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Abstract 

The tooth tip relief. as an intended departure from the normal involute profile is a common 
technics for the improvement of toO(h contact characteristics. It is often used not only 
for avoiding tip contact. but espeCIally in the case of long relief. [.0 aim at better dynamic 
behaviour. For studying the dynamic characteristics of gear trains in the case of long 
relief, comparative computer simulations were carried out for a train with normal toothing 
and with [.Ooth tip relief. The applied dynamical model and excitation characteristics 
are discussed. By simulating smooth acceleration processes at differem nominal load 
conditions, resonance cun'es are generated and analysed in the case of ideal tooth geometry 
under real mesh conditions. i.e. the mesh irregularities at the beginning and points of 
contact, due to tooth deflections were taken into accoum. Dvnamic behaviour at low 
specific load level is studied based on steady state rolling down ;imulations and resonance 
characteristics are discussed. 

Keywords: gear train. tooth tip relief. gear dynamics, non-linear viuration. simulation. 

1. Introduction 

The vehicle transmissions in operation are subjected in general to randomly 
variable load conditions. characterised by considerable variations even in the 
load amplitude and in the frequency range. Tooth profile modifications in 
height direction, as the long tooth relief, see for example in [1], [2], which 
can improve considerably the tooth dynamic behaviour in a relatively nar­
ro\v load range, are often used in vehicle transmissions. too. However, the 
operating load range is normally broader than the region, where the effect 
of the relief is optimum. Consequently, special care must be taken for the 
correct choice of the tip relief values and their height. 

On Fig. 1, four successive positions of the same profile pair are shown 
on the pressure line for teeth with long relief. The points A and E are 
the beginning and end points of contact with normal profiles and AD = 
BE = 1(,4.12 = All M = Pb. Point All is the beginning, Al2 is the end point 
of contact of the normal involute profile of gears 1 (upper) and 2, on the 
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diameters dll. 2 respectively, Pb is the pitch on the base circle. The upper 
profile sections with thin line are the eliminated involute sections. Ca 1.2 are 
the relief values, respectively. 

Considering the pinion and wheel in positions belonging to the normal 
profile, there is no contact in position at point A, because of the tip relief 
on wheel 1, but the foregoing profile pair at point D is in normal contact. 
In contact position at point K. the foregoing profile pair leaves just the 
contact. consequently on J( All. contact is only possible by rotating back 
gear 1. At position in point Ail, the original profiles are in contact. as for 
the gears with normal profile and that remains up to the position in point 
.412. Passing!-h because of the relief on gear 2. contact is possible only 
with rotating back gear 1. being the succeeding profile pair in the interval 

. In contact at point .H, the succeeding profile pair enters in norrnai 
contact. So, on ir:tervals 1(.411 and Ai2~H, contact is possible only \\'ith lag 
of the gear behind its nomina! position. In other words. the contact ratio i;; 
less than one. introducing kinematic excitation. 

Fig. 1. Tooth contact on the pressure line for teeth with tip relief 
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2. The Dynamic Model 

2.1. The J(inematic Euitation 

For the simulation study a two mass system model is applied. with rotating 
masses. coupled by' a spring system. as it is schematically represented on 
Fig. 2. The details of the spring system, replacing the real tooth contact. 
are described in detail in [3J. 

In the system on Fig. 2. the cam symbolises the resultant kinematic 
e.Tcitation. introduced b~r the tooth pairs. being in contact at a given contact 
point. The kinematic excitation is introduced by mesh irregularities due to 
the tooth deformations on one side. and profile relief and manufacturing 
errors on the ot11,,1' side. Consequently. for gears \,'ith ideal geometry the 
period of The kinematic excitation n = 21./Z1' where 21 is the number of 
teeth of the pinion. For gears with manufacturing errors. n is the total 
rotation angle of the dri\·er. roiling down during the realisation of all possible 
combinations of the profile pairs of the driver and the driven gear. 

The description of the kinematic excitation can be conveniently han­
dled by the contact Junction, Sj(yd see e.g. in [:3], [4.] \vhich gives the travel 
error of the driven gear. measured in length on tllP. pressure line, at any 
driver angular position :;1. The su bscript j refers to the jth tooth profile 
pair combination. 

