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Abstract

Track quality index (TQI) is a quality metric that objectively measures the geometric condition of railway tracks for maintenance 

planning. The TQI categories serve as the basis for proposed track maintenance. The TQI measured by the EM120 track recording car 

on Java island currently covers only 78.84% of the 5,634.363 km of railway tracks, indicating that there are still track sections without 

TQI category values. This study aims to model the maintenance of railway infrastructure based on TQI categories derived from both 

track recording car results and manual measurements across various sections of railway lines on the northern and southern routes 

of Java island. The analysis used is based on the standard deviation of railway track geometry, including superelevation, levelling, 

lining, and track gauge. Factors such as turnouts, bridges, crossings, straight sections, and curves were then classified as predictive 

factors. Machine learning techniques were adopted, with 80% of the data set randomly used for training and the remaining for testing 

to generate TQI category predictions. A total of 233,175 TQI data points from 2019–2022 were used to build and validate the model. 

The results indicate that the multinomial regression model for TQI Categories 1, 2, 3, and 4 is highly accurate, the rest is influenced 

by other factors. These results imply that the model has an exceptional fit and excellent predictive capability for TQI on the northern 

and southern railway lines of Java island.
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1 Introduction
Maintenance planning requires accurate and current field 
data on infrastructure conditions to determine the appro-
priate maintenance classification. The track quality index 
(TQI) indicates deterioration or reduced fitness of the 
track geometry and substructure. Huang (2021) modelled 
the prediction of track bed deterioration based on geo-
metric measurements to determine substructure repairs. 
Fontul et al. (2018) conducted measurements of the track 
quality index using ground-penetrating radar. In Indonesia, 
TQI data is used as a basis for maintenance work and acci-
dent investigation (Setiawan and Rosyidi, 2016).

Tracks must be well-maintained to ensure safe pas-
sage for trains at the maximum allowed speed and 
provide passengers with high comfort during travel 

(Chandra  and  Agarwal,  2013). Railway maintenance 
planning aims to determine the basis for track mainte-
nance, the material needs, and the physical conditions 
of the track, as well as the frequency of track assess-
ments to design effective and appropriate maintenance 
(Lutfi and Berawi, 2011). Irregular and unplanned main-
tenance can lead to compromised operational reliability 
and, in some cases, can be fatal (Kramadibrata,  2006). 
Track geometry is an initial parameter indicating track 
damage and guides railway infrastructure maintenance 
(Jovanovic,  2004). Railway maintenance is a compre-
hensive process involving maintenance and replacement 
according to needs to meet minimum quality and safety 
standards with minimal cost (Esveld, 2001). Accurate data 
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on TQI is crucial for maintenance planning, as TQI data 
provides information on damage levels that need to be 
addressed. For instance, Category 1 TQI values (standard 
deviation less than 20 mm) indicate comfortable conditions 
with operation speeds of 100–120 km/h and routine main-
tenance; Category 2 (TQI standard deviation 20–35 mm) 
indicates safe conditions with speeds of 80–100 km/h and 
periodic maintenance; Category 3 (TQI standard deviation 
35–50 mm) indicates caution with speeds of 60–80 km/h 
and requires track improvement; while Category  4 
(TQI  standard deviation more significant than 50  mm) 
is considered hazardous with speeds of 40–60 km/h and 
necessitates immediate repairs and track improvement 
with speed restrictions. Routine and periodic mainte-
nance are performed for Categories 1 and 2, Category 3 
requires track improvement or material replacement, and 
Category  4 requires immediate repairs with permanent 
speed restrictions and material replacement.

Tracks must meet requirements to accommodate trains 
at the planned operational speeds. If defects are found 
that do not meet planning standards, the track condition 
is deemed unacceptable for operation (Arema,  2007). 
To date, in-depth studies of mathematical models for rail-
way maintenance based on TQI predictions have yet to be 
conducted in Indonesia. Therefore, the methods and math-
ematical models for predicting TQI and determining track 
maintenance categories need to be thoroughly reviewed 
and developed to align with the actual infrastructure con-
ditions to ensure reliable railway operations on Java island.

