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Abstract 

Several sphere of technical life requires the tensor of inertia of a machine components. The 
calculation is only an approaching one, therefore the application of any measuring method 
seems to be powerful way. This paper introduces a new method for the experimental 
determination of the center of mass and the tensor of inertia of machine components 
with complex shape and nonhomogeneous mass distribution. The swinging experiment 
was carried out on model engine made of wood, so the measured results confirm the 
applicability of the elaborated method. 

J{eyu'ords: tensor of inertia, tetrahedron method. cent er of mass, pendulum, swinging 
time, eigenvalues, eigen\'ectors. 

1. Introduction 

In the latest years, the requirements of comfort of vehicles have gradually 
increased. A modern vehicle cabin is exempt from noise and vibration. The 
service lifetime of structural units of vehicle is very important, especially in 
the case of trucks and buses. It may decrease if the building of the engine in 
the vehicle body is not tuned dynamically well. These are the reasons why 
the optimal engine suspension has always been an actual task for engineers 
for decades. 

The engine is fastened to the chassis or bodyframe with elastic ele­
ments. Actually the vehicle bodies have elasticity, however, they are more 
rigid than the applied engine bedding. 

The purposes, which can be realized with elastic suspensions, are as 
follows: 

• isolating low frequency components from road excitation. These com-
ponents increase comfort and can decrease the dynamic stresses . 

• isolating high frequency components from engine excitation, 
" engine is defended from stochastic road excitation, 
III bodywork is manufactured with errors equalizing, 
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@ setting eigenfrequency of engine (as vibrating system) so that the pa­
rameters of dynamic system are optimaL 

() determination of stiffness and damping of rubber bedding: at low 
frequency large, at high frequency small damping is advantageous. 

2. The Equation of Moving of 'Engine on Ground' 

The motion of engine, as a rigid body is descri bed in coordinate system x, y, 
z with fixed axis in space. The engine with elastic suspension is a six-degree 
of freedom s\vinging system, which can move along and can turn round the 
above three axes. The following matrix equation describes a motion of rigid 
body with elastic suspension (supposing that the displacements are small 
and the nonlinearities are negligible): 

where: 

@ M mass matrix, 
@ K damping matrix and 
® S stiffness matrix 

are quadratic, reaL symmetricaL positive matrices. 
Matrix Ivr contains primary and secondary moments of inertia of engine 

and mass of engine. (The examination was performed in a coordinate system 
where origin is the center of mass of the engine, consequently the primary 
moments are zeros.) 

Matrices K and S contain damping and stiffness factors, primary and 
second-order moments of elastic ru bber bedding in directions x, y and z. 

Vector q contains moving components and turning components in three 
directions. 

Vector F contains exciting forces and moments. 

3. Determination of Matrix of Inertia of Engine Gearbox Unit 

3.1. Possible 1vl easuring Principles 

The authors who had studied this theme earlier used diagonal matrix form. 
They suppose that principal axes of inertia of engine are almost equal or 
parallel to the typical geometric axes. It may result in a rather great error. 
This supposition is only an approach if the engine is vertical, but for hori­
zontal engines (bus) or tilted engines (passenger car) is absolutely '.vrong. 

Other authors mention deviations of principal axes from geometric axis 
in space, but they do not recommend any method for determination of the 
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correct principal axis. The only exception is a paper [l];·it recommends a 
concrete measuring method. 

We need to determine the magnitudes of principal moment of inertia 
and position of principal axis, so we should determine tensor of inertia of 
engine gearbox unit. The engines have very various shape, volume and mass. 
Therefore the elaborated method must be applicable for all kinds of engines. 

Determination of moment of inertia and center of mass of engine gear­
box unit by calculation is a difficult problem, because structural elements 
consist of non homogeneous and very complicated spare parts. Applying 
CAD we can get wrong estimation. So the solution of problem in prac­
tice can only be accomplished by a measuring method. The most known 
methods are as follows: 

The torsional pendulum method as a swinging experiment round a 
fixed axis is unsuitable in this problem. Firstly, we should know the direc­
tion of the principal axis. Suspension point of torsional pendulum must be 
positioned at the vertical centroidal axis. Secondly, the engine has a com­
plex shape and irregular mass distribution. The engine can move irregularly 
because of centroidal products of inertia, so this measurement is unusable. 

Applying bifilar pendulum the body must be turned around the center 
of mass, while hanging on two parallel cords. The centroidal products of 
inertia distort s\vinging and deflect from ideal axis. 

The trifilaT' pendulum differs from the previous one in the circumstance 
that the body should hang on three cords. Disadvantages are the same as 
with bifilar pendulum. 

The elastic system is more correct, since the engine is rotated about 
a fixed horizontal axis and is supported by a spring, which is positioned 
in the verticaL centroidal plane of the engine being perpendicular to the 
axis. Therefore the body of the engine cannot deviate from its axle. For 
measuring we should build equipment and the spring stiffness should be 
known, ho\,,'ever, it is very complicated and expensive in practice, 

Applying a physical pendulum offers the simplest and easiest solution. 
If a rigid body is deflected from its equilibrium position, it can turn round 
about a fix axis. Because of disturbing factors (friction, air resistance), 
the deflection must be small (5°). To this measurement the engine should 
be hanged in two points (I, f() and the examined axis will be parallel to 
the line If{. The paper [1] presents an engine hanged in two cords, with 
horizontal axis If(. This is actually a double pendulum. It can be treated 
as a physical pendulum, if the center of mass of the engine remains in the 
plane determined by two cords, which move parallel with each other during 
the swinging motion. The parallel motion of cords is not al'ways perfect, 
because of the inappropriate initial displacement. However, if the distance 
between the center of mass and swinging axis is large, the measure dala 
can be inaccurate since the parallel axis theorem results large additional 
members. 
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The principle of measuring and its properties are shown in Table 1: 

Measuring 
principles 

Torsional 
pendulum 

Bifilar and 
trifilar 

pendulum 

Elastic 
system 

Physical 
pendulum 

Table 1. 

Properties 

Directions of principal axes must be known: 
requires calibrated elastic elements; correct in 

the case of rigid body with regular shape 

The position of center of mass must be known; 
correct in the case of rigid body with 

regular shape 

Requires equipment of platform and 
calibrated elastic elements 

Accurate when an arbitrary superficial 
point is attached to a fix pin 

Usable in 
theory 

Having compared variolls measurement methods, for this problem it 
has been found that the most suitable one was the physical pendulum \vith 
a bit correction. 

Correct measure with physical pendulum is only possible if suspension 
elements are on the surface of the body. After averaging, if the time of 
one complete swinging is denoted by T, then the moment of inertia on the 
axis I J( is 

(1) 

where: 
m mass of engine; 
5 distance between center of mass (examined axis) and axis I J(: 

9 gravity. 
The moment of inertia of th examined axis computed with parallel 

axis theorem: 
~ 

Js,i,k = Ji,k - ms-. (2) 

Consequently, the moment of inertia can be determined with physical pen­
dulum method. For the determination of matrix ;\I! we have to measure bv 
the use of six different axes. ' 

According to study [1], this method is the most suitable one. The 
author suggests that the measurement should be carried out using six axes 
intersecting center of mass. Three axes must be mutually perpendicular to 
each other and the remaining three can be optional. The study [3] measures 
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with axes at right angles. It can be realized with clamping equipment, but 
it depends on the object to be measured. 

The other problem with the physical pendulum method is the deter­
mination of the position of center of mass. Position of center of mass affects 
the accuracy of the measured data. Our purpose is to develop a measuring 
principle and method: 

I!!l that can be realized everywhere in practice and gives correct results 
with low costs, 

\!) for which there is no geometrical restriction and which does not need 
any clamping equipment to the measurement, 
by which the six elements of the tensor of inertia and three center of 
mass coordinates could simply be computed. 
The six axes do not have to be perpendicular to each other. but they 
have to fulfil the requirements as foHows: 
three or more axes m ust not be parallel to each other, 

@) maximum five axes can intersect one another. the sixth one must be 
deviating, 
more than three axes do not have to cross each other in one point, 

@ more than three axes do not lie in the same plane and the axes in one 
plane need not be parallel and they do not have to cross each other in 
the same point. 

3.2. TheoT'eiical Fundamentals of the TetmhedTOn !'vlethod 

The six edges of tetrahedron satisfy the requirements, and these edges do 
not intersect the center of mass. Further advantage is that only four points 
are necessary for the measurement. Choosing two points at each vertex of 
tetrahedron, six axes are established, so the measurement is executable. 

For measuring we only need a timer and a plummet (for determination 
of the position of mass center). (Fig. 1.) 

The steps of process: 

a) After measuring swinging time of the physical pendulum, l,ve calculate 
the moments of inertia of axis (Ji,k, where, k = 1 ... 4 and i of:- k). 

b) Determination of the center of mass as intersection of planes. By t\\"O 

suspension points of the body and a third point to be determined by 
plummet we can describe the equation of plane. This plane contains 
center of mass. The applied method leads to the six considerpd planes 
intersecting the center of gravity, therefore in pri;~cipie ITe planes 
determine it. \rVe must carry out the measurements with respect to 

six axes, contained by the above mentioned six planes. Consequently, 
the help of the axes we can determine the equations of these planes. \rVe 
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Fig. 1. 

get twenty points ( (~) = 20) , for center of mass and these points are 

close to each other. However. because of the errors of measurements, 
these points are not in the same position. For example, taking the 
average value of the coordinates the position of center of mass can be 
determined with acceptable error. 

c) Determination of the matrix of moments of inertia in the center of mass 
(Js(x,y,z))' 

d) Determination of the principal values and principal directions. 

4. Experimental Control of the Tetrahedron J\1ethod 

4-1. Introducing the Applied /v[ odel 

As a demonstration of the measuring method we made an experiment by a 
rigid body with known tensor of inertia. The model consists of three billets 
of wood (Figs. 2 and 3). It can be regarded as a serial engine gearbox object. 

Supposing that the used beech-tree blocks have homogeneous mass 
distribution, we computed the position of the center of mass of the body 
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and the centroidal moments of inertia. Four rings were fixed to billets in 
four points as shown in Fig. 3. The billet's hanging on these rings can also 
be seen in Fig. 3. The origin of coordinate system x, y, z is point 1. The 
axes of the coordinate system can be seen in Figs. 2, 3. 

These four points in space determine a tetrahedron. The computed 
swinging time and moment of inertia (Jik) about six axes are contained in 
Table 2. The centroidal moments of inertia (J S,ik) are also being shown in 
Table 2. Two points positioned in the considered axis denote the applied 
aXIs. 

Axis Computed swinging time 
(s) 

12 0.7344 
13 0.7344 
14 0.9832 
23 0.9815 
24 0.8148 
34 0.8158 

Table 2. 

Computed Jik value 
(kgcm 2) 

427 
422 
277 

1616 
669 
668 

x 

""---

Fig. 2. 

Computed J Sik value 
(kgcm 2

) 

143 
144 
240 
339 
208 
211 

Note that in the case of axis 14, the axis of suspension points and the 
parallel centroidal axis are too close to each other, therefore the calculated 
moment of inertia is not so accurate as the other ones. 

The computed matrix J s(x,y,z): (in kgcm 2) 

40 1 -2 . 
260 
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Fig. 3. 

The three eigenvalues: 

[T 
o 

272 
o 

The principal directions: 

vI 
v2 
v3 

[ 0.0056; 0.9996; 
[ 0.2892; 0.0252; 
[-0.9573; 0.0135; 

o 1 o . 
126 J 

-0.0280] rv 

0.9569], 
0.2889]. 

[0,1,0], 

4- 2. Experimental Results of the Tetrahedron Method 

Arrangement of the measurement was very simple, since the joining rings 
were attached directly to the applied frame without cords. The billet of 
wood was deflected with small angle, and time of twenty complete s'wings 
was measured. Then averaged time was regarded as the real measured value. 
We computed the moments of inertia on the basis of Eqs. (1), (2), and the 
position of center of mass was calculated on condition that the mass density 
of block is homogeneous. The measured results are given in Table 3. 
Matrix J s(x,y,z) computed from the measurement: 

[ ~i -5 
20 1 344 -9 

20 -9 255 

Eigenvalues: 

[T 
0 0 l 257 0 
0 135 I 

J 

...........•.............. -..... __ .. _-_._. 
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Axis Measured 
swinging time 

(s) 

12 0.7369 
13 0.7329 
14 0.9419 
23 0.9830 
24 0.8214 
34 0.8239 

Eigenvectors: 

v1 
v2 
v3 

Table 3. 

Deviation J ik value JSik value 
computed from computed from 

measuring 
(kgcm 2) 

0.0785 429 
0.0590 420 
0.1288 254 
0.0884 1621 
0.0951 680 
0.0640 681 

[-0.0326; 0.9940; 
[ 0.1634; 0.1088; 
[-0.9860; 0.0148; 

-0.10481. 
0.9806]. 
0.1659]. 

5. Conclusion 

swinging time 
(kgcm 2) 

146 
143 
217 
344 
219 
224 

209 

If we want to build in an engine in a vehicle \ve should know tensor of inertia 
of the engine, which is not given by engine factories. Several measuring 
methods are known for determination of this tensor. but because of several 
problems their applicability is restricted in engineering practice. 

The advantages of the elaborated method are: 

® very simple equipment is necessary with low cost, 
@ moreover, the processing of measured data is not difficult. 
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