in the devel-
opment and comparison of the models. First, the theoret-
ical frameworks for each model are presented. Second, 
we outline the model development process involving data 
cleaning, explanatory variable selection, and data selec-
tion for training, validation, and testing. Third, we present 
the model evaluation criteria.

All calculations have been performed using R statisti-
cal analysis software on an Intel Core i7 CPU at 2.8 GHz, 
16 Gb of RAM. Details of the specific R packages used are 
given in the discussion of the model frameworks.

3.1 Model frameworks
In the following presentation of model frameworks, the 
response variable is denoted as yij . Since two types of 
analyses will be undertaken, the response yij refers to 

1.	 passenger flows per time period i along origin-desti-
nation route j and 

2.	mean journey times per time period i along ori-
gin-destination route j. 

The time periods i are defined in 15-minute intervals. 
The explanatory variables are denoted by xij ; further 
details on the definition of these is given in Section 3.2.2.

3.1.1 Semiparametric regression
Semiparametric regression is a statistical regression 
method that enables the modelling of flexible non-linear 
relationships between dependent and independent vari-
ables without the need to define the relationships paramet-
rically a priori. The flexible relationships are generated 
via basis functions that take the form of thin plate regres-
sion splines. The splines are interpolation functions that 
fit the data points, with a "wiggliness" penalty that rep-
resents the trade-off between alignment with data points 
and smoothness. The regression models adhere to a gen-
eralised additive mixed model (GAMM) structure, as the 
spline functions possess a structure that represent the sum 
of a linear predictor and random effects. Model fitting is 
based on the penalised iteratively reweighted least squares 
(PIRLS) fitting technique, and restricted maximum likeli-
hood (REML) optimisation is used to estimate the model 
parameters. Further information on the underlying theory 
of semiparametric modelling can be found in Wood (2017) 
and Wood et al. (2015).

In the context of our models, the general equation is 
Eq. (1):

g y f x xij k np ij
k

K

m p ij
m

M

ij� � � � � � � �
� �
� �� �

, ,
,

1 1

 	 (1)

where g(∙) is a link function, α is the model constant, f k 
are the smooth basis functions based on penalised thin 
plate regression splines of the independent variables xnp,ij 
modelled non-parametrically, βm are the coefficient values 
for the independent variables xp,ij modelled parametrically 
with a linear form, and ϵij is the model error term such that 
ε N εij � � �0

2
,� . 

In generating the final model form, we investigate dif-
ferent specifications for the underlying family distribution, 
the link functions, the number of knots (or turning points) 
for the regression splines, and we also trial different com-
binations of linear and spline forms for the independent 
variables (refer to Section 4.1 for further details). Once the 
optimal values have been determined using the training 
and validation data, we use these to generate predictions 
for observations of xij in the test data set. The "bam" pack-
age in R (Wood et al., 2015) is used to perform the semi-
parametric regression modelling. 

3.1.2 Random forest
Random forest is a ML method based on the regression tree 
algorithm. This algorithm involves partitioning the original 
data set based on the values of the independent variables. 
Partitions are undertaken such that the sum of squared 

Table 1 Descriptive statistics

Key variables Min 1st Qu. Median Mean 3rd Qu. Max

Travel time (s) 179 1257 1902 2063 2710 9971

Travel demand 128 849 1341 1448 2027 7400

Price 0 5.0 7.7 9.3 10.9 84.6

Proportion of 
adults 0 0.635 0.818 0.749 1 1
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errors is minimised, and the number of partition levels is 
dependent on a trade-off between fitting and over-fitting 
the data. The final form of the regression tree is attained 
when the smallest feasible final partition regions are gener-
ated; these regions are termed leaves. The predicted value 
of the dependent variable in each leaf is a constant calcu-
lated as the mean value of all observations in the leaf.