Fig . .Ja sho\\'s a series of contact functions for ideal normal gears, 
whilst on Fig . .Jb contact functions for profiles with tip relief are represented. 
The curwd parts at the A and E points symbolise the errors involved by 
mesh irregularities at entering into and leaving the contact. Taking into 
consideration the contact process on the pressure line discussed in Fig. j 

and the fact that for profiles with long relief ~c, < 1. the S( :;1) resultant 
contact Junction has triangular shaped parts. wh,,1'e its value is not zero. see 
Fig . .Jb. 

2.2. Basic Dynamic Behw"'iol1r 

The differential equations for the two mass system in Fig. 2 are: 

J 1 . c?l + {t K J (~o- - 6j (yd)} I'b! + I'bl . 5'(:;1: ~0') . .6.0' T1 . 

J=1 

h . c?2 + {t J(j (~o- - 6j (:;d)} rb2 + I'b2 . 5'('P1: ~O') . .6.0' = -T21 • (1) 
)=1 

where CPu. ~1.2. :;1.2, are the t\\'ist angles of the masses and their time 
derivatives, K j is the damping coefficient in the single tooth pair contact. 
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Z1 

Fig. 2. Schematic two mass modeL (h.2 moments of inertia of the rotating masses, 
Zl,2 number of teeth, T1.2 outer torques, 91,2 twist angles, T'b1.2 base circle 
radii, s( 'Pd tooth contact stiffness function, Fs resultant contact force on 
the pressure line, Fo and F D are the elastic and damping forces in contact. 
J( damping coefficient.) 

D.O' = lEj + 5j is the instantaneous travel error. composed from the 11'j 

tooth deflection and 6j contact function value for the tooth flanks actually 
in mesh. and S(Yl: 0,.0') is the reduced stiffness function [4]. This latter 
multiplied 'with 0,.0' gives the actual elastic force, acting in the mesh. The 
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- one ) profile pairs 
= two 
== three in contact 

a. 

Fig, 3, Contact functions for ideai profiles (a) and with tip relief (b) 

reduced stiffness function contains all excitation components. so it can be 
considered as the parametric excitation term in the system. 

In general case, the reduced stiffness function can be \',:ritten as the 
sum of its Fourier components Ck. \\'ith the Co average Value as follows: 

Co(~O') -+- t CI,(L:,.O') . cos (2; . k:';:l + Vi:) , 
,~-l 

(2) 

\\'here f2 is the basic angular period of the reduced stiffness function, k is 
the ordering number of the Fourier components, and Vk the phase angle. 

One can distinguish the 5(:';:1: ~O') stiffness function, which is the sum 
of single tooth pair stiffnesses being actually in contact: consequently it 
differs from the reduced stiffness function. The integral mean value (average) 
of the stiffness function is called as gear engagement spring stiffness c'). 
In the case of linear single tooth pair stiffness characteristic (i.e. force­
defiection curve at a given comact position) at each contact point and ideal 
tooth geometry, its value is approximately constant. However, in the case 
of toothing with tip relief or with manufacturing errors or/and with non­
linear single tooth pair stiffness characteristic, its value is load (i.e. ~O') 
dependent and will be marked as c~,. 

The system of Eq. (1) \\'ith the excitation term (2) describes a rheo­
non linear type vibration [.5]. 

The basic vibration properties of such type of vibrations for one mass 
system with harmonic excitation can be studied by applying the stability 
chart, see ex. [5]. 
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Assuming ideal tooth geometry, without manufacturing error, the tooth 
frequency fz = 2'1 . n 1 .2'1 <-,.;I!2" .Yl = ~'l . t. \V here;";1 and nl are t he in put 
angular frequenc~' and rotation speed, respectively. the period of the excita­
tion Q = 2" / 2'1 and the tooth angular frEquEncy :.o.,'z ZI ':.0.,'1' being the basic 

excitation angular frequency. The system eigenfrequency, ;";s = vc_,/m, see 

ex. [5], [2] \\'her(' m is the reduced mass of the one-mass system. As it is 
kno\\'n from the stability chart. unstable. or resonance points develop, if 

