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Abstract

The tooth tip relief. as an intended departure from the normal involute profile is a common
technics for the improvement of tooth contact characteristics. [t is often used not only
for avoiding tip contact, but especially in the case of long relief, to aim &: better dynamic
behaviour. For studying the dynamic characteristics of gear trains in the case of long
relief, comparative computer simulations were carried out for a train with normal Loothmg
and with tooth tip relief. The applied dvnamical model and excitation characteristics
are discussed. By simulating smooth acceleration processes at different nominal load
conditions, resonance curves are generated and analysed in the case of ideal tooth geometry
under real mesh conditions, i.e. the mesh irregularities at the beginning and points of
contact, due to tooth deflections were taken into account. Dynamic behaviour at low
specific load level is studied based on steady state rolling down simulations and resonance
characteristics are discussed.

Keywords: gear train, tooth tip relief, gear dynamics, non-linear vibration, simulation.

1. Introduction

The vehicle transmissions in operation are subjected in general to randomly
variable load conditions, characterised by considerable variations even in the
load amplitude and in the frequency range. Tooth profile modifications in
height direction, as the long tooth relief, see for example in [1], [2], which
can improve considerably the tooth dynamic behaviour in a relatively nar-
row load range, are often used in vehicle transmissions, too. However, the
operating load range is normally broader than the region, where the effect
of the relief is optimum. Consequently, special care must be taken for the
correct choice of the tip relief values and their height.

On Fig. 1. four successive positions of the same profile pair are shown
on the pressure line for teeth with long relief. The points 4 and E are
the beginning and end points of contact with normal profiles and AD =
BE = KAy = Ay M = py. Point Ay is the beginning, Ay is the end point
of contact of the normal involute profile of gears 1 (upper) and 2, on the
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diameters dj; o respectively, py is the pitch on the base circle. The upper
profile sections with thin line are the eliminated involute sections, Cy; 5 are
the relief values, respectively.

Considering the pinion and wheel in positions belonging to the normal
profile, there is no contact in position at point A, because of the tip relief
on wheel 1, but the foregoing profile pair at point D is in normal contact.
In contact position at point K, the foregoing profile pair leaves just the
contact. consequently on K A;;, contact is only possible by rotating back
gear 1. At position in point 4;, the original profiles are in contact. as for
the gears with normal profile and that remains up to the position in point
App. Passing Ay because of the relief on gear 2, contact is possible only
with rotating back gear 1. being the succeeding profile pair in the interval
KApn. In contact at point M, the succeeding profile pair enters in normal
contact. So. on intervals K 4;; and A;p M. contact is possible only with lag
of the gear behind its nominal position. In other words. the contact ratio is
less than one. introducing kinematic excitation.

Fig. 1. Tooth contact on the pressure line for teeth with tip relief




SIMULATION STUDY OF
2. The Dynamic Model
2.1. The Kinematic Ezcitation

For the simulation study a two mass system model is applied. with rotating
masses, coupled by a spring svstem, as it is schematically represented on
Fig. 2. The details of the spring system, replacing the real tooth contact,
are described in detail in [3].

In the system on Fig. 2. the cam symbolises the resultant kinematic
excitation, introduced by the tooth pairs, being in contact at a given contact
point. The kinematic excitation is introduced by mesh irregularities due to
the tooth deformations on one side, and profile relief and manufacturing
errors on the other side. Consequently, for gears with ideal geometry the
period of the kinematic excitation = 27 /z;, where z; is the number of
teeth of the pinion. For gears with manufacturing errors, € is the total
rotation angle of the driver, roliing down during the realisation of all possible
combinations of the profile pairs of the driver and the driven gear.

The description of the kinematic excitation can be conveniently han-
dled by the contact function, 6;(z1) see e.g. in [3], [4] which gives the travel
error of the driven gear, measured in length on the pressure line, at any
driver angular position ;. The subscript j refers to the jth tooth profile
pair combination.

Fig. 3a shows a series of contact functions for ideal normal gears,
whilst on Fig. 3b contact functions for profiles with tip relief are represented.
The curved parts at the 4 and E points symbolise the errors involved by
mesh irregularities at entering into and leaving the contact. Taking into
consideration the contact process on the pressure line discussed in Fig. I
and the fact that for profiles with long relief =, < 1, the 6(1) resultant
contact function has triangular shaped parts. where its value is not zero, see
Fig. 3b.