Determining track maintenance requires TQI data from 
track recording cars (KUJR). However, challenges arise 
due to the limited number of track recording cars: only one 
unit operates in Java with the KUJR EM-120 series and 
one in Sumatra with the KUJR HKPW  U-76501 series. 
Track measurements are conducted quarterly on Java 
island, as shown in Fig. 1.

The limitations in the number of track recording cars, high 
investment costs for additional KUJR units, and the impact 
on track capacity due to their operation contribute to the need 
for TQI categorization for some track sections each year.

The percentage of measured track length has been 
showing a declining trend each year, influenced by the 
aging KUJR, which has led to decreased performance. 
Based on the data, as of 2022, 22.15% of tracks still need 
to be measured. To address the need for track quality index 
(TQI) data on tracks not measured by KUJR-given that 
only one unit operates on Java-there is a need for a pre-
dictive model for TQI categories to guide infrastructure 

maintenance for tracks that are not always measured by 
track recording cars.

This research analyses the influence of levelling, lining, 
superelevation, and track gauge. Machine learning factors 
include turnouts, bridges, crossings, straight sections, and 
curves in predicting TQI category levels for determining 
track maintenance. The study aims to develop a prediction 
model based on TQI categories from KUJR and manual 
measurements for various track sections. The goal is to 
find a predictive model for track quality index categories 
for railway sections not measured by track recording cars. 
This finding is expected to contribute to a well-planned 
track infrastructure maintenance program.

2 Methods
This study adopts machine learning to predict dependent 
variables. As Hakim  (2020) found, machine learning can 
effectively analyze rail maintenance. A comparison between 
machine learning and statistical methods conducted by 
Zhang et al. (2018) found that despite issues with overfitting, 
machine learning outperforms classical statistical meth-
ods and demonstrates better prediction accuracy. The TQI 
can monitor the degradation and maintenance operations 
of railway tracks, summarize and display the condition of 
most railway tracks, and correlate with safety standards and 
travel quality values (Hamid and Gross, 1981). Therefore, 
the railway industry aims to improve the productivity of 
maintenance teams through more effective control of track 
damage (Sadeghi and Askarinejad, 2012).

Rail track quality, indicating maintenance needs, is gen-
erally assessed by running track recording cars with accel-
erometer sensors mounted on the train axles. The obtained 
acceleration data is processed through integration and 

Fig. 1 Graph of measured and unmeasured track lengths on Java island



186|Yudariansyah et al.
Period. Polytech. Transp. Eng., 53(2), pp. 184–193, 2025

layered filtering to evaluate the differential-loaded geometry 
of the railway track (Abadi et al., 2018). When track geome-
try exceeds the maximum speed threshold allowed by gov-
ernment standards, it is considered to have failed. In such 
cases, good travel quality will be lost, affecting safety 
(Caetano  and  Teixeira,  2016). The TQI is a performance 
measure that objectively assesses the condition of railway 
tracks (Perjana, 2012). Evaluating quality and scientifically 
improving railway track maintenance is urgent to ensure 
railway safety, reliability, and rational resource allocation.

Railway track quality can be measured with various 
parameters related to track quality, horizontal roughness, 
and track stiffness. Geometric track quality assessment is 
based solely on measured geometry data, either by com-
paring deformation with predetermined threshold values or 
calculating the standard deviation (Berggren et al., 2008). 
Surface roughness measurements assess the track qual-
ity index for maintenance planning (Roghani et al., 2015). 
Track quality is defined as a numerical value representing 
the relative condition of the railway track surface geometry 
(Berawi et al., 2010). In this context, track quality assess-
ment metrics are based on standard deviation. Standard 
deviation (SD) provides an overview of the overall quality 
of the assessed track (Faiz, 2010). The track quality index 
is calculated using the Indonesian TQI formula, which is 
the cumulative standard deviation of each geometric mea-
surement parameter, including:

S
xi xi

n
n

�
� �
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�
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2

1

,	 (1)

where S represents the standard deviation, Σxi2 is the sum 
of squared values, and n is the number of data points. 
The  TQI measurement method consists of four parame-
ters: levelling, lining, track gauge, and superelevation. 
In  addition to these parameters, the operational speed 
during measurement is also recorded. Data collection is 
conducted continuously along segments of 200 m. For lev-
elling, lining, and superelevation, one segment represents 
a length of 40 m, while for track gauge, one segment rep-
resents a length of 20 m. The standard deviation is calcu-
lated for each segment.