,,2 (V') 2 """"s _ _ 

;..;~ - 2 v 1. 2 ..... x. (3) 

Rearranging Eg. (3). unstable vibration develops. if the excitation frequency, 
;";z = 2;..;.,/1/. Fig. 4 shoKS schematirally the resonance curve for such a 
system with damping. on the Tooth angular frequency \,'ith the vibration 
amplitude ratio ~O'max! !::"O'stat on the vertical axis. 

wJ5 Ws/3 Ws/2 2/3 Ws 

__ --10»V~:~:~3+5-1+:--~~-3-V-N-~--~~ 
Fig. 4, Schematic resonance curve 

Considering a complex excitation function with harmonic components 
of k = 1. 2 ... '. x, the angular frequency of the k-th harmonic components 
\\'ill be ;";z . k. Replacing this value in Eq. (3) as excitation frequency, rear-

ranging the equation and introducing :.0.,':: (vU:)). as the tooth frequency at 

which the v-th order resonance point of the Idh order harmonic excitation 
component develops, one can write: 

k = 1. 2 ..... x. v 1. 2 ..... x. (4) 
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From Eg. (4). the following can be concluded: 

since k 2: L v 2: 1. unstable points develop only at excitation frequen­
cies equal to or less than 2ws, 
since k and v are whole numbers, their product \vill be whole, and in 
turn, all whole numbers can be produced as the product of two whole 
numbers, consequently each \vhole number can serve as divisor, 

- one can find unst able point at each excitation frequency which is 2ws 
di\'ided with a whole number. 

- for all v(k) k 2: 1. LI 2: 1 with k . J) =const.. the resonance points are at 
the same excitation frequency. 

Ho·v:ever. in the presence of damping, as it is in practice, the higher 
order unstable points tend to lose of importance. 

In the gearing technics, a dimensionless frequency ratio number S is 
introduced [2]. for the marking of the different resonance points, as follows: 

2 
LI 1. 2 ..... x. (.5) 

v 

so unstable resonance points can develop at :V = 2. 1. 2/3, 1/2, .... The 
resonance at S = 1 is called as main resonance point. For cases, in which 
the average stiffness c_. is load dependent, the frequency ratio depends on 
the load, too, so in that case the symbol f:::; will be applied. 

3. System Behaviour of Gear Trains with Normal Toothing 

For studying the system behaviour, an electric locomotive main drive train 
is applied, with the following basic parameters: Zl = .53, Z2 = 6.5, m = 12. 
The pinion and gear are constructed as hub, web and rim, which involves a 
decrease of the theoretical tooth stiffness, see ex. [6]. Two stiffness variants 
were applied, one with the theoretical stiffnesses by Weber - Banaschek 
[2] with linear single tooth pair stiffness function characteristic, coded as 
WBlin, and the other with taking into consideration the rim influence by [6] 
and with non-linear single tooth pair stiffness characteristic by [7], coded as 
vVBHKp. 

For characterising the system behaviour. continuous rolling down pro­
cesses by smooth acceleration were simulated and the tooth contact force 
dynamic factor 1/2: was calculated: 

(6) 
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Fig, 5, Stiffness 5(:;1: .:iu) and reduced stiffness , .:iu) fUl1nions for ideal, nor-
mal tooth profiles 

where Fy/o is the total nominal specific load in contact, (dile iO the nominal 
outer load), Fs)b is the real. dynamical load on the jth profile pair. n being 
the number of teeth in contact, and ~( is the rotational angle of the pinion, 
corresponding to one tooth mesh, 

On Fig, .5 stiffness and reduced stiffness functions are shO\\'n. ""ith 
the corresponding contaCl funClions for gear train with normal profile, Ex­
pressed load dependence is caused by the mesh irregularities and the begin­
ning and end points of contact due to the elastic tooth deflections and by the 
non-linear single tooth pair stillness characteristic . coded as \YBHKp, 