The random forest algorithm involves taking boot-
strap samples of the data and fitting regression trees to 
each sample. For continuous forms of the dependent vari-
able, as is the case in our analysis, the predicted value of 
the dependent variable is calculated by taking the mean of 
the predicted values generated by the bootstrap sample of 
regression trees. The algorithm can be summarised as fol-
lows (Breiman, 2001; Hastie et al., 2017):

•	 Take a bootstrap sample of size Nb from the training 
data;

•	 Generate a random forest tree Tb from the bootstrap 
sample as follows:
1.	 For each terminal node, randomly select m inde-

pendent variables from the total number of inde-
pendent variables p;

2.	Determine the optimal variable/split point;
3.	 Spilt the node into two further nodes;
4.	 Repeat steps 1. to 3. at each terminal node until the 

minimum number of nodes for the tree is reached.
•	 Repeat 1st main step "Take a bootstrap …" and 2nd 

main step "Generate a random …" for all bootstrap 
samples b = 1…B.

The random forest prediction for a new point xij in the 
test data set is then generated as follows:

f x
B

T xRF
B

ij b ij
b

B

� � � � �
�
�1
1

.̂ 	 (2)

According to Hastie et al. (2017), a default value for m 
should be p/3 where p is the number of independent vari-
ables, and the minimum node size which sets the depth of 
the regression tree should be 5. We trial different values of 
m and ntree to arrive at a final model form; further details 
are given in Section 4.1. The "randomForest" (Liaw and 
Wiener,  2002) and "ranger" (Wright and Ziegler,  2017) 
packages are used to run the algorithms.

3.1.3 Support vector machines
Support vector machines are ML algorithms for clas-
sification or regression applications. Since the depen-
dent variables are continuous in our analysis, we adopt 

the methodology for support vector machine regression. 
In  simple linear regression, the objective is to minimise 
error in the model, i.e. to minimise the sum of the squared 
errors between the fitted and observed data. In support 
vector machine regression, the objective is to minimise 
the coefficient vector and the error term is specified to 
have an allowable error margin. To further improve the 
model fit, slack variables can be incorporated; these are 
defined as values that fall outside the error margin, which 
are to be minimised. The general form of the support 
vector machine regression optimisation problem is sum-
marised as follows (Drucker et al., 1996):

min .
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where ϕ(∙) is a kernel function that maps the independent 
variables into a higher dimensional space for separation 
(if necessary), w is a vector of parameters for the inde-
pendent variables to be minimised, b is the intercept, ξij 
and ξ *

ij are slack variables, ϵ is the allowable error mar-
gin such that ϵ > 0, and C is a tuning or "cost" parameter 
for the slack variables such that C  >  0. To generate the 
final model form, we investigate different kernel function 
types, and different values of ϵ and C. Further details are 
given in Section 4.1. The optimal regression parameters w 
and b generated from the final form are then used to cal-
culate predictions for observations of xij in the test data 
set. The support vector machine regression algorithms are 
implemented using the "e1071" package in R.

3.1.4 Multivariate linear regression
As a baseline model type for comparison, we also gener-
ate linear regression models using ordinary least squares 
fitting. Under this framework, the relationship between 
dependent and independent variables is linear. The gen-
eral equation is Eq. (4), as follows:

y xij k ij
k

K

ij� � �
�
�� �
1

 , 	 (4)

where α is the model constant, βk are the coefficients for 
k  =  1…K dependent variables modelled linearly, and 
ϵij is the random error term such that ε N εij � � �0

2
,� .  

The  linear regression models are generated using the 
"base" package in R.
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3.2 Model development
3.2.1 Data cleaning
A summary of the data cleaning process prior to devel-
oping the prediction models is outlined in Fig.  1. 
Observations were removed in cases of duplicate entries, 
erroneous records, outliers, and those with missing val-
ues in more than 60% of the following categories: data on 
temporal information, cost of trip, type of user, entry and 
exit stations, erroneous records comprised those with 0 or 
negative travel times.

For observations with less than 60% missing informa-
tion and those with travel times greater than 10 times the 
average travel time but less than 10 hours, the missing val-
ues in the independent and/or dependent variables were 
calculated via mean imputation. As a result of the data 
cleaning process, approximately 1.2% of the observations 
were removed, and an approximately equivalent number 
of observations were restored via imputation.

It should be noted that feature engineering was also per-
formed to standardise the variables that possessed large 
numeric ranges and mean values, however, this yielded 
minimal improvements, and so the original variable val-
ues were retained.

