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Abstract 

The object of the paper is to offer a brief survey of numerical simulations in nonlinear 
vibration systems. The developme:nt of computational methods provided an opportunity 
to create various kinds of software which are able to analyse the properties of the above 
mentioned systems. The possibilities of several kinds of software are introduced with the 
aid of a numerical example. 
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1. Introduction 

In research of vehicle system dynamics, investigation of parametral sensi
tivity of nonlinear systems is considered a very important question either in 
stability problems or in respect of chaotic behaviour. In studies of that pur
pose the computer aided numerical simulations are getting more and more 
important even if they consider relatively simple models. The development 
of computational methods and numerical mathematics makes easier to per
form examinations that either could not be executed several years earlier or 
they would require a long and troublesome work. 

Application of professional software, for example, Matlab, Maple, 
Phaser, Systus, etc. facilitates the work of researchers to a great extent and 
provides a chance to achieve good results for engineering practice within a 
short period, even if the problems cannot be treated analytically. 

The subject of this paper is to survey the possibilities provided by 
the above mentioned program packages through analysis of a real vibrating 
system with particular respect to the less known Phaser and Systus software 
and to introduce numerical simulation with the aid of these softwares. 

We premise that the first three types of software are mainl:)' useful for 
investigation of minor, few degrees of freedom systems, but with the aid of 
Systus we can solve large systems of many degrees of freedom. For these 
large systems establishing of the differential equation system belonging to 
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the physical model is difficult and the algorithms of the first three types 
of software need these equations. Unlike these purposeful algorithms. Sys
tus is a finite element system where the starting point of the simulation is 
not a differential equation system to be solved but a geometrical - physical 
model which consists of elements and nodes, their geometrical and mechan
ical properties, initial and boundary conditions and loadings, according to 
the technique of the finite element method. The advantage of this technique 
appears in many degrees of freedom systems. Describing the complicated 
differential equation system is not required, it happens automatically during 
the process. 

2. The Dynamical Model 

Let us examine a damped, harmonically excited vibrating system of one 
degree of freedom in which the non linearity is derived from the approach 
of the spring force with a cubic parabola [1], [2]. Using the common litera
ture terms, the equation of motion of the previously defined model can be 
written as 

mx + kX + ~ (x + 6x 3
) = Fo cos(wt), (1) 

which is a second order non linear ordinary differential equation. It is to 
be remarked that positive and negative values of .3 mean a hardening and 
softening spring characteristic, respectively. Divided by the mass the basic 
system can be written in the form 

x+bx+s(x T 6x 3
) =acos(wt). (2) 

Vie can observe that Eq. (2) contains the well known forced Duffing equation 
with a cubic stiffness [4], [5]. To perform numerical simulations, it will be 
convenient to rewrite Eq. (2) as an autonomous system [3],[5],[6],[10] 

-bX2 - s (Xl + ;3xn + a COS(WX3), 

1. 

(3) 

This first order differential equation system (3) is the only input form for 
Phaser. During the numerical experiments we do not deal with the physical 
meaning of the parameters in Eq. (1), neither with their values, nor with 
their dimensions. 
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3. Numerical Simulations with Matlab, Maple and Phaser 

In the case of certain values of the parameters in Eq. (3) numerical simula
tions have been performed with the above mentioned types of soft\vare, and 
the results of examinations have been illustrated graphically in the usual 
way of the literature [4], [5], [6], [8J. In the auxiliary program made for us
ing :Nlatlab we considered the form of Eq. (2) and computed with the values 
of parameters according to Fig. 1 and with zero initial conditions. 
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Fig. 1. Numerical simulation with Matlab CB = 0.05, :.J = 1) 
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Fig. 2 represents the results of the similar computation with Maple, 
where the phase-plane diagram and the curve of solution are shown. 

The software Phaser, which can be obtained as an appendix of [10], 
is less spread in practice, but very useful to perform numerical simulations. 
This purposeful program system can be simply treated and need less mem
ory. That software was used for the equation 

(4) 
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Solution 

Fig. 2. Numerical experiments with Maple (f3 = 0.05, w = 1) 

which is a little more complicated than Eq. (1). (4) is different from Eq. (1) 
in the form of damping force, which is also given by cubic parabola. Vile 
obtain from (4) the differential equation system 

b ( 3), ( I '" 3\, (,) - X2 + O:X 2 - i:J Xl ,OX l ) ,acos 0JX3 , (.5 ) 

1 

by appropriate transformation. Fig. 3 represents the solution of this dif
ferential equation system (phase-plane diagram and amplitude-time func
tion) obtained by numerical simulation Runge-Kutta method performed 
with Phaser. 