Fig, 6 represents the resonance curves for different specific load \'allles, 
On Fig, 60, small damping coefficient is applied \\'ith backl2.sh I). allo\\-ing 
the development of the resonance points, For .Y = 1. 1/2. 1/3 and 1/-1 the 
tooth flanks separate (where FI; = 0). and non-linear resonance de\-elops, 
That is \\'hy their location is slightly 100\'er as it is pre\'ie\\-ed by the marked _Y 
values. On Fig, 6b, c, d normal damping is applied for case \\,Blin. resulting 
considerably lower load eleYations in the resonance points, Ho\\'e\'er. at 
.Y = 1 and 1/2, and at 10\\- specific load value, tooth flank separation occurs. 
involving the decrease of the resonance pick location, 
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Fzg. 6. Resonance curves ill tllf case of ideal. Ilormal tooth profiles 

At higher loads regular resonance locations develop. \"ithou! tooth 
flank separation. One can state that. at increasing load. the dynamic forces 
tend to decrease slightly. in agreement \,'jth experimental results. The gen­
eral \'ibration shape changes only slightly. 

On Fig. 6E. f the same system is represented. with 10\\'e1' single tooth 
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stiffness values and non-linear single tooth pair stiffness characteristic by 
Fig. 5. The general vibration shape remains similar, however, the resonance 
points move towards the lower input speeds. The reason of that is the smaller 
average stiffness. The difference between the theoretical X location and the 
real one can be explained by the fact that the beginning part of the single 
tooth pair stiffness function is progressive, with IQ\.yer stiffnesses [7] and this 
is not taken into consideration in the calculation of X, determined with C-i • 

Since the single tooth pair stiffness characteristics at fixed contact positions 
are not linear, expressed load dependence can be found on the resonance 
curves. see Fig. 6e and f. 

Considering the curves on Fig. 6, in the case of linear single tooth 
pair stiffness characteristic, slight load dependence of the vibration shape 
and slight dynamic factor variation presents itself at diffprent nominal loads, 
\\'hich is the result of the mesh irregularities at the points A. i.e. entering 
into, and E, i.e. leaving the contact of a given profile pair. For non-linear 
single tooth pair stiffness function, differences can be found even for vihra­
tion shape and dynamic factors. 

4. System Behaviour of Gear Trains with Profile Relief 

4-1. Contact Properties in the Case of Profiles u·ith Tip Relief 

In the case of tip relief, the number of tooth pairs in contact varies not only 
in the function of contact position, but it depends on the applied load as 
well. Let us consider the contact applying the contact functions. Fig. 7. 

djlA 
6t. 

~------~--~~--------~--~4-' 

Fig. 7. Contact analysis based on contact functions 

Assuming a given travel error due to a given load ~O"l =const. and 
6.0"2 > ~O"l' one can detect the number of teeth in contact at any position 
CPl· At cpi e.g. 6.0"1 > 5j (cpi), so the profile pair j is already in con­
tact and profile pair j + 1 did not enter into contact. whilst at .6.0"2. being 
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~(}2 > 5] ('PI)' ~(}2 > 5j +1 ('Pi). both are in contact. The contact ratio. 
interpreted on geometrical bases, is not applicable for the following of this 
phenomenon. However. introducing the reaL load dependent contact ratio 
': r, by t he following defi nition: 

(7) 

where <P is an arbitrary angular interval on 'P). and 1j is an indicator func-
tion: 

1 (- .\()) .1\,-").- { 6 
if ~(}>5j('Pl)' 
if ~(}::; 5j ('Pd. (8) 

one can calcil!aTe the average number of teeth. being in contact at any ~(). 
i.e. at any load. Fy lb . 

. ';'2. Excitation Properties 

Since the contact conditions for profile with tip relief are load dependent. it 
is straightforward, that stiffness functions and reduced stiffness functions. 
the latter being responsible for the excitation. are load dependent. too. 
Fig. 8 represents the stiffness and reduced stiffness functions. 5('Pl: ~()) and 
s( 'PI: ~(}). respectively, for the case of non-linear single tooth pair stiffness 
charaneristic. WBHh:p. For case of \YBlin. the curve shapes are similar. 

The main Fourier components C~ c;.jeo of the excitation functions 
on Fig. 9 reflect its strong \'ariation. (The continuous lines are applied only 
for t he sake of t he better \'jsualisa tion.) 