3.2.2 Independent variables
We included a number of independent variables to improve 
the predictive power of the models. The selection of the 
variables was based on the literature on passenger demand 
and travel time prediction and data availability. A sum-
mary of the variables is given in Table 2. Initially all vari-
ables were included in the models. Further refinement of 
variable selection was undertaken based on variable statis-
tical significance for the linear and semiparametric mod-
els, and importance scores for the machine learning mod-
els. Further details are given in Section 4.1.

3.2.3 Training, validation, and test sets
The cleaned data were split into training, validation, and 
test data sets. The percentage of data in each set was 80%, 
10%, and 10%, respectively. This framework of data par-
titioning is widely accepted in the literature on predictive 
algorithms, for example, Wang et al. (2018). A summary of 
the counts in each data set is given in Fig. 2.

3.3 Model evaluation criteria
We use the conventional goodness-of-fit metrics used in 
machine learning applications to evaluate the predictive 
performance of the models including the root mean square 

Fig. 1 Flow chart describing strategy implemented throughout the pre-processing of the data
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error (RMSE), the mean absolute percentage error (MAPE), 
the coefficient of determination (R2), and likelihood-based 
criteria including the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC). Models with 
lower values of RMSE, MAPE, AIC, and BIC, and higher 

values of R2 indicate a better fit. We also adopt two addi-
tional extensions of the RMSE and MAPE metrics termed 
the symmetric MAPE (SMAPE) and the normalised RMSE 
(NRMSE) to minimise the impact of outliers and generate 
more comparable evaluations (Li et al., 2018);

Table 2 Explanatory variables accounted for in travel demand/flow and time prediction models

Variables Symbol Description Type

Entry and exit stations entst, extst Species the stations where each individual user entered and then exited. Categorical

Time intervals (15 min) entrytime_ 15_double
Specifies the period at which trips between different O-D pairs occurred. 
Each day is divided into 96 periods of which each period constitutes of 

15 minutes.
Categorical

Ticket price price mean, price median The average and median price of tickets are included as variables Numerical

Travel time traveltime adjusted mean,
traveltime adjusted median The average and median travel times Numerical

Type of user
per ADL, per CHD,
per DIS, per SEN,
per STD, per TRS

Users are grouped into adults, child, disabled, seniors, students, and 
retired persons Percentage

EBD EBD Introduced in 2014 which offers a reduced price for early purchasers Categorical

Peak time periods per peak period Peak periods in weekdays are distributed over the periods from 7:00 AM 
to 8:30 AM and 5:30 PM to 7:00 PM Percentage

Day of week week day Species the day of the week (i.e. weekday, weekend) Categorical

Historical observations ntickets H1 This variable accounted for the previously observed travel flow in the past 
15 min, past day, and past week at the same period of trips made Numerical

Meteorological data

Temperature
Weather condition

Wind
Humidity

Temperature
Weather condition: sunny, rainy, storm, etc

Wind
Humidity

Numerical
Categorical
Numerical
Numerical

Additional explanatory variables accounted for in the travel time prediction model

No. of tickets Ntickets The number of users at each period travelling between each OD-pair 
(passenger flows or travel demand) Numerical

Historical observations Traveltime adjusted H1
This variable accounted for including the previous observed travel time 
between different OD pairs in the past 15 min, past day, and past week 

at the same period of trips made
Numerical

Fig. 2 Training, validation, and test sets
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where yij is an observation of the dependent variable, ŷij is 
the predicted value of the observation, and n is the total 
number of observations. Each metric represents differ-
ent aspects of model fit, and thus evaluating a range of 
metrics provides a better assessment of overall model 
performance.

4 Results
In the following presentation of the model results, we refer 
to each model by acronyms as follows: MVLR - multivar-
iate linear regression, SPR  - semiparametric regression, 
RFR - random forest regression, and SVMR - support vec-
tor machine regression. We additionally refer to the SPR, 

RFR, and SVMR models as the proposed models and the 
MVLR as the baseline model.