One of the advantages of Phaser is the possibility of change of several 
parameters simultaneous!y. Therefore the initial examinations are to be 
performed practically with Phaser and later to continue the computation 
with the above introduced more advanced types of software. 

4. Simulation with Systus Finite Element Program System 

In the preceding chapters we presented several simulations of a single-degree
of-freedom nonlinear vibrating systems. These simulations were performed 
with the aid of different program systems, which based on similar numeri
cal methods. The common property of these programs is that all of them 
solve differential equations or differential equation systems using somehow 
numerical methods. There are generally applied procedures for numerical 
methods not detailed in this paper. 

Let us examine now the finite element simulation and its steps. Sys
tus is a general purpose finite element method. The mechanical modules 
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of these program systems \vere developed for static or dynamic. linear or 
nonlinear analysis of elastic or plastic struct u res [12]. Let us pay our atten
tion to non linear transient calculations. In the standard case the non linear 
module of the system can be directly applied, no change in program is re
quired, only the standard properties are to be given. Our task cannot be 
considered a standard one, therefore elements having the usual properties 
are not applicable. 

The steps of creating a finite element mode! are: definition of geometry, 
material properties, boundary conditions and loadings. In the case of one
degree-of-freedom system geometry consists of t\VO nodal points with their 
coordinates, a concentrated mass located in the second nodal point and 
a beam element between the two nodal points. The material properties 
are: value of the mass, elastic and damping data and cross-sectional area 
(regarding in Systus also as material property) of beam element. A material 
model found in Systus library is to be chosen, too, if the computation is not 
elastic. The boundary conditions are: all degrees of freedom of the first nodal 
point are fixed, only the displacement of the second nodal point remains in 
longitudinal direction. The loading is a longitudinal force acting in the 
second nodal point, which can be function of time in' the case of transient 
calculation. That force has to be given in a table \vhich can contain either 
connected values in pairs or parameters of the sinusoidal exciting function. 
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Fig. 4. 

In the case of an elastic or other standard model of material the finite 
element model has been completed. Nevertheless in our task the spring char
acteristic is nonlinear and contains not only linear but cubic components. 
too. To consider this fact in the Systus system is possible in the following 
ways: 

a) The elementary stiffness. mass and damping matrices can be defined 
bv the user [1;31. fl41. To compute the values of each matrix, we can 
u~e not only -th~' c~n~tants of ~aterial properties but the co-ordinates, 
displacements and velocities of the nodal points belonging to the ele
ment. In our case the values of the stiffness and the damping matrices 
belonging to the longitudinal direction contain terms proportional to 

third power of the displacement and velocity, respectively. To solve 
this problem v:e created a user-defined element formulated by a FOR
TRAN subroutine. This FORTRAN subroutine was linked with S.ys
tus shared element library and we have got a ne,v element type 1802. 
Because we carry out a transient calculation, the above mentioned 
matrices will be updated in every time step from the formula of new 
element. 

b) In the case of one-degree-of-freedom system (in our example) the fol
lowing way is simpler and more efficient. The forces acting to the nodal 
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points also can be given by a FORTRAN subroutine, which provides 
access to the coordinates, displacements and velocities of the actual 
nodal point. As the displacement and velocity of the second nodal 
point is equal to the deformation of the spring and the relative veloc
ity of the damper, respectively, two forces depending on displacement 
and velocity can be derived from the cubic terms. 

These forces are added to the exciting force at the right side of the 
equation. 

The code belonging to the dynamic model defined in Chapter 2 can 
be done by Appendix. The results of numerical simulation with Systus are 
shown in Fig. 4 and Fig. 5. 

5. Conclusion 

Summarizing the above results, we can state that software, for example 
Phaser, Matlab and Maple are very useful to perform numerical simula
tions. Advantages of Phaser are the simplicity, the less memory and the 
possibility of change of several parameters simultaneously. Therefore the 
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initial examinations are to be performed practically with Phaser and later 
to continue the computation with some more advanced software such as 
Matlab and Maple. 