{3, Resonance Curves 

Fig, 11 represents the resonance curves for profiles with tip relief in the case 
of t\\'o different single tooth pair stiffness characteristics. One can detect the 
strong nonlinear behaviour as the nominal load varies and the important 
differences related to the resonance curves on Fig. 6, for normal profiles. 
The general shape of the curves is similar for both stiffness cases. however, 
the dynamic load values at individual operation points differ considerably, 

Especially for the linear single tooth pair stiffness characteristic case, 
at specific load Fylb = 200 :\'/mm and lower, the tooth flanks separate 
practically on the whole region, In both cases. the main resonance regions 
are displaced towards the lower input speed values. At small load le\'els. the 
unstable regions belonging to different.\' or IV- values do not separate in a 
clear manner. 
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the \"ibration amplitudes increaooe. the h of the in:ervab \\'ith-
out contact (tooth flank separation) increase, too. consequently the ([,"crage 
stiffness oC the system \\'hich develops during the vibration decreases, In 
spite of that. the main resonance region at Fs/b = :3.50 \" , OIlC can 
find a non-linear resonance of hardening type. In that case. the' increasing 
\"ibration amplitudes arri\'e in greater stiffness regions. and fall c!O\\"n after. 
In other unstable region::: normal curw shapes de\'e!op. 
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\Yith increasing specific loads Fy/b, the \'ibrations, i.e. the dvnamic 
force elevations tend t~ smooth, and' optimum region can be identified at 
about Fy 700 \,imm for \VBlin, and Fy/b 500 \'/mm for \\,BHEp. 
These values are in e:ood agreenwnt \\'ith the location of the optimum founel 
with quasi sta0c rolling elm\'!1 At higher specific loads, onl~" the main 

resonance at S = 1 becomes important. on other regions the \'ibrations 
remain reduced. 

Comparing this beha\"iour to that \\"ith normal toothing, important 
differences can be stated. At lower specific loads, the dynamic behaviour 
of gears with relief is strongl~; unfavourable, whilst at higher loads, optimal 
load interval can be found. 

As consequence, one can resume that the dynamic behaviour of gears 
\\'ith long tooth tip relief differs considerably from that with normal one. 
Strong non-linear behaviour develops and optimum region can be identified. 
The influence of the single tooth pair stiffness characteristic has important 
influence on the dynamic behaviour and the location of the optimal region. 
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Fig. 10. Variation of real contact ratio and gear engagement stiffness in the func­
tion of the specific load 

5. Analysis of the Vibrations at Lower Specific Load Values 

As the resonance curws in Fig. 11 at lower specific load levels indicate, the 
individual resonance regions fall together, resulting quite important dynamic 
factors and tooth flank separations on important input seed interval. For 
the more detailed analysis of these vibrations. real tooth load functions were 
generated. permitting the study of the contact conditions on the teeth. At 
some constant input speed value, continuous rolling down \vas simulated at 
load level Fs/b ·50 .\)mm and tooth contact force dynamic factors by 
Eq. (6), and single tooth force dynamic factors Vdyd = (FYj/b)/(Fy/b) 
for the individual tooth pairs were generated. On Fig. 12 at each input 
speed, the upper curve is the total contact force dynamic factor variation 
during engagement and the curves below are the contact force dynamic 
factor variations for the single tooth pairs. In some cases only one tooth 
pair contact de\·elops. consequently one curve is sufficient. The marking on 
the upper diagrams corresponds to the pitch points. 

In all cases. the length of the represented angular interval yl is equal 
to the real vibration period. 

Based on the curves \VBlin. the following can be concluded: 

at nl = 180/min. the period of the response vibration is the triple of 
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Fig. 12. Contact force and single tooth force dynamic factors at given constant 
input speeds, for two different single tooth pair stiffness values 
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the period of the excitation (being equal to the period of one pitch 
length) and limited tooth flank separation zones develop. 

- at nl :::: 320/min. one can find a double period response vibration, 
,vith important tooth flank separation zones, 

- at nl :::: 600/min, the period of the vibration equals the period of the 
excitation and there is only one tooth pair contact, around the pitch 
circle, so the length of angular intervals with zero force (tooth flank 
separation) are important, 
at nl :::: 900. 1200/min. the basic vibration shape remains similar. with 
increasing one tooth pair contact zones. 