2.2. Basic Dynamic Behaviour

The differential equations for the two mass system in Fig. 2 are:

T+ SR (A6 = 8(20) § i - Sl Ao) - Ao =T,
Jj=1

TG+ 05T K (A6 = 65(0)) {2+ s - Sl Ad) - Ao = =Ty, (1)
=1

where ¢;5. ¢y, 12, are the twist angles of the masses and their time
derivatives, K; is the damping coefficient in the single tooth pair contact.




Fig. 2. Schematic two mass model. {J; » moments of inertia of the rotating masses,
z1,2 number of teeth, Ty » outer torques, 1 » twist angles, ry; o base circle
radii, s(i,) tooth contact stiffness function. Fy resultant contact force on
the pressure line. F. and Fp are the elastic and damping forces in contact.
K damping coefficient.)

Ao = w; + ¢; is the instantaneous travel error, composed from the w;
tooth deflection and ¢; contact function value for the tooth flanks actually
in mesh. and 5(p1; Ao) is the reduced stiffness function [4]. This latter

multiplied with Ac gives the actual elastic force, acting in the mesh. The
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Fig. 3. Contact functions for ideal profiles (a) and with tip relief (b)

reduced stiffness function contains all excitation components, so it can be
considered as the parametric excitation term in the system.

In general case, the reduced stiffness function can be written as the
sum of its Fourier components (. with the Cy average value as follows:
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where (I is the basic angular period of the reduced stiffness function, k is
the ordering number of the Fourier components, and v the phase angle.

One can distinguish the 8(:z1: Ao} stiffness function, which is the sum
of single tooth pair stiffnesses being actually in contact; consequently it
differs from the reduced stiffness function. The integral mean value (average)
of the stiffness function is called as gear engagement spring stiffness c,.
In the case of linear single tooth pair stiffness characteristic (i.e. force-
deflection curve at a given contact position) at each contact point and ideal
tooth geometry, its value is approximately constant. However, in the case
of toothing with tip relief or with manufacturing errors or/and with non-
linear single tooth pair stiffness characteristic , its value is load (i.e. Ao)
dependent and will be marked as ¢,.

The system of Eq. (1) with the excitation term (2) describes a rheo-
nonlinear tvpe vibration [5].

The basic vibration properties of such tvpe of vibrations for one mass
system with harmonic excitation can be studied by applying the stability
chart, see ex. [5].
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Assuming ideal tooth geometry, without manufacturing error, the tooth
frequencx f:=z1-ny = 21w /2%, g1 = wy-t, where w; and n; are the input
angular frequency and rotation speed, respectively, the period of the excita-
tion Q = 27/z; and the tooth angular frequency w. = zy -. being the basic

excitation angular frequency. The system eigenfrequency. w, = \//cﬁy,/m, see

ex. [5], [2] where m is the reduced mass of the one-mass system. As it is
known from the stability chart, unstable, or resonance points develop, if

w? v\ ? ‘
%2:<—> v=1 2 ... (3)

Rearranging Eg. (3), unstable vibration develops, if the excitation frequency.
: = 2w, /v. Fig. 4 shows schematically the resonance curve for such a
vstemn with damping. on the tooth angular frequency with the vibration
amplitude ratio Ao/ Aos:e: on the vertical axis.
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Fig. 4. Schematic resonance curve

Considering a complex excitation function with harmonic components
of k=1.2...., 0c, the angular frequency of the k-th harmonic components
will be w. - k. Replacing this value in Eq. (3) as excitation frequency, rear-
ranging the equation and introducing w. <1/(k)>, as the tooth frequency at
which the v-th order resonance point of the kth order harmonic excitation
component develops, one can write:

w(u(')>:]2w; k=12, ....0c, v=1 2, ..., . (4
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From Eg. (4), the following can be concluded:

- since k > 1, v > 1, unstable points develop only at excitation frequen-
cies equal to or less than 2wy,

— since k and v are whole numbers, their product will be whole, and in
turn, all whole numbers can be produced as the product of two whole
numbers, consequently each whole number can serve as divisor,

- one can find unstable point at each excitation frequency which is 2w,
divided with a whole number,

~ for all ¥") > 1. v > 1 with k - v =const.. the resonance points are at
the same excitation frequency.