4.1 Final model forms
4.1.1 MVLR baseline models
Despite being the simplest model form, the baseline 
MVLR models performed well with adjusted R2 values of 
> 0.95. It should be noted that the performance of the mod-
els is greatly improved through the inclusion of lagged 
temporal variables, namely travel flows and travel times 
in the past day, month, and year in the travel demand and 
travel time models, respectively. The results for the final 
model forms of the baseline MVLR models are given in 
Tables 3 and 4.

4.1.2 SPR models
The development of the final form for the SPR models 
involved trialling different family distributions, link func-
tions, and knot values for the regression splines, and tri-
alling different combinations of linear and non-parametric 

Table 3 Results for linear regression model of travel demand

Covariate Coefficient value Std error P-value Sig

entrytime_15_double 1.11E-01 4.78E-03 <2E-16 ***

entst (dummy) 1.0E0 -- 5.0E1 Varies <2E-16 ***

exst (dummy) 1.0E0 -- 2.5E1 Varies <2E-16 ***

price_mean −1.99E-01 4.02E-02 7.30E-07 ***

price_median 2.86E-02 3.21E-02 3.70E-01

traveltime_adjusted_mean −2.26E-03 4.39E-04 2.60E-07 ***

traveltime_adjusted_median 3.50E-04 4.38E-04 4.20E-01

per_ADL 2.57E+00 6.92E-01 2.10E-04 ***

per_CHD 1.09E+01 1.09E+00 <2E-16 ***

per_DIS 1.31E+00 1.19E+00 2.70E-01

per_SEN 1.29E+00 7.33E-01 7.70E-02 .

per_STD 8.63E-01 7.11E-01 2.20E-01

per_TRS 1.29E+00 5.35E+00 8.10E-01

EBD 8.24E+00 2.83E-01 <2E-16 ***

per_peak_period 6.89E+00 1.72E-01 <2E-16 ***

week-day1 2.50E+01 4.11E+00 <2E-16 ***

week-day2 −3.31E+01 1.11E+00 <2E-16 ***

ntickets_H1 (past 15-min) 9.74E-01 3.82E-04 <2E-16 ***

temperature 7.93E-01 9.24E-02 <2E-16 ***

weather_condition1 −1.44E+01 2.46E-01 <2E-16 ***

weather_condition2 −1.61E+01 4.19E-01 <2E-16 ***

weather_condition3 −2.22E+01 5.15E-01 <2E-16 ***

wind 2.67E-01 2.84E-02 <2E-16 ***

humidity 5.78E-01 2.58E-02 <2E-16 ***

Adj. R-squared 0.9557
Significance notation: p-values 0, "***" 0.001, "**" 0.01, "*" 0.05, "." 0.1, " " 1.
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spline forms for the independent variables. The results of 
the trials are given in Table 5. As shown in the table, the 
Poisson family distribution with a log function link gener-
ates the best performing model for travel demand, and the 
Gamma family distribution with a log function link gener-
ates the best performing model for travel times.

The results for the final model forms of the SPR models 
is given in Tables 6 and 7. The variables that are signifi-
cant in the SPR model of travel demand are also signifi-
cant in the corresponding baseline MVLR model. For the 
SPR model of travel times, there are fewer significant 
variables than the corresponding baseline MVLR model; 