For the non-linear single tooth pair stiffness case, \VBHKp, similar re­
sponse vibrations are found. however. the contact force elevations are con­
sid'erably red uced. 

As it was seen on ::-esonance curves of Fig. 11 at low load level, the 
real unstable regions displace to smaller speeds and do not correspond of 
the theoretical N values. The reason of that is the development of the 
tooth flank separations' on more or less long angular intervals, leading to 
the softening of the system. i.e. with 'contact intervals' without contact, so 
with zero stiffness. 

Based on the contact force functions on Fig. 12, one can identify the 
real stiffness values of the system at each contact point, with zero stiffness 
on the zero load intervals. Determining the integral mean on one vibration 
period of the 'realised stiffness function', one can find a more softer system, 
as it should be without tooth flank separations, i.e. with tooth contact 
during the whole vibration. 

Table 1 contains for the two stiffness cases at the given speeds, the 'real' 
gear engagement stiffness c~" and the input speeds n~s' which introduces the 
excitation involving the main resonance, i.e. the resonance to N :::: 1. 

Table 1. Tooth engagement spring stiffness values and input speeds to N = 1 

WBlin 
I 

WBHKp 
nl 2.1 

-I -I -I n ls n ls n ls 

[l/min) [N/mm 'f1mm) [l/min] [N/mm 'f1mm) [l/min) 
180 11.54 866 8.24 702 
310 - 5.87 593 
320 8.84 727 
600 5.04727 549.4 -

900 8.84 727 4.19 500 
1100 - 7.17 655 
1200 11.7 837 - -
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Fig. 13 represents the excitation frequency values corresponding to 
the resonance at N = 1, expressed in input speed n~s' in the function of 
the in pu t speed nl. On the diagram. there are mar ked the different vth 
order resonances to different kth order Fourier components of the excita­
tion function, which fall together. see chapter 2.2., Eqs (3), (4), (.5). The 
thin line is the line, where Tills = nl . The intersection of this latter with 
the curves indicates the input speeds, which are just the speeds. involving 
excitation frequencies to the main resonance, at :Y = 1. This permits us to 
identify approximately the resonance order of the different peak values on 
the resonance curves. i.e. which S' value can be attributed to them. 
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Fig. 13. Resonance frequencies expressed in pinion speed versus pinion speed 

Based on Fig, 13 and the resonance curves on Fig, J 1. Fs/b = 
.50 :\'/mm, the following can be concluded. for the case \YBlin: 

- at input speed interval IS0/min < n] <320/min the resonailces corre-

sponding to S: = 1/4, 1/3 develop. _ 
on interval 320/min < nl <600/min the resonances at _Y = 1/2. 1 are 
overrun, but the two unstable regions do not separate, 
at speeds nl >600/min the system is in overcritical region. and the 
resonance at nl = 14.50/min is the overcritical one. with v(l) 1. 
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Similar conclusion can be drawn for the case WBHKp. 

6. Conclusions 

The simulation results of gear trains with normal involute profiles and \\'ith 
toothing with tooth tip relief presented in this paper have shown that even 
in the case of ideal tooth geometry. but with considering real mesh, i.e. 
taken into consideration of mesh irregularities due to tooth deflections at 
the beginning and end points of contact. non-linear system beha\'iour itself. 
as a result of kinematic excitation. In the case of profiles with tip relief. 
strong load dependent behaviour was found, \\"ith important vibrations at 
low load levels and tooth flank separations on broad speed intervals. The 
analysis of the vibrations at )0\\' load levels has shuwn that resonance regions 
move to lower input speeds and more resonance regions fall together. The 
results have shown that the single tooth pair stiffness characteristics have 
important effect on vibration characteristics. 

In case of complex gear train dynamic simulations, the real tooth ge­
ometry parameters and mesh conditions. as components of the kinematic 
excitation. and real single tooth pair spring stiffness characteristics are to 
apply. for arriving to more realistic system response results. 
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