In the end we underline that the advantage of the finite element pro
cedure (Systus) appears for simulation of many-degrees-of-freedom systems. 
In this case the establishment of the coupled differential equation system 
is troublesome and time consuming, to avoid difficulties we think fit to use 
finite element techniques. 

6. Appendix 

Definition of the finite element model and the nonlinear spring characteristic 

definition 
EXCITATION: A*SIN(OMEGA*T) 

option beam 
geometry 
nodes 

1 / O. o. O. 
2 / 1. O. O. 

elements 
1 / 1 2 

material properties 
el/ E 1. NU 0.3 AX 1. IX IY IZ 1. 

constraints 
ni/ ux uy uz rx ry rz 
n 2 / uy uz rx ry rz 

loadings 
1 A=SO m=l s=l.l beta=O.OS d=O.S 
n 2 / fx 1. vari -1 

masses 
n2/ax1. 

damping 
n 2 / ax O.S 

table 
1 / PROG 

return 

SUBROUTINE USFONC (NAME,X,M,F,FP,FS) 
IMPLICIT INTEGER*4 (I-N) 
DIMENSION X(*),F(*),FP(*),FS(*) 
NAME=4HPROG 

C COORDINATES X(l), X(2), X(3) 
C TIME X(4) . 
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C DISPLACEMENTS X(5), X(6), X(7) 
TIME=X(4) 
OMEGA=1. 
UX=X(5) 
AO=50. 
EXC1=AO*SIN(OMEGA*TIME) 
S=0.55 
EXC2=-OMEGA*OMEGA*S*UX*UX*UX 
F(1)=EXC1+EXC2 
RETURN 
END 

References 

[lJ GEDEOT':. J. (1981): !\Iechanika IV /1. Lengestan, Tankonyvkiad6, Budapest. 

173 

[2J MICHELBERGER, P. - HORV . .l.TH, S. (1981): ?vIechanika V. VaJogatott fejezetek, 
Tankonyvkiad6, Budapest. 

[3] CORDUT':EAT':U, C. (1977): Principles of Differential and Integral Equations, Chelsea 
Publishing Company, The Bronx, New York. 

[4J THOMSO);, J. M. T. - STEWART, H. B. (1986): Nonlinear Dynamics and Chaos, 
John Wiley & Sons Ltd. Chichester. 

[5J GUCKENHEIMER, J. - H OL}VlES, P. (1997): N onlinear Oscillations, Dynamical Sys
tems, and Bifurcations of Vector Fields, Springer-Verlag, New York. 

[6J STROGATZ, S. H. (1994): Nonlinear Dynamics and Chaos, Addison Wesley Publish
ing Company, Reading. 

[7J BRIAN, A. BREIT':ER, M. (1995): MATLAB for Engineers, Addison Wesley Pub-
lishing Company, Harlow. 

[8J RANDALL, R. B. (1987): Frequency Analysis, Bruel & Kjaer, Naerum. 
[9J i\fOLN.-I.RKA, Gy. GERGO, L. WETTL, F. - HORV.-I.TH, A. KALLOS, G. (1996): 

A Maple V es alkalmazasai, Springer Hungarica Kiad6 Kft., Budapest. 
[10] KOCAK, H. (1986): Differential and Difference Equations through Computer Experi

ments, with Diskettes Containing PHASER: An Animator/Simulator for Dynamical 
Systems for IBM Personal Computers, Springer-Verlag, New York. 

[11] GOVEKAR, E. - GRABEC, I. (1988): Chaotic Oscillations of a Constrained Reso
nant System, Strojniski Vestnik - Mechanical Engineering Journal, Vo!. 34, No. 7-9, 
pp. E7-E12. 

[12J BATHE, K. J. (1982): Finite Element Procedures in Engineering Analysis, Princeton 
Hall. 

[13] Systus Theoretical fv1anual: Chapter 2. Element Library. Framatome, Paris, 1989. 
[14} SYSTUS User's Manual: Chapter VIII. 8. Special Elements, Framatome Information 

Systems, 1996. pp. VIII. 190-VIII. 200. 




