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Abstract

This research focuses on controlling the motion trajectory of autonomous vehicles by using a combination of two high-performance 

control methods: Linear Parameter Varying (LPV) and Reinforcement Learning (RL). First, a single-track motion model is researched 

and developed with coordinate systems to determine the car's motion trajectory through signals from GPS. Then, the LPV control 

method is used to design a controller to control the car's motion trajectory. Reinforcement learning method with detailed training 

procedures is used to combine with the advantages of LPV controller. Finally, the simulation results are evaluated in the time domain 

through the use of specialized CarSim software, which clearly demonstrates the superiority of the research method.
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1 Introduction
With the outstanding development of science and technol-
ogy today, autonomous vehicles have been researched and 
developed, bringing many conveniences to people, reduc-
ing traffic congestion, and significantly reducing traffic 
accidents (Yurtsever et al., 2020). Along with these advan-
tages and with most autonomous vehicles using green 
energy, they are greatly welcomed by drivers and encour-
aged and supported by the governments. With this devel-
opment trend, autonomous vehicles are receiving increas-
ing investment from automobile companies and research 
centers around the world, turning the autonomous vehicle 
market into a potential market for investors.

To achieve safe mobility with little or no driver intervention, 
sensors, controllers, algorithms, machine learning systems 
and processors must be meticulously coordinated and orga-
nized. First, information about the vehicle and surrounding 

environment is collected by a network of main vehicle sensors 
such as GPS, IMU, encoders, cameras, LIDAR, and other sen-
sors (Min et al., 2019; Sukkarieh et al., 1999; Van Wyk et al., 
2019). This data is processed to indicate the location, speed 
of the vehicle and obstacles. After processing, a module cre-
ates a trajectory and sends it to the vehicle's controller to con-
trol speed, acceleration, steering angle, stability and brak-
ing appropriately (Corno et al., 2020; Falcone et al., 2007; 
He et al., 2019; Kang et al., 2018; Ren et al., 2023). These 
operations are based on the vehicle's current position, a 
calculated sequence of references, along obstacle avoid-
ance algorithms, thanks to which the autonomous vehicle 
ensures smooth and safe movement while traveling on the 
road. RL (Reinforcement Learning) is a branch of Machine 
learning, a controller integrated with RL has the ability to 
collect information and to learn through trial and error using 

https://doi.org/10.3311/PPtr.37089
https://doi.org/10.3311/PPtr.37089
mailto:mihaly.andras%40sztaki.hu?subject=


Mihály et al.
Period. Polytech. Transp. Eng., 53(1), pp. 94–102, 2025 |95

feedback from its actions. Thanks to these capabilities, RL 
is increasingly widely applied in autonomous vehicle con-
trol to equip self-driving vehicles with higher intelligence 
and adaptability to the environment (Elallid et al., 2022; 
Gómez Ruiz et al., 2024). When equipped with RL algo-
rithms such as the Deep Neural Network (DNN) and Deep 
Reinforcement Learning (DRL), autonomous vehicles have 
the ability to navigate when changing lanes with predefined 
routes (Liao et al., 2020). Models based on Q-learning, 
Q-network and Deep Deterministic Policy gradient (DDPG) 
algorithms can learn to handle unforeseen situations and need 
adaptability on the road (Ye et al., 2019; Zhang et al., 2022). 
This adaptability is a very important and necessary factor in 
handling situations ranging from complex interactions during 
traffic to adaptation to unexpected weather conditions. This 
ability is continuously learned and updated while interact-
ing with the environment to help autonomous vehicles ensure 
safety and efficiency when operating in different conditions 
and emergencies while traveling (Wang et al., 2018), e.g. in 
obstacle avoidance (Gong et al., 2019), and in longitudinal 
control when changing lanes.