TQI � � � �Sw Sz Sy Se ,	 (2)

where standard deviation of Superelevation (Sw) is the 
standard deviation of superelevation irregularity  (mm), 
standard deviation of Leveling (Sz) is the standard devia-
tion of vertical irregularity (mm), and standard deviation 

of lining (Sy) is the standard deviation of horizontal irreg-
ularity (mm). Standard deviation of track gauge (Se) is the 
standard deviation of track gauge irregularity (mm).

In railway maintenance planning, track quality index 
(TQI) data is essential as it provides information on the 
severity levels of track defects that need to be addressed, 
ranging from Category 1 to Category 4, according to the 
parameters specified in Table 1 below:

The steps of the methodology were as follows:
1.	 Exploratory data analysis: In this research, this step 

was used to formulate hypotheses, identify outliers, 
and assess assumptions that could affect the validity 
of the research data. The model was trained using 
data from 2019–2022 (233,  175 observations) with 
the aid of the (RStudio Team, 2024).

2.	Multicollinearity testing: This test was conducted to 
determine if there is a strong correlation or relation-
ship between independent variables. A well-func-
tioning regression model is expected to have no high 
correlation among independent variables, assessed 
using tolerance values and variance inflation factors 
(VIFs). Tolerance values greater than  0.10 indicate 
no multicollinearity in the regression model. If the 
tolerance value is less than 0.10, multicollinearity is 
present in the model.

3.	 Data splitting: In this phase, the researchers 
employed a validation technique to randomly divide 
the data into two parts: 80% for training data and the 
remaining for testing data.

4.	 Data testing: This phase involves testing and evalu-
ating the model's performance obtained during the 
training phase.

5.	 Model implementation: The model was run using a 
multinomial approach. Since the nnet package does 
not account for p-values for regression coefficients, 
p-values were calculated using Wald tests or z-tests 
with degrees of freedom = 1. Logistic regression is a 
specific form of predicting and explaining a binary 

Table 1 Classification of TQI and determination of track maintenance 
work parameters

No. Category TQI Operation speed Note

1. I TQI ≤ 20 100 ≤ V < 120 km/h Very 
Good

2. II 20 ≤ TQI ≤ 35 80 ≤ V < 100 km/h Good

3. III 35 ≤ TQI ≤ 50 60 ≤ V < 80 km/h Fair

4. IV TQI > 50 40 ≤ V < 60 km/h Poor

Source: Perjana, 2012
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categorical variable (Hair Jr et al., 2009). This ana
lysis is expected to clarify whether changes in the 
TQI occur. The multinomial logistic regression 
equations can be formulated as shown in Eq. (3) and 
Eq. (4) below:

Ln P P a b x b x b x b x e
1

4
1 1 2 2 3 3 4 4

��
�
�

�
�
� � � � � � � ,	 (3)

Logit P a b x b x b x b x e� � � � � � � �
1 1 2 2 3 3 4 4

4 .	 (4)

6.	 Normality test: This phase aims to determine 
whether the independent and dependent variables in 
this study are typically distributed, with the variable 
descriptions provided in Table 2.

7.	 Validation: This is the final step to determine 
whether the hypothesis can be accepted or rejected. 
If  accepted, it becomes the selected model. 
Model validation is carried out by testing the trained 
model against the testing model. Data validation 
involves comparing the data from track-measuring 
trains with manually measured data. This analysis 
phase is illustrated in Fig. 2.

