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Abstract

This paper deals with the exact mathematical description of a simple in-plane track-
vehicle dynamical system model. The rallway track is modelled by a beam on damped
linear foundation, while the two-axle railwayv vehicle is modelled by a lumped parameter
linear dvnamical system. The interaction between the track and the vehicle in vertical
plane is described by the Hertzian spring and damper. belonging to the lincarized vertical
contact force transfer. Formulation of the mathematical models, as well as the closed form
solutions for the excitation-free svstem are presented.

Keywords: track/vehicle dynamical svstem, hybrid systems of differential equations.

1. The Track—Vehicle System Model

The system model is shown in Fig. 7. The in-plane dynamical model is a
typical hybrid one. as it consists of a continuum subsystem, i.e. the track,
treated as an Euler—Bernoulli beam on damped Winkler foundation. and a
lumped parameter vehicle subsystem describing the two-axle railway vehicle.
The connection of the two subsystems mentioned is realized by the contact
springs/dampers.

The track model parameters are the following: rail density p, cross
section area of the two rails A, moment of inertia of the two rails I, Young
modulus of the rail ', foundation stiffness s and foundation damping k. The
vertical position of the rails is described by bivariate function z(z.t), the so
called rail deflection function. Here z stands for the longitudinal coordinate
of the track.

The vehicle parameters are as follows: wheelset masses m; and ms,
carbody mass m, carbody moment of inertia ©. vertical wheelset suspen-
sion stiffnesses s; and ss. vertical wheelset suspension dampings &y and ko,
axlebase L = [} + [, coefficient a of the velocitv-square dependent air drag
and the vertical distance h between the action line of the air drag and the
mass centre of the carbody. There are four free coordinates describing the
positions of the masses in the vehicle subsystem: vertical displacement of
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Fig. 1. Vehicle-track system model {continuum rail model)

the carbody zp, angular displacement of the carbody ¢, and vertical dis-
placements of the wheelsets Z; and Z3. Two further vertical displacements
are important on the carbody to determine the motion-state dependent ver-
tical forces transmitted through the suspension springs and dampers. The
points on the carbody located over the wheelsets are indicated in Fig. 7 and
their displacements can be expressed by using zg and ¥ in the following way:
z1 = zp — 1 and zy3 = zg + l97).

The interaction of the track and the vehicle is realized through the
Hertzian springs and dampers of linearized stiffness sy and damping factor
ky. The actual operation condition of the vehicle is reflected in the constant
velocity v of the carbody mass centre. The longitudinal position of the latter
under this condition is given by product vt. So, the longitudinal coordinates
of the wheelset/track contact points are 1 = vt +{; and zy = vt — [5.

Thus, the track—vehicle dynamical system can be characterized by pa-
rameter vector p of dimension 21. Its form is

P= [p' ‘4? I: E'/ S, k- 117 125 h, my, M2, N, 67 81, 52, kl? k?? a; SH: kH‘ U]T

The motion conditions can be studied by seeking for the function z(z.t)
of the track deflection, and the free coordinates zp(t), ¥(t). Z1(t) and Z(t)
characterizing the vehicle subsystem. The governing set of motion equations
are established in the next chapter.
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2. Mathematical Description of the System Model

The equations of motion are determined by using Newton’s 2nd law for the
rigid body components of the vehicle subsystem, and the known equation of
the Buler-Bernoulli beam on elastic/damped foundation in the presence of
forces describing the vertical interaction between the track and the wheels.
The equations of motion of the wheelsets are the following:

FiZ:, 20, Zs 31, 2) = silz = Z3) + kilZi = Zi) + mug — my Zi=
d

dt

where L; = {—=1)11]. { = 1,2 stand for oriented leneths.
T \ H b o .
The vertical translatory motion of the carbody is governed by the
following equation:

su(Z: — 2(vt + Lit)) + ky(Zi ——z(vt + Ly 1), i=1,2, (1)

2]

> i=silz = Zi) = ki(zi = Z:)] + mg — m Zo= 0. (2)

1=l
The pitching motion equation has the following form:
2 . ..
Z[Si(zi — Zi)+ ki(z - Z)) L + hav? — © w= 0. (3)
1=1
The track deflection is described by the following fourth order linear partial
differential equation:

o4 aL 5= 2 .
]EC‘ T + pA 16 5 -+ ]i‘*a— 8§z = Lé(l‘ - (L‘Z'*}- L{))H(Zg.Zg.Zi‘Z'{.ZZ’). (4)