However, the RL method applied to control the motion 
trajectory of autonomous vehicles still faces difficulties 
in some cases, for example in the case of noisy sensors. 
Another control method applied to autonomous vehicles is 
the Linear Parameter-Varying (LPV) control method. LPV 
control theory is especially effective in dealing with complex 
nonlinear systems (Mohammadpour and Scherer, 2012). 
The LPV technique is capable of representing various non-
linear systems with arbitrary slow or fast changes of param-
eters (Briat, 2014). Besides, thanks to the ability to extend 
some linear concepts to nonlinear systems such as H∞, sen-
sitivity shaping, D-stability, it helps its application in non-
linear systems in vehicles (Sename et al., 2013). When LPV 
is integrated into the autonomous vehicle controller, it is 
capable of autonomous driving control with time-varying 
speed and external disturbances (Li et al., 2021). Therefore, 
the advantages of the LPV method can overcome the RL 
method mentioned above, so this study aims to combine 
the above two methods to control the motion trajectory of 
autonomous vehicles. Specifically an LPV supervised RL 
based trajectory tracking control approach is introduced 
with the purpose to ensure vehicle stability in case of sen-
sor interference, such as GPS signal interference. The main 
novelty of the present paper is the supervised control archi-
tecture, in which the RL based trajectory tracking controller 
is supervised by a robust LPV trajectory tracking control-
ler, with the aim to deal with possible sensor noises in the 
GPS system. Thus, in case of interference in the GPS signal 

is detected, the RL based trajectory tracking of the auton-
omous vehicle is overtaken by the LPV controller. By this 
means, the otherwise exceptional RL controller which can-
not handle disturbances and noises in a robust and stable 
manner is substituted by the LPV controller, which has an 
in-built stability margin to deal with such instances.

The paper is organized as follows: Section 2 describes 
a single track bicycle vehicle model. Section 3 presents the 
LPV controller synthesis for the vehicle trajectory track-
ing. Section 4 details the trajectory tracking RL control-
ler for the autonomous vehicle. Section 5 demonstrates 
the simulation results in CarSim software (Mechanical 
Simulation Corporation, 2010) simulation environment 
through high-speed test scenarios. Finally, concluding 
remarks are presented in Section 6.

2 Modeling of vehicles for trajectory following
The bicycle model, serving as a cornerstone in vehicle 
simulation and dynamics analysis, provides a simplified 
representation of a vehicle's lateral motion and steering 
behavior, supporting research in high-level control design 
and trajectory planning, notably in the field of autono-
mous vehicles. In this model, which is graphed in Fig. 1, 
the vehicle's front and rear axles are represented as point 
masses, with state variables including position, orienta-
tion, velocity, and steering angle δ.

Equations of motion capture the interplay of forces and 
moments affecting the vehicle, while a simplified steering 
model relates the steering angle δ to the rate of change of 
the yaw angle ψ. Researchers leverage the bicycle model to 
test and refine control algorithms, facilitating the develop-
ment of autonomous vehicle systems and robotics applica-
tions. While the model has its limitations, it offers a practi-
cal and efficient framework for initial testing and analysis 
before transitioning to more complex and detailed vehicle 
models. The dynamic equations in the lateral direction are 
shown in Eq. (1) (Kiencke and Nielsen, 2015): 

Fig. 1 Single track bicycle model
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where β is the side-slip angle, J is the yaw inertia of the 
vehicle, m is the mass of the complete vehicle, lf and lr are 
respectively the distances from the front and rear axles to 
the Center of Gravity (CG), cf and cr are respectively the 
front and rear tire cornering stiffnesses, which are identi-
fied in (Szabó, 2012). Meanwhile ξ  and yv are respectively 
the longitudinal and lateral accelerations, which are mea-
sured by sensors.

In the realm of autonomous vehicle research, the goal 
of trajectory tracking design is paramount, with a specific 
focus on the coordinated utilization of the coordinate axes 
within the bicycle model. This objective centers on the 
development of advanced control algorithms and systems 
that enable autonomous vehicles to adhere to predefined 
trajectories while navigating complex real-world scenar-
ios precisely. These systems must consider the vehicle's 
state variables, employing a coordinate system that typ-
ically encompasses longitudinal and lateral directions. 
The seamless coordination and control of the vehicle's 
motion along these axes are essential for ensuring that the 
vehicle accurately follows its intended path while adher-
ing to safety standards, adapting to dynamic environ-
ments, and optimizing operational efficiency. This inter-
disciplinary pursuit in trajectory tracking design is pivotal 
for enhancing the capabilities and safety of autonomous 
vehicles in various contexts, spanning from path planning 
to real-time motion control. 