2.1 Datasets
The dataset used in this analysis consists of measurements 
from the track measuring train (KUJR) series EM120, 

operated by PT. Kereta Api Indonesia on the island of Java 
from 2019–2022. The operational regions (Daop) included 
in these measurements are Daop 1 Jakarta, Daop 2 Bandung, 
Daop 3 Cirebon, Daop 4 Semarang, Daop 5 Purwokerto, 
Daop 6 Yogyakarta, Daop 7 Madiun, Daop 8 Surabaya, 
and Daop 9 Jember. Manual TQI measurements for 2023 
on the northern Java line were conducted on the railway 
sections between Semarang Tawang Station and Alastua 
Station, on the southern Java line between Linggapura 
Station and Bumiayu Station, and between Solo Balapan 
Station and Kadipiro Station. These 2023 measurements 
will be used for model prediction validation.

The administrative data for the railway operational 
regions covers five provinces on the island of Java. Daop 1 
Jakarta is within the DKI Jakarta province, West Java prov-
ince includes Daop 2 Bandung and Daop 3 Cirebon, Central 
Java province includes Daop  4 Semarang and Daop  5 
Purwokerto, and the DI Yogyakarta province is covered by 
Daop  6 Yogyakarta. East Java province includes Daop  7 
Madiun, Daop 8 Surabaya, and Daop 9 Jember. The railway 
network based on operational regions is shown in Fig.  3. 
The active railway network in these nine operational regions 
on Java spans 5,634.363 km, consisting of mainline tracks 
and branch tracks, resulting in 233,175 observations.

2.2 Data statistics
The total combined data used for training resulted in 
233,175 observations and was used as input in the analysis. 
Descriptive analysis in this study aimed to determine the 
characteristics of the research variables, including the 
mean, maximum value, minimum value, and standard 
deviation of TQI for the variables of superelevation, lev-
elling, lining, and track gauge, as presented in Table  3. 
The distribution and variability of TQI data for Category 4 
show a wider spread than Category 1, as seen from Fig. 4, 
the boxplot, which is higher and broader. The  median 
line in the boxplot indicates that the data is symmetric. 
The highest outlier is found in Category 4, and the lowest 
outlier is in Category 3.

3 Result and discussion
The multicollinearity test was conducted to determine the 
degree of intercorrelation among the independent vari-
ables in the TQI prediction model. High correlation val-
ues among variables may indicate the presence of multi-
collinearity. Multicollinearity testing was performed by 
examining the pairs panel plot using the RStudio program 

Fig 2 Data analyst step

Table 2 Description of track quality index variables

Variables Description Data type Notes

Superelevation in millimeters Numeric

Leveling in millimeters Numeric

Lining in millimeters Numeric

Track gauge in millimeters Numeric

Track quality 
index in millimeters Categorical 1, 2, 3, 

and 4
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with the psych package, as shown in Fig. 5 below. In Fig. 5, 
the pairs panel for the turnout section shows low multicol-
linearity symptoms between the superelevation and lev-
elling with a correlation of 0.36, the levelling and lining 
with a correlation of 0.37, and the lining and track gauge 
with a correlation of 0.18. Since the values between vari-
ables in the pairs panel are low, multicollinearity does not 
occur in the TQI turnout section. Multicollinearity had 
also not occurred in the bridge, crossing, straight, and 
curve sections.

3.1 Modeling TQI data
Multinomial logistic regression facilitates the classi-
fication of subjects into multiple categories based on 
the values of predictor variables, allowing the response 
variable to be categorized into more than two groups 

(Lee  et  al.,  2018). Machine learning techniques address 
classification prediction problems (Siregar  et  al.,  2022). 
The multinomial regression model is built using a train-
ing data set and a testing data set, utilizing the multino-
mial function from the nnet package to obtain a multino-
mial logistic regression model, with the desired outcome 
level as Category 1. The model is run with multinomial 
regression, as the nnet package does not calculate p-val-
ues for regression coefficients; thus, p-values are com-
puted using Wald tests or z-tests with degrees of free-
dom = 1. The training data constitutes 80% of the random 
data set, with the remainder used for testing. The train-
ing set is used to build and estimate the model, while the 
testing set assesses the model's performance on data not 
used in model creation. The model is built with the aid 
of RStudio through several iterations to obtain the output 
until convergence, including a final negative log-likeli-
hood value of 2,482.962. The results are shown in Table 4.