Table 4 Results for linear regression model of travel time

Covariate Coefficient value Std error P-value Sig

entrytime_15_double 3.73E-01 1.87E-02 <2E-16 ***

entst (dummy) −1.5E1 -- 2.0E1  Varies <2E-16 ***

exst (dummy) −1.5E1 -- 2.0E1  Varies <2E-16 ***

price_mean −1.65E+00 1.58E-01 <2E-16 ***

price_median 1.98E+00 1.25E-01 7.00E-01

traveltime_adjusted_mean 9.54E-01 5.32E-04 <2E-16 ***

traveltime_adjusted_median 3.26E-02 5.25E-04 5.50E-01

per_ADL −7.29E+01 2.70E+00 <2E-16 ***

per_CHD −8.08E+01 4.24E+00 <2E-16 ***

per_DIS −6.73E+01 4.66E+00 <2E-16 ***

per_SEN −6.95E+01 2.87E+00 <2E-16 ***

per_STD −5.73E+01 2.78E+00 <2E-16 ***

per_TRS −5.48E+01 2.09E+01 8.80E-03 **

EBD −1.01E+01 1.11E+00 <2E-16 ***

per_peak_period 1.66E+01 6.71E-01 <2E-16 ***

week-day1 3.08E+01 4.11E+00 <2E-16 ***

week-day2 4.56E+01 6.11E+00 <2E-16 ***

ntickets −5.88E-02 1.50E-03 <2E-16 ***

ntickets_H1 (past 15-min) 3.26E-02 5.25E-04 <2E-16 ***

temperature 7.36E+00 3.61E-01 <2E-16 ***

weather_condition1 −1.48E+01 9.62E-01 <2E-16 ***

weather_condition2 −1.58E+01 1.64E+00 <2E-16 ***

weather_condition3 −3.99E+01 2.02E+00 <2E-16 ***

wind −5.24E-01 1.11E-01 2.40E-06 ***

humidity 1.13E+00 1.01E-01 <2E-16 ***

Adj. R-squared 0.9782
Significance notation: p-values 0, "***" 0.001, "**" 0.01, "*" 0.05, "." 0.1, " " 1.

Table 5 Family distributions, model fit, and residual scores

Family Link
Travel flows Travel times

R-sq. (adj.) Residuals R-sq. (adj.) Residuals

Gaussian Identity 0.957 2.00 0.988 2.20

Gamma Log 0.91 6.00 0.99 2.50

Poisson Log 0.959 4.00 0.987 2.30

Quasi Identity, const. var. 0.957 2.00 0.989 2.25

Quasipoisson Log 0.958 4.00 0.987 2.30

Adj. R-squared 0.9782
Significance notation: p-values 0, "***" 0.001, "**" 0.01, "*" 0.05, "." 0.1, " " 1.
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namely, the variables capturing the user types of adults, 
child, disabled, seniors, students, and retired persons drop 
in significance.

4.1.3 RFR models
We first undertook trials to establish whether the models 
should be estimated using the "ranger" or "randomForest"  
package. As per Table 8, the "ranger" package outperformed 
the "randomForest" package in terms of processing time. 
Furthermore, we faced issues with the "randomForest" 
package in handling categorical predictors with more than 
53 categories. Therefore, we adopted the "ranger" package 
for subsequent modelling. In the development of the final 
RFR model form, we investigated different combinations of 
the number of trees n and the number of independent vari-
ables to be selected in the generation of trees (m). The results 
of the trials are given in Fig. 3 (a)–(d). The optimal values of 
the parameters are as follows: n = 250 and m = 10.

In RFR model frameworks, the improvement in RMSE 
each time an independent variable is used as a node split is 
able to be quantified. This quantity is converted to an impu-
rity score and reported as the variable's "importance". 

The top five variables with the highest importance in the 
RF flows prediction model are nticketsH1, type of user, 
travel time, price and entry station. For the RF travel 
times model, the top five variables are nticketsH1, type of 
user, travel time, price and entry station.

4.1.4 SVMR models
In the generation of the SVMR models, different values 
of the following attributes were trialled: kernel types, the 
error margin ϵ, and the cost parameter C. The kernel types 
trialled included linear, polynomial, radial basis, and sig-
moid kernels. The optimal form was found to be radial.

To determine the optimal ϵ and C values, we undertook 
a grid search with 10-fold cross-validation sampling, with 
the objective of minimising the RMSE scores. The darker 
coloured areas of the grid in Fig. 4 show the optimal val-
ues. For the travel demand model, the optimal values are 
ϵ = 0.26 and C = 8. For the travel times model, the optimal 
values are ϵ = 0.2 and C = 80. It is worth noting that if the 
default values of ϵ = 0.1 and C = 1 were used, the good-
ness-of-fit performance of the SVMR model would fall far 
below the SPR and RFR models.