Therefore, in Fig. 1, the coordinate transforma-
tion conversion between the world coordinate system 
(Xgl and Ygl ) and the vehicle's own rotating coordinate sys-
tem (Xv and Yv ) is necessary. That is, the coordinate sys-
tem attached to the vehicle will rotate by the yaw angle ψ. 
Here, the reference road coordinates xgl,r and ygl,r are intro-
duced for the predefined trajectory of the vehicle. Hence, 
the lateral position of the reference road in the coordinate 
system of the vehicle can be calculated by Eq. (2):

y x yv r gl r gl r, , ,
sin cos� � � � � � �� � . (2)

Consequently, by utilizing the real-time vehicle position 
data obtained from the onboard GPS positioning system, 
it becomes possible to calculate the lateral deviation from 
the predetermined reference trajectory.

3 LPV controller design
It can be seen in Eq. (1) that the vehicle model depends 
on the forward velocity ξ  and the inverse of the forward 
velocity. Moreover, when the vehicle is in motion, the for-
ward velocity is one of the constantly changing parame-
ters, and it depends on the driver and the motion condition 
of the vehicle. Here, the forward velocity ξ  is chosen as a 
scheduling parameter. The dynamic Eq. (1) can be rewrit-
ten in the LPV state-space representation as in Eq. (3) with 
the varying parameter ρ = ξ .

x A x B w B u� � � � � � � � �� � �
1 2

, (3)

where the matrices A(ρ), B1(ρ), and B2(ρ) are expressed in 
the following form:

A A A A

B B B
B B B

� �
�

� �
� �

� � � � �

� � � �

� � � �

�

�

�
��

�

�
�
�

0 1 2

1 10 11

2 20 21

1

. (4)

The state vector of the system x y yv v
T� � � ��  is selected to 

include the yaw rate, side-slip angle, lateral velocity and 
position of the vehicle.

In Fig. 2, the given H∞/LPV control structure includes 
the nominal model G(ρ), the controller K(ρ), the perfor-
mance output z, the control input u, the measured output y, 
the measurement noise n.

According to Fig. 2, the concatenation of the nonlinear 
model (3) with the performance weighting functions has a 
partitioned representation in the following way:
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with the w(t) = [Rn]T exogenous input, the control input 
u(t) = [δ]T, the measured output vector y(t) = [ ξ yv ]

T by 

Fig. 2 Closed-loop interconnection structure
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which z(t) = [z1 z2 ]
T performance output is defined. Here, 

z1 = |yv,r − yv | is the lateral deviation from the designed 
path. The aim of the control problem is to minimize the 
value of z1, i.e. z1 → 0 (optimization criterion). Meanwhile, 
the second output performance is selected as follows: 
z2 = [δ]T. The main goal of this idea is to reduce the steer-
ing angle while ensuring appropriate trajectory tracking, 
that is, to avoid the saturation of the actuator. The choice 
of the performance output is very important, and affects 
the effectiveness of the controller design.

The weighting functions Wn and Wδ represent respec-
tively the sensor noises of the system (in this case the 
noisy GPS positioning signal), the activation of steering 
intervention and avoiding actuator saturation. With T1 and 
λ design parameters, these weighting functions are chosen 
as first-order proportional form:

�
1

11T s �
. (6)

The weighting function Wp representing the performance 
signals ensuring the velocity and path tracking of the 
autonomous vehicle, is chosen in the following form:

W s s
T s T sp �
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where T1,2 , α1,2 and λ are design parameters. Note, that 
these design parameters are selected for shaping the 
weighting functions in a manner to realize the expected 
behavior of the closed-loop system. As an example, Wp 
weighting function can be considered as penalty function, 
thus the shaping is designed to suppress the performance 
signals in the desired frequency range. On the other hand, 
Wδ is shaped in a manner to allow bigger steering angle for 
smaller frequencies and to avoid saturation of the steering 
system. The selection of the design parameters are cho-
sen in an iterative manner, adjusting necessary parameters 
after the analysis of the closed-loop system.