The results of this prediction model include coefficient 
blocks and standard error blocks. Each block contains rows 
of values corresponding to the model equations. Two mod-
els were tested in this multinomial regression by compar-
ing TQI categories with superelevation, levelling, lining, and 
track gauge. The research results are based on the prediction 
model of railway infrastructure maintenance categories on 
Java island, with the following Eq. (5), Eq. (6) and Eq. (7):

Ln
P TQI
P TQI

b b Sw

b

�� �
�� �

�

�
��

�

�
�� � � � �

�

categori

categori

2

1
10 11

12
SSz b Sy b Se

Ln Sw Sz
Sy

� � � � � � � �
� � � �

�

13 14

21 0992 1 062 1 1028

1 0876

. . .

. ��1 5971. Se

,	 (5)

Fig 3 Railway network based on operational regions on the island of Java (Source: Author, 2023)

Table 3 Summary of statistics

TQI 
category

Superelevation
(mm)

Leveling
(mm)

Lining
(mm)

Track 
gauge
(mm)

vars 1 2 3 4 5

n 233,175 233,175 233,175 233,175 233,175

mean 1.538 6.356 6.820 6.942 0.527

Sd 0.614 3.599 4.028 2.692 0.377

median 1.000 5.600 5.900 7.000 0.500

trimmed 1.474 5.947 6.307 6.971 0.504

mad 0.000 2.669 2.965 2.372 0.297

min 1.000 0.000 0.000 0.000 0.000

max 4.000 55.800 54.700 42.600 4.500

range 3.000 55.800 54.700 42.600 4.500

skew 0.829 1.807 1.763 0.182 1.553

kurtosis 0.404 7.140 5.961 2.342 9.979

Se 0.001 0.007 0.008 0.006 0.001
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The p-value of α < 0.05 indicates that the variables superel-
evation (Sw), levelling (Sz), lining (Sy), and track gauge 
(Se) have a significant effect on all coefficients of the first 

model, comparing TQI Category  2 to TQI Category  1. 
The  coefficients of the second model compare TQI 
Category 3 to TQI Category 1, and the coefficients of the 
third model compare TQI Category 4 to TQI Category 1, 
with a model accuracy of 96.09%. Other variables influ-
ence the remaining variance.

3.2 Comparison test of TQI between KUJR 
measurements and manual measurements
The comparison test evaluates the TQI results obtained 
from the track recording car (KUJR) and manual mea-
surements on the northern and southern railway lines of 
Java island. The analysis covers the railway segments 
between Semarang Tawang Station and Alastua Station 
(Smt-Ata) on the northern Java line, which has a dou-
ble track, as well as the segments between Linggapura 

Fig 4 Boxplot diagram of TQI for turnouts, bridges, crossings, straight sections, and curves
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Table 4 Model calculation result using RStudio

(Intercept) Superelevation_(mm)' Levelling_(mm)' Lining_(mm)' Track_gauge_(mm)'

2 –21.09924 1.061946 1.102874 1.087667 1.597183

3 –71.01891 2.453152 2.568653 2.515879 3.385019

4 –258.93908 6.179915 6.376637 6.272059 6.947456

Std. Errors:

(Intercept) 'Superelevation_(mm)' 'Levelling_(mm)' Lining_(mm)' Track_gauge_(mm)'

2 0.65145206 0.03667989 0.03701856 0.03505728 0.1280577

3 1.60819909 0.05611427 0.05747328 0.05630888 0.1798575

4 0.01870797 0.03877077 0.03870568 0.03814049 0.3264140

Residual deviance: 4965.924

AIC: 4995.926 

pvalue model

(Intercept) Superelevation_(mm)' Levelling_(mm)' Lining_(mm)' Track_gauge_(mm)'