However, in the presence of damping, as it is in practice, the higher
order unstable points tend to lose of importance.

In the gearing technics, a dimensionless frequency ratio number N is
introduced [2]. for the marking of the different resonance points. as follows:

N =

so unstable resonance points can develop at N = 2, 1, 2/3, 1/2, .... The
resonance at N = 1 is called as main resonance point. For cases, in which
the average stiffness ¢, is load dependent, the frequency ratio depends on

the load, too, so in that case the symbol N will be applied.

3. System Behaviour of Gear Trains with Normal Toothing

For studying the system behaviour, an electric locomotive main drive train
is applied, with the following basic parameters: z; = 53, z, = 63, m = 12.
The pinion and gear are constructed as hub, web and rim, which involves a
decrease of the theoretical tooth stiffness, see ex. [6]. Two stiffness variants
were applied, one with the theoretical stiffnesses by Weber — Banaschek
[2] with linear single tooth pair stiffness function characteristic, coded as
WBIin, and the other with taking into consideration the rim influence by [6]
and with non-linear single tooth pair stiffness characteristic by [7], coded as
WBHKp.

For characterising the system behaviour, continuous rolling down pro-
cesses by smooth acceleration were simulated and the tooth contact force
dynamic factor Vy was calculated:

Ve =max{Ve(e1)}: Vele) = —F%— (6)
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where F\/b is the total nominal specific load in contact. {dne to the nominal
outer load). Fyv /bis the real, dvnamical load on the jth profile pair, n being
the number of teeth in contact. and ~ is the rotational angle of the pinion.
corresponding to one tooth mesh.

On Fig. 5 stiffness and reduced stiffness functions are shown, with
the corresponding contact functions for gear train with normal profile. Ex-
pressed load dependence is caused by the mesh irregularities and the begin-
ning and end points of contact due to the elastic tooth deflections and bv the
non-linear single tooth pair stiffness characteristic [7]. coded as WBHKp.

Fig. 6 represents the resonance curves for different specific load values.
On Fig. 6a, small damping coefficient is applied with backlash &, allowing
the development of the resonance points. For N =1, 1/2. 1/3 and 1/4 the
tooth flanks separate (where Vs = 0). and non-linear resonance develops.
That is why their location is slightly lower as it is previewed by the marked .V
values. On Fig. 6b, ¢. d normal damping is applied for case WBlin, resulting
considerably lower load elevations in the resonance points. However, at
N =1and 1/2, and at low specific load value. tooth flank separation occurs.
involving the decrease of the resonance pick location.
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At higher loads regular resonance locations develop, without tooth
flank separation. One can state that at increasing load. the dynamic forces
tend to decrease slightly, in agreeme 1 experimental results. The gen-
eral vibration :hape Chang s onh sh

On Fig. Ge, f the same systenlis represented, with lower single tooth
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stiffness values and non-linear single tooth pair stiffness characteristic by
Fig. 5. The general vibration shape remains similar, however, the resonance
points move towards the lower input speeds. The reason of that is the smaller
average stiffness. The difference between the theoretical .V location and the
real one can be explained by the fact that the beginning part of the single
tooth pair stiffness function is progressive, with lower stiffnesses [7] and this
is not taken into consideration in the calculation of N, determined with c¢..
Since the single tooth pair stiffness characteristics at fixed contact positions
are not linear, expressed load dependence can be found on the resonance
curves. see Fig. fe and f.

Considering the curves on Fig. 6. in the case of linear single tooth
pair stiffness characteristic. slight load dependence of the vibration shape
and slight dynamic factor variation presents itself at different nominal loads,
which is the result of the mesh irregularities at the points A, i.e. entering
into, and E, i.e. leaving the contact of a given profile pair. For non-linear
single tooth pair stiffness function, differences can be found even for vibra-
tion shape and dynamic factors.

4, Systern Behaviour of Gear Trains with Profile Relief
4.1. Contact Properiies in the Case of Profiles with Tip Relief
In the case of tip relief, the number of tooth pairs in contact varies not only

in the function of contact position, but it depends on the applied load as
well. Let us consider the contact applying the contact functions, Fig. 7.

P
O \
b 5;(‘?1} 5;41{(?1;

Agﬁ ,ﬁ%k :a\%x

JAN:P ><\

L 1 !

B A Ejaljw EjAp2 O

Fig. 7. Contact analysis based on contact funciions

Assuming a given travel error due to a given load Ag; =const. and
Ay > Aoy, one can detect the number of teeth in contact at any position
e1. At 7 eg. Aoy > 4;(¢7), so the profile pair j is already in con-
tact and profile pair 7 + 1 did not enter into contact, whilst at Aoy, being
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Aoy > 6;(e7), Aoz > ;41 (7). both are in contact. The contact ratio,
interpreted on geometrical bases, is not applicable for the following of this
phenomenon. However, introducing the real. load dependent contact ratio
z;. bv the following definition:

e(Aa) = = Z [ Lo = 1. (7)
7“1 @
where @ is an arbitrary angular interval on ;. and /; is an indicator func-

tion:
) 1 if Ao > FJ'(“,Jl), :
lilenAg) = { 0 if Ao <difgy), (

o

one can calculate the average number of teeth, being in contact at any Ao,
l.e. at any load. F/b.

Excitation Froperties

Since the contact conditions for profile with tip relief are load dependent, it
is straightforward, that stiffness functions and reduced stiffness functions,
the latter being re<pon81ble for the excitation. are load dependent. too.
Fig. 8 represents the stiffness and reduced stiffness functions, s(¢: Ao) and
517 Ao), respectively, for the case of non-linear single tooth pair stiffness
characteristic, WBHKp. For case of WBIin, the curve shapes are similar.

The main Fourier components C = C/Cp of the excitation functions
on Fig. 9 reflect its strong variation. (Thp continuous lines are apphed only
for the sake of the better visualisation. )

4.3. Resonance Curves

Fig. 11 represents the resonance curves for profiles with tip relief in the case
of two different single tooth pair stiffness characteristics. One can detect the
strong nonlinear heha\lour as the nominal load varies and the important
d1ffelences related to the resonance curves on Fig. 6, for normal profiles.
The general shape of the curves is similar for both stiffness cases. however,
the dynamic load values at individual operation points differ considerably

Especially for the linear single tooth pair stiffness characteristic case,
at specific load Fy/b = 200 N/mm and lower, the tooth flanks separate
practically on the whole region. In both cases. the main resonance regions
are displaced towards the lower input speed vealues. At small load levels, the
unstable regions belonging to different N or N values do not separate in a
clear manner.
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With increasing specific loads Fi /b, the vibrations, i.e. the dvnamic
force elevations tend to smooth. and optimum region can be identified at
about Fx /b= 700 N/mm for WBIin, and Fx /b =500 N/mm for WBHKp.
These values are in good agreement with the location of the optimum found
with quasi static rolling down [4]. At higher specific loads, only the main
resonance at N = ] becomes important, on other regions the vibrations
remain reduced.

Comparing this behaviour to that with normal toothing, important
differences can be stated. At lower specific loads. the dyvnamic behaviour
of gears with relief is strongly unfavourable, whilst at higher loads, optimal
load interval can be found.

As consequence, one can resume that the dynamic behaviour of gears
with long tooth tip relief differs considerably from that with normal one.
Strong non-linear behaviour develops and optimum region can be identified.
The influence of the single tooth pair stiffness characteristic has important
influence on the dynamic behaviour and the location of the optimal region.
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5. Analysis of the Vibrations at Lower Specific Load Values

As the resonance curves in Fig. 11 at lower specific load levels indicate, the
individual resonance regions fall together, resulting quite important dyvnamic
factors and tooth flank separations on important input seed interval. For
the more detailed analvsis of these vibrations. real tooth load functions were
generated, permitting the study of the contact conditions on the teeth. At
some constant input speed value. continuous rolling down was simulated at
load level Fy/b = 50 N/mm and tooth contact force dynamic factors by
Eq. (6). and single tooth force dynamic factors Vg(y1) = (Fxj/b)/(Fn/b)
for the individual tooth pairs were generated. On Fig. 12 at each input
speed, the upper curve is the total contact force dvnamic factor variation
during engagement and the curves below are the contact force dynamic
factor variations