Table 6 Results for semiparametric regression model of travel demand

Covariate Form No. of knots Coefficient value Std. error P-value Sig

entrytime_15_double Linear - 1.15E-01 4.80E-03 <2E-16 ***

entst Dummy 1.0E0 -- 6.0E1 Varies <2E-16 ***

exst Dummy 1.0E0 -- 3.5E1 Varies <2E-16 ***

price_mean Splines 3 - - 9.00E-02 .

price_median Splines 3 - - <2E-16 ***

traveltime_adjusted_mean Splines 9 - - 6.00E-09 ***

traveltime_adjusted_median Splines 9 - - 0.009 **

per_ADL Splines 3 - - 6.60E-09 ***

per_CHD Splines 3 - - 8.50E-02 .

per_DIS Splines 3 - - 3.70E-01

per_SEN Splines 3 - - 7.60E-09 ***

per_STD Splines 3 - - 1.30E-01

per_TRS Splines 3 - - 1.50E-02 *

EBD Linear - 7.63E+00 2.87E-01 <2E-16 ***

per_peak_period Splines 4 - - <2E-16 ***

week-day Splines 4 - - <2E-16 ***

ntickets_H1 (past 15-min) Splines 4 - - <2E-16 ***

temperature Splines 3 - - 1.50E-01

weather_condition Linear - −1.51E+01 4.17E-01 <2E-16 ***

wind Splines 3 - - 1.20E-01

humidity Splines 3 - - 5.50E-02 *

Adj. R-squared 0.961
Significance notation: p-values 0, "***" 0.001, "**" 0.01, "*" 0.05, "." 0.1, " " 1.
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4.2 Comparison of performance
Table 9 summarises goodness-of-fit and computational per-
formance when comparing the final model forms. For both 
travel demand and travel time models, the training and pre-
diction computational time for the baseline MVLR mod-
els is shortest compared to other forms, however, the SPR, 
RFR, and SVRM models outperform the baseline MVLR 
model in terms of predictive power, as anticipated.

For the travel demand models, the SPR, RFR, and 
SVRM models have R2 values that range 0.55–2.43% 
higher than the baseline MVLR model; the SVMR model 
has the highest score and SPRM the lowest. For the 
RMSE metric, the proposed models' error ranges between 
1–2  times less than the baseline MVLR model, with 
the SVMR again performing best and SPRM the worst. 

For  the NRMSE performance metric, the improvement 
in error is similar to that of the RMSE metric, however, 
the SPR model outperforms the others. The MAPE and 
SMAPE performance metrics reveal an error reduction of 
2–3.5 times when compared to the baseline MVLR model, 
and the SVMR model performs best under these metrics. 
In terms of computation time for the proposed models, 
the SPR model is fastest overall compared to the RFR and 
SVMR machine learning models.

For the travel time models, the R2 of the proposed 
models ranges from 1.08–1.19% higher than the baseline 
MVLR model, with the SPR model demonstrating the 
highest R2 and SVMR and RFR the lowest. For the RMSE 
and NRMSE, the error reduction in the proposed models 
range between 2.5–9 times, with the RFR model perform-
ing best. The MAPE and SMAPE scores show improve-
ments to a similar degree as the RMSE and NRMSE 
scores. In terms of computational time, the SVMR and RF 
models are faster than the SPR model.

Overall, in terms of prediction accuracy, the results 
show that the semiparametric and machine learning meth-
ods outperform the baseline MVLR models. The SVMR 

Table 7 Results for semiparametric regression model of travel time

Covariate Form No. of knots Coefficient value Std. error P-value Sig

entrytime_15_double Linear - 2.67E-01 1.86E-02 <2E-16 ***

entst Dummy −5.0E0 -- 2.5E1 Varies <2E-16 ***

exst Dummy 0.0E0 -- 2.0E1 Varies <2E-16 ***

price_mean Splines 3 - - 9.00E-02 .

price_median Splines 3 - - <2E-16 ***

traveltime_adjusted_median Splines 9 - - 9.30E-03 **

per_ADL Splines 3 - - 2.60E-01

per_CHD Splines 3 - - 8.60E-01

per_DIS Splines 3 - - 5.50E-01

per_SEN Splines 3 - - 3.10E-01

per_STD Splines 3 - - 1.70E-01

per_TRS Splines 3 - - 4.60E-01

EBD Linear - −2.02E+01 1.11E+00 <2E-16 ***

per_peak_period Splines 4 - - <2E-16 ***

week-day Splines 4 - - <2E-16 ***

ntickets Splines 3 - - <2E-16 ***

ntickets_H1 (past 15-min) Splines 4 - - <2E-16 ***

temperature Splines 3 - - 5.90E-01

weather_condition Linear - −1.08E+01 1.62E+00 2.70E-11 ***

wind Splines 3 - - 5.90E-01

humidity Splines 3 - - 9.50E-02 .