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

data training imbalance

< table of extent 0 >

data testing imbalance

< table of extent 0 >

akurasi model

[1] 0.9609269

Fig. 5 Diagram pairs panel TQI for the sections of turnout, bridge, crossing, straight, and curve
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Station and Bumiayu Station (Lg-Bma) and between Solo 
Balapan Station and Kadipiro Station (Slo-Kdo) on the 
southern Java line, with Lg-Bma being a double track 
and Slo-Kdo being a single track. Data distribution is 
assessed using the Shapiro-Wilk test with a 95% confi-
dence level and a p-value α > 0.05, and the Kolmogorov-
Smirnov test with the null hypothesis (H0 ) of parametric 
distribution. Differences between the TQI measurements 
from the track recording car and manual measurements 
are analyzed using a two-sample t-test. The results of this 
analysis are presented in Table 5, Fig. 6 and 7 showing the 
normal distribution of the data.

The histogram diagram with the normal curve describes 
the mean and data distribution of the sample in the predic-
tive model from the training data, compared to the QQ 
plot generated using the RStudio tool.

4 Conclusions
The results indicate that the dominant factors in deter-
mining the TQI category are track gauge, Leveling, 
Lining, and Superelevation. The novelty of this research 
is that it also presents the TQI category model based on 
KUJR results and manual measurements, showing the 
multinomial logit model for TQI Categories 2, 3, and 4. 

The  variables of superelevation, vertical levelling, hor-
izontal lining, and track gauge significantly influence 
all model coefficients with perfect accuracy. In con-
trast, the remaining influence is due to other variables. 
These research findings should also be interpreted intu-
itively, considering other factors affecting the TQI cate-
gory may not be measured due to the limitations of the 
track recording car, which alters Categories  1 as very 
good and 2 as good to Categories 3 as fair and 4 as poor. 
This research can assist operators and regulators in pre-
dicting the track quality index category on the south-
ern and northern railway lines of Java island that are 
not measured by the track recording cars as an initial 
step in targeting geometric track maintenance  actions. 

Acknowledgement
The authors express gratitude to the Ministry of 
Transportation, Directorate General of Railways and PT. 
Kereta Api Indonesia for their assistance and permission 
to use the TQI data from the KUJR EM120 for 2019–2022. 
Thanks are also extended to PT. Rayakonsult for provid-
ing the study assignment and assistance in conducting the 
manual TQI survey in the field.

Table 5 Test results of TQI differences between the northern and southern railway lines of Java island

No. Measurement Line Section p-value α = 0.05 Test result

A. Southern Java line

1 TQI from KUJR and manual measurement

Lg-Bma Turnout 0.2068 Measurements are the same

Bridge 0.8044 Measurements are the same

Crossing 0.03884 Measurements are not the same

Straight 0.498 Measurements are the same

Curve 0.872 Measurements are the same

2 TQI from KUJR and manual measurement

Slo-Kdo Turnout 0.0008513 Measurements are not the same

Bridge 0.7521 Measurements are the same

Crossing 0.3417 Measurements are the same

Straight 0.1356 Measurements are the same

Curve 0.004883 Measurements are not the same

3 TQI against the number of tracks
Lg-Bma   0.8848 Measurements are the same

Slo-Kdo   0.0003772 Measurements are not the same

B. Northern Java line

4 TQI from KUJR and manual measurement

Smt-Ata Turnout 0.001167 Measurements are not the same

Bridge 0.2853 Measurements are the same

Crossing 0.09886 Measurements are the same

Straight 0.0004229 Measurements are not the same

Curve 1.131E-07 Measurements are not the same

5 TQI against the number of tracks Smt-Ata   0.0003772 Measurements are not the same
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Fig. 7 Distribution data of KUJR from manual measurement with normal curve and QQ plot for various track sections in northern line

Fig. 6 Distribution data of KUJR from manual measurement with normal curve and QQ plot for various track sections in southern line
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