=1

Together with Fgs. (1-4) also relationships

ot

zp =21+ 0 = 29 — [y (5)

are in force.
We are able to eliminate zg and v from Egs. (2-3) by expressing

, 2 — £
W= - and Zp =
L

This way our original system can be simplified from the point of view of the
mathematical treatment as follows.
Let us introduce functions

gi(t) = Fi(Z: (8), Z: (8), Zilt), 2 (1), 2:(t)) + mi( Z: —g)




fori=1,2.
Then our differential equations can be written into the form

9z 0%z dz EN \ L .
]EBIE"’ +p_,45?-:—k—é? 45z = ZO(‘I‘ — (et =+ Loviigiiy — m( 7 —g)). (6)
i=1 '
2

gi(t) = Z a;; 3 +bi = sz = Zi) + ks - 7‘ =

j=1
. - d i _
SH(Z,; - Z(L‘i + Lty = kulZ ——1—.2(‘(‘1" Lot A = (T
di
for 1 = 1,2 with
—1)iFiE 212 ’ (=11 /Ll Log 2\
aij:( >9 ( L 2+® ./)5: ( ,1 ”’—’~hf1i“).
L" \ L{LJ' I A L’l

The solution has to satisfy boundary condition

lim z(z,6) =0 (R)

r—yEoC
and initial conditions
z(0) = zi0. 2 (0) = vio. Zi(0) = Zwo. Z; (0) = Vig (9)
fori=1.2.

3. Solution to the Boundary Value Problem

We are looking for the solution [z, z;. z9. Z1, Z2]" of system (6-9) in the form

L

z(z, t) = A (&),

il
o

I
X

8 8
zi(t) = Z Ee™ ' Z:(t) = Z Cre™ , 1 =1,2.
k=0 k=0

where £ = ¢ — vt, wg = 0, while the wi’s for £ = 1,2, ...,8 are the complex
frequencies of the system and &, (;x are appropriate constants, all of them
are to be determined later on.

Substituting our expected solution into the right-hand side of Eq. (6},
the partial differential equation will have the form

]E84z+ 4?3—2-J—k—6—£‘— *—}iié(f—b)c et
gz o T e T T > T Rien

1=1 k=0



TRACK-VEHICLE MODEL 7

with ¢;p = b; + m;g and

5
Cik = Z ai; S — miGik w? fork=1,2,....8. (10)

J=1
Then applying the theory of such partial differential equations [1-5], we can

i

use formulae of [7] to compute A (§) as

2
Axl8) =D e B(E - Li wy).
=1
)= 500 | By + By )~ M0 B+ P )

where the characteristic polvnomial
P(A) = TEN + pAv?A7 — vk + 2pAw)A + (s + kw + pAw?)

has neither imaginary nor multiple roots (necessary and sufficent conditions
are given in {7]), A; and Ay are the roots of polyvnomial P with negative real
parts, P’ is the derivative of P, while H is Heaviside’s unit jump function.
(The formula for the multiple root case is given in [7].)

t
S

4. Determination of Complex Frequencies

Substituting the expected solutions into Fgs. (7), by comparing coeficients
we obtain the svstem of equations

sp1(&i0 — Ao(Ly)) — mig = s:(&o ~ o) = by, (11)
)
wz 3 azyé]k - (51 .y kiwk)kém - Czr’c) —
=1
(sy + kwe) (& — Ax(L:)) + miwiGn (12)
fori=1,2and k =1,2,...,8. System (12) contains unknowns wg, &; and
(ik- In order to obtain the complex frequencies wi, & = 1,2,...,8 the latter
unknowns can be eliminated. This procedure results in nonlinear equation

det (C(w)) = 0, (13)
where C(w) is a w-dependent 2X2 matrix with entries
w?a;;

2 L kgw) {6
cij(w) = agw” — (sy + kyw) {OU TSt kw




o

I. ZOBORY and V. ZOLLER

2 2 4
N My w?an; ) 5o mwia;;
E (—am- + mpbn; — ——— | w”B(L; — L, w) p — mjw“d;; + ———

— Sp + kpw s+ kw
In the above expression §;; stands for Kronecker’s symbol. The solutions
wy, Wy, ..., wg are the complex frequencies of system (6-9). With the knowl-

edge of these frequencies w; one can easily determine constants &;; and (i by
solving linear equation system (11-12) together with initial conditions (9).

5. Conclusions

In this paper a new mathematical treatment has been elaborated for the
solution of a set of equations describing the joint problem of the combined
motions of the continuous track and the vehicle modelled as alumped param-
eter system. The wheelsets of the vehicle are moving at a constant longitudi-
nal velocity on the elastically/dissipatively supported beam at a constant
longitudinal velocity. The two subsystems, connected with each other by
the Hertzian springs/dampers, are completely characterized through the
closed-form expressions based on the complex frequencies obtained from the
solution of the auxiliary nonlinear equation.
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