Adj. R-squared 0.99
Significance notation: p-values 0, "***" 0.001, "**" 0.01, "*" 0.05, "." 0.1, " " 1.

Table 8 Processing time (s) for the "randomForest" and 
"ranger" packages

"randomForest" "ranger"

User 10596.325 221.838

System 396.215 8.506

Elapsed 10658.365 108.293
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model yields the most accurate predictions of travel flows, 
and the RFR model performs best for travel time predic-
tions. It should be noted that the SPR models demonstrate 
comparable performance to the machine learning models 

in terms of prediction accuracy. Moreover, the SPR mod-
els generally possess faster computation times than the 
machine learning models.

(a) (b)

(c) (d)

Fig. 3 Effect of the number of trees on (a) model fit – travel flows, (b) processing time – travel times, (c) model fit – travel times and  
(d) prediction error – travel times

(a) (b)

Fig. 4 Hyperparameter optimisation grid plot: (a) travel flow and (b) travel time
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4.3 Trip analysis
As a further extension to the analysis, we undertake a case 
study to compare the performance of the models for two 
selected routes differing in length. We analyse a short 
route, from station (#1) to station (#3), and a longer route, 
from station (#1) to station (#33). The length of the short 
route is 3.4  km with 1  intermediate stop, while the lon-
ger route is 7.4 km with 7  intermediate stops. The aver-
age peak/off-peak passenger flows of the short route are 
2400/1280  passengers per 15  minutes, and 785/375  pas-
sengers per 15 minutes for the longer route. The average 
peak/off-peak travel times of the short route are 11/12 min-
utes, and 20/21.5 minutes for the longer route.

The predictions plotted against the actual travel flows and 
times for each route are presented in Figs. 5–8. As shown in 
Figs. 5–8, the models are effective for both route lengths, 
however, the models possess better performance for the 
longer route. This could be attributed to a lower degree of 
variance in travel times and travel flows for the longer route 
compared to the shorter route. A potential future area of 
research is to extend this case study to include additional 
routes to ascertain whether there are differences in predic-
tion accuracy between shorter and longer routes in general. 
Besides, we observe that the performance of the travel time 
prediction models is varying at different times of the day 
and this can also be revisited in future research.

Table 9 Performance comparison of travel demand and travel time models

Travel demand model Travel time model

MVLR SPR RFR SVMR MVLR SPR RFR SVMR

R-squared 0.9557 0.961 0.97867 0.97948 0.9782 0.99 0.98883 0.98895

RMSE (passengers/seconds) 620.9099 324.884 206.4752 196.65759 103.7764 28.89861 12.01055 15.21659

NRMSE (%) 0.4407 0.16161 0.23447 0.21816 0.33854 0.0815 0.03409 0.0654

MAPE (%) 52.019 18.914 12.715 11.348 12.262 2.668 1.212 1.36

SMAPE (%) 42.821 16.645 10.046 9.977 12.812 2.757 1.203 1.264

Training time (s) 11.44 146.02 183.36 461.15 11.29 139.75 178.64 463.17

Prediction time (s) 1.1 54 11.98 55.04 0.58 51.52 11.19 68.75

Capacity requirement (Mb) 608.63 81.3 1184.5 190.38 603.24 78.71 950.13 211.91

Fig. 5 Actual vs. predicted travel flows of various regression methods between stations #1 and #3
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Fig. 6 Actual vs. predicted travel times of various regression methods between stations #1 and #3

Fig. 7 Actual vs. predicted travel flows of various regression methods between stations #1 and #33
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5 Conclusions
The core aim of this paper is to document a benchmark-
ing exercise of easily accessible econometric and machine 
learning methods and compare their performance in travel 
demand and travel time prediction in an urban rail system. 
Our analysis is motivated by the observation that smart card 
data and other automated data sources have become avail-
able for most public transport operators around the globe. 
However, in the absence of local expertise and/or published 
case studies in the academic sphere, most of them have to 
make considerable effort to turn these data sources into rel-
evant sources of information. This paper delivers guidance 
in terms of what methods are available in open-source soft-
ware packages and how their performance can be ranked in 
travel demand and travel time prediction.

The paper reports that among semiparametric regres-
sion (SPR), random forest regression (RFR), support vec-
tor regression (SVMR), and multivariate linear regres-
sion (MVLR), the SVMR and RFR models are the most 
accurate in travel flow and travel time prediction, respec-
tively. Thus, these are the preferred models if accuracy is 
the most important criteria. We note that the SPR model 
demonstrates comparable performance in travel time pre-
diction, and this method showcased shorter computation 
time, which might be a relevant factor when the predic-
tions are used to support real-time operational decisions. 

This illustrates that none of the four methods can be nom-
inated as a dominant method in the context of public 
transport analysis. 

Numerous operational strategies can be built on accu-
rate real-time ridership and travel time predictions, with 
the aim of improving the overall efficiency of public 
transport provision. Amid unexpected demand shocks or 
headway deviations, real-time dispatching protocols can 
be designed to control the instantaneous speed of trains, 
shorten or increase the dwell times at stations, and design-
ing entirely new service temporary timetables to react to 
fluctuating conditions. These tools have great potential to 
enhance performance within the network, thus reducing 
costs for both travellers and the public purse.

Our models can be improved by fusing socio-demo-
graphic data from census surveys and trip distances, to cap-
ture the foreseeable impact of social and economic trends 
on travel habits. For future work, the methodology uti-
lised in  this paper can be extended to account for crowd-
ing effects and traffic incidents within the network, which 
are expected to be important determinants of both travel 
demand and speed. Finally, other machine learning models 
could be added to our pool of benchmarked methods, for 
example deep learning (see Yang et al. (2021a), for a recent 
example) and ANN with backpropagation.

Fig. 8 Actual vs. predicted travel times of various regression methods between stations #1 and #33
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Appendix
Table A1 Strengths and limitations of modelling methods

General class of 
model Input considerations Outputs Strengths/Limitations 

Mathematical 
analytical models 

Geographical and temporal data, 
trends, outliers, seasonality, station 

interdependencies, peak and off-peak 
travelling, elasticities 

Travel demand 
and travel times 

Strengths 
Provides information on the dependence of results 

on parameters 
Provides direct performance sensitivity information 

Limitations 
Mathematical formulation of complex models can be 

intractable 
Mathematical analysis that establishes estimates of certain 
quantities cannot be used for different ones in some cases 

found challenging to automate 

Simulation models Similar to above Traffic flow 
predictions 

Strengths
Can be used to model complex systems 

Hypothetical configurations 
Accounts for dynamic behaviour, stochasticity 

Full control of experimental conditions 
Limitations 

Simplification for analytical solution might be excessive 
Postulation of components of a system without 

further analysis 
Little information on the dependence of results 

on parameters 
No direct performance sensitivity information 

Machine learning 
methods 

All of the above in addition to more 
information concerning mode attributes 

(travel times, travel time variability, costs, 
crowding levels). Image (photos and videos) 
analysis, e.g. satellite photos, street photos, 

video surveillance; 
Sentiment analysis of passengers of 

particular transport modes, e.g. social 
media data (hashtags, textual and 

image analysis); 
Financial transactions analysis and 

expenditure, e.g. financial statements. 

Travel demand 
and travel times 

Strengths 
Typically, better at predictions under particular conditions. 

Greater spatial and temporal coverage (depends on the data). 
Capable of absorbing and processing more data (big data). 

Capable of absorbing a greater variety of data. 
Capable of capturing non-linear effects. 

Limitations 
Uncertain performance in forecasting structural/step 

changes/unless such were included in the training data. 
Data and processing power hungry. 

Often lack transparency ("black box" problem). 
Privacy considerations associated with using large volumes 

of high-resolution data.
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