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Abstract 

This paper deals with the exact mathematical description of a simple in-plane track­
vehicle dynamical system model. The railway track is modelled by a beam on damped 
linear foundation, while the t wo-axle railway vehicle is modelled by a lumped paralneter 
linear dynamical system. The interaction betwee:::t the track and the vehicle in vertical 
plane is described by the Hertzian spring and damper, belonging to the linearized vertical 
contact force transfer. Formulation of the mathematical models. 2.S well as the closed form 
solutions for the excitation-free system are presented. 
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1. The Track-Vehicle System Model 

The system model is shown in Fig, 1. The in-plane dynamical model is a 
typical hybrid one, as it consists of a continuum subsystem, i,e. the track, 
treated as an Euler-Bernoulli beam on damped VVinkler foundation. and a 
lumped parameter vehicle subsystem describing the two-axle railway vehicle, 
The connection of the t\VO su bsvstems mentioned is realized by the contact 
springs/dampers.' , 

The track model parameters are the follmving: rail density p. cross 
section area of the two rails A, moment of inertia of the two rails I, Young 
modulus of the rail E. foundation stiffness 5 and foundation damping k. The 
vertical position of the rails is described by bivariate function z(x, t), the so 
called rail deflection function, Here x stands for the longitudinal coordinate 
of the track. 

The vehicle parameters are as follows: \\" heelset masses m1 and m2. 
carbody mass m, carbody moment of inertia e, vertical wheelset suspen­
sion stiffnesses 51 and 52, vertical wheelset suspension dampings k1 and k2 • 

axlebase L = II + l2' coefficient a of the velocity-square dependent air drag 
and the vertical distance h between the action line of the air drag and the 
mass centre of the car body, There are four free coordinates describing the 
positions of the masses in the vehicle subsystem: vertical displacement of 
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Fig. 1. Vehicle-track system model (continuum rail model) 

the carbody Zo, angular displacement of the carbody and vertical dis­
placements of the wheelsets Zl and Z2- Two further vertical displacements 
are important on the car body to determine the motion-state dependent ver­
tical forces transmitted through the suspension springs and dampers. The 
points on the car body located over the wheelsets are indicated in Fig. 1 and 
their displacements can be expressed by using Zo and -0 in the following \-\"ay: 
2"1 = Zo - h?J; and Z2 = Zo + hlb. 

The interaction of the track and the vehicle is realized through the 
Hertzian springs and dampers of linearized stiffness SH and damping factor 
kH. The actual operation condition of the vehicle is reflected in the constant 
velocity v of the car body mass centre. The longitudinal position of the latter 
under this condition is given by product vt. So, the longitudinal coordinates 
of the wheelset/track contact points are Xl = vt + 11 and X2 = ut - [2-

Thus, the track-vehicle dynamical system can be characterized by pa­
rameter vector p of dimension 21. Its form is 

The motion conditions can be studied by seeking for the function z(x. t) 
of the track deflection, and the free coordinates zo(t), ?J;(t) , Zl(t) and Z2(t) 
characterizing the vehicle subsystem. The governing set of motion equations 
are established in the next chapter. 



TRACK-VEHICLE !>fODEL 5 

2. Mathematical Description of the System Model 

The equations of motion are determined by using \T ewton 's 2nd law for the 
rigid body components of the vehicle subsystem, and the known equation of 
the Euler-Bernoulli beam on elastic/damped foundation in the presence of 
forces describing the vertical interaction between the track and the \vheels. 
The equations of motion of the wheelsets are the follO\ving: 

F;(Zi, Zi, Zi, ii, zd = Si(Zi - Zi) + ki(ii - Zi) + mig - mi Zi= 

d 
-z(vt + Li , t)). 
dt 

where = (-lr+1Ii, i 1.2 stand for oriented lengths. 

1. 2. (1) 

The vertical translatory motion of the carbody is governed by the 
following equation: 

"'r .(~. 7) k·(~· 7.)i I ;; - 0 Ltl-S-Z ~z -......11 - '1 41 - ~2 J T mg - m ""'0- . (2) 
1=1 

The pitching motion equation has the following form: 

2 

L[Si(Zi - Z;) + ki(Zi Zi)]Li + hav2 80= O. (3) 
i=l 

The track deflection is described by the following fourth order linear partial 
differential equation: 

84 Z 82 Z 8 Z ~ _ .... 
I E-;:;-;; + pA~) ? + k-z:;- + sz = \. 'o(x - (vt + Li))Fi(Zi. Zi, Zi. Zi, Zi). (4) ox - ut- ut L." 

,=1 

Together with Eqs. (1-4) also relationships 

(.5) 

are in force. 
We are able to eliminate Zo and 11, from Eqs. (2-3) by expressing 

Z2 - Zl d IlZ2 + l2 Z1 
U = --- an Zo = L 

L 

This way our original system can be simplified from the point of view of the 
mathematical treatment as follows. 

Let us introd uce functions 

gi(t) = Fi(Z; (t),Zi (t),Zi(t),ii (t),Zi(t))+mi(Zi -g) 
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for i = 1, 2. 
Then our differential equations can be \\"]'inPll into the form 

- Id L)) (11 Ill, 

2 

gi(t) = La,! - -"-/x 8, 

j=l 

. cl 
SH(Z; - Z(l.'t + L i . t)j -"- kH(Z; - \. z(L't -t- L .1)) -:- !li ( 

( 1 

for i = 1, 2 \vith 
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The solution has to satisfy bounclar~' condition 

lirp z(3.·, t) = 0 
r-4::t:<X: 

and initial conditions 

Zi (0) = ViO. Zi(O) = ZiO. Zi (0) = \liO 

for i = 1, 2. 

3. Solution to the Boundary Value Problem 

-g)). (6) 

(8) 

(9) 

We are looking for the solution [z, Zl, Z2, Zl, Z2]T of system (6-9) in the form 

8 

z(x.t) = ~ i'h(';)ewkt
, 

"---' 
k=O 

8 8 

Zi(t) = L ';ikewkt
• Zi(i) = L (ik eWk :, i = 1, 2. 

k=O k=O 

where,; = x - ut, lEo = O. while the Wk'S for k = 1, 2, ... ,8 are the complex 
frequencies of the system and ';iko (ik are appropriate constants. all of them 
are to be determined later on. 

Substituting our expected solution into the right-hand side of Eq. (6), 
the partial differential equation will have the form 

a4~ a2- a- 2 8 

lEa: + pA a; + k a~ + sz = L L 5('; - Ldcike1Lkt 

x t t i=l k=o 
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Cik = (t aijE,jk - mi(ik) UJ~ for k = L 2, .... 8. 
)=1 

(10) 

Then applying the theory of such partial differential equations [1-.5], we can 
use formulae of [7] to compute Ak(E,) as 

2 

AdO L CikB(E, - L i • Wk), 
;=1 

B (Tf. u:) 

\\'here the characteristic polynomial 

P(>..) = I E>..4 + pAv 2 >..2 - v(k + 2pAlr)>.. + (s + ku' + pAw2) 

has neither imaginary nor multiple roots (necessary and sufficent conditions 
are given in [7]), >"1 and >"2 are the roots of polynomial P with negative real 
parts, pi is the derivative of P. \\'hile H is Heaviside's unit jump function. 
(The formula for the multiple root case is given in [7].) 

4. Determination of Complex Frequencies 

Substituting the expected solutions into Eqs. (7). by comparing coefficients 
we obtain the system of equations 

2 

W~ L aijE,jk = (Si + kjWk)(E,ik - (ik) = 
j=1 

(11) 

(12) 

for i = L 2 and k = L 2, ... ,8. System (12) contains unknowns Wk, c'ik and 
(ik. In order to obtain the complex frequencies Wb k = 1,2, "', 8 the latter 
unknowns can be eliminated. This procedure results in nonlinear equation 

det (C(w)) = 0, (13) 

where C(w) is a w-dependent 2x2 matrix with entries 

{ 

W 2a" 
? -IJ c(w) - a'w- - (SH ..L kHUJ) 0" - ..L 

lJ - lJ ,I' lJ Si + kiw I 



8 I. ZOBORY and V. ZOLLER 

~ ( - m n U'
2

.a. n j ) . • 2B(L' _ L . ')} _ .... 2" .. -L m;w
4

a. ij L...t -anj + ffinOnj - (L 1 n' (L. ni, (L. Ut) I • 

Sn + knu' Si + kiW n=l 

In the above expression 6ij stands for Kronecker's symbol. The solutions 
Wl, W2, ... , U'8 are the complex frequencies of system (6-9). With the knowl­
edge of these frequencies Wk one can easily determine constants E;ik and (ik by 
solving linear equation system (11-12) together with initial conditions (9). 

5. Conclusions 

In this paper a ne\\" mathematical treatment has been elaborated for the 
solution of a set of equations describing the joint problem of the combined 
motions of the continuous track and the vehicle modelled as a lumped param­
eter system. The wheelsets of the vehicle are moving at a constant longitudi­
nal velocity on the elastically /dissipatively supported beam at a constant 
longitudinal velocity. The two subsystems, connected with each other by 
the Hertzian springs/dampers, are completely characterized through the 
closed-form expressions based on the complex frequencies obtained from the 
solution of the auxiliary nonlinear equation. 
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