The LPV controller K(ρ) minimizes the induced L2 norm 
of the closed-loop LPV system PCL(ρ) = LFT(P(ρ),K(ρ)), 
with zero initial conditions, i.e.:
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The existence of a controller that solves the parameter 
dependent LPV γ performance problem can be expressed as 
the feasibility of a set of Linear Matrix Inequalities (LMIs), 
which can be solved numerically (Gáspár et al., 2004; 
Gáspár et al., 2005a; Gáspár et al., 2005b). The control 
goal is to find an LPV controller K(ρ), which minimizes 

the induced L2 norm of the closed-loop LPV system PCL(ρ) = 
LFT(P(ρ),K(ρ)), with zero initial conditions. The induced 
L2 norm from the disturbance ω to the performances 
z remains smaller than a predefined γ, as detailed in 
(Wu et al., 1996). Here, the γ value achieved is 1.112.

The closed-loop system achieves robust performance, 
as both robust stability and nominal performance require-
ments are satisfied. As an example, in Fig. 3 singular value 
plots are depicted for a selected ρ = 27.7 m/s value used in 
the simulation example.

4 Design of LPV supervised reinforcement 
learning control
A deep Q-learning network (DQN) agent has been applied, 
while the reinforcement learning environment consists 
the two-wheeled bicycle model, which represents the ego 
vehicle dynamics. The goal of the training is to realize tra-
jectory tracking for the autonomous vehicle by applying 
an appropriate steering angle. A Ts = 0.02 s sample time 
has been used for the training process, while the output 
of the trajectory tracking control is the steering angle of 
the vehicle. In order to consider the physical limitations 
of the ego car, the steering angle δ has to be in the range 
of [−37 37] deg. The trajectory of the road is given by the 
simulation road presented in Section 5. The initial condi-
tion for the lateral deviation is set to 0.2 m, while the rela-
tive yaw angle −0.1 rad has been chosen.

The training model for the ego vehicle has been built in 
the following manner:

• The steering action δ from the agent to the environ-
ment is selected from −37 degrees to 37 degrees.

• Observations from the environment are defined 
as follows:
• Lateral deviation: ey

• Relative yaw angle: eψ

Fig. 3 Singular value plots
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• Derivative of lateral deviation: ėy

• Derivative of relative yaw angle: ėψ
• Integral of lateral deviation: ∫ey

• Integral of relative yaw angle: ∫eψ .

The calculated reward rt given at each time step t is 
chosen as r et y� �20 20

2 2�  , where the episode reward 
is the cumulative value of rt . An example of the training 
process is shown in Fig. 4. Note, that during the train-
ing a fixed velocity of 100 km/h has been set, however, 
in case of varying velocities the reward function should 
scale the lateral error with the velocity, i.e. bigger errors 
should be allowed for higher velocities. Moreover, vehi-
cle stability measures could also be added to the reward 
function to guarantee safety, for example by applying 
very big weights in case stability index based calculation 
shows instability. However, as generally trajectory track-
ing error and vehicle instability caused by skidding or roll-
over are connected, these measures were neglected in the 
training process.

The aim of the LPV supervised control architec-
ture is to guarantee stability of the vehicle using the 
RL controller even in the case of disturbances or sensor 
noises, which are assumed to be detected as detailed in 
(Brás et al., 2015). In normal operating conditions the 
vehicle steering system is operated by the RL agent, while 
in case of a detected sensor noise the robust LPV con-
troller overtakes the control action, as depicted in Fig. 5. 
Note, that the two designed controllers operate in parallel, 
with the LPV controller designing a steering angle δLPV , 
whereas the RL agent calculates δRL . The following simple 
decision logic is applied for choosing the steering input of 
the autonomous vehicle:

�
�
�

�
�
�
�

RL

LPV

,

,

without noise

with noise
. (9)

5 Simulation results
To demonstrate the operation of the introduced reinforce-
ment learning based supervised control design, real-life 
simulation scenarios have been tested with and without 
the designed supervised control method in the absence or 
presence of sensor noise associated with the GPS position-
ing system. The geometric and dynamic parameters of the 
chosen simulation vehicle are illustrated in Table 1. Note, 
that the same parameter values have been applied for the 
LPV control design described in Section 3 and for the RL 
training process detailed in Section 4. 

The simulations have been evaluated with a constant 
velocity of 100 km/h on a curvy highway road given in 
CarSim software environment as depicted in Fig. 6.

5.1 Reinforcement learning control
During the base simulation case, the steering of the autono-
mous vehicle is operated by the trained RL agent. Here, sen-
sor noise of the GPS system is not assumed, thus in this fault 
free case trajectory tracking is performed as expected with 
minimal lateral error, see Fig. 7 (b). Here, the maximal lateral 

Table 1 Autonomous vehicle parameters

Parameter Value Unit

Vehicle mass (m) 1742 kg

Yaw moment of inertia (J) 1523 kgm2

Distance from C.G to front axle (l1 ) 1.161 m

Distance from C.G to rear axle (l2 ) 1.539 m

Tread front (bf ) 1.54 m

Tread rear (br ) 1.535 m

Height of COG (hCOG ) 0.438 m

Cornering stiffness front (c1 ) 70 kN/rad

Cornering stiffness rear (c2 ) 55 kN/rad

Aerodynamic drag co-efficient (cw ) 0.3431 −

Front contact surface (A) 1.6 m2

Fig. 5 LPV supervised RL controller (MathWorks, 2021)

Fig. 4 Reinforcement learning training process
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error never exceeds 2 cm. The corresponding steering wheel 
angle calculated by the RL controller is shown in Fig. 7 (a). 

Note, that both the yaw rate depicted in Fig. 7 (c) and the 
lateral velocity shown in Fig. 7 (d) remains in a comfortable 
range for the passengers of the automated vehicle.

5.2 Reinforcement learning control with sensor noise
In the next simulation case a sensor noise for the naviga-
tion system has been added, as depicted in Fig. 8. Thus, a 
band-limited white noise signal with a maximal amplitude 
of 0.3 m has been introduced to the position of the vehicle 
between 5−11 s. As it is shown in Fig. 9, the defined GPS 
noise destabilizes the autonomous vehicle. The lateral 
error from the designed path depicted in Fig. 9 (b) quickly 
exceeds 2 m, while the steering input of the autonomous 
vehicle begins to oscillate, see Fig. 9 (a). As a result, both 
the yaw rate depicted in Fig. 9 (c) and the lateral velocity 
shown in Fig. 9 (d) exceeds critical levels as the autono-
mous vehicle skids out of the lane. 

Fig. 6 Highway route X-Y plane

(d)

(c)

(b)

(a)

Fig. 7 RL simulation results without noise, a) Steering wheel angle, b) Lateral error, c) Yaw rate, d) Lateral velocity
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5.3 Supervised RL control with sensor noise
Lastly, the simulation scenario has been selected where 
the autonomous vehicle uses the LPV supervised control 
architecture described in Fig. 4. Thus, in case the sensor 
noise of the GPS is detected, the trajectory tracking con-
trol of the autonomous vehicle is taken over by the LPV 
controller from the RL agent. Hence, although the lat-
eral error of the vehicle shown in Fig. 10 (b) increases 

compared to the fault free case, it does not exceed 0.25 m, 
which is acceptable for high speed cornering with noisy 
GPS signals, as well as the slightly oscillating steering 
wheel angle, see Fig. 10 (a). Note, that both the yaw rate 
depicted in Fig. 10 (c) and the lateral velocity shown in 
Fig. 10 (d) increases as the sensor noise appears, however, 
quickly decreases as the GPS signal is normalized, thus 
the stability of the autonomous vehicle can be preserved.

6 Conclusion
The paper proposed a supervised control method in which 
an LPV controller supervises the trained reinforcement learn-
ing agent to realize stable trajectory tracking of the autono-

mous vehicle even under the effect of sensor noises. Thus, in 
case faulty or noisy GPS signal is detected, the operation of 
the steering is governed by the LPV controller, while in nor-
mal conditions by the reinforcement learning agent. The pro-
posed supervised control method has been validated by simu-
lations performed in CarSim software environment. In future 
work, sensor noise detection and controller selection and 
switching method will be further developed.

Fig. 8 Sensor noise

(d)

(c)(a)

(b)

Fig. 9 RL simulation results with noise, a) Steering wheel angle, b) Lateral error, c) Yaw rate, d) Lateral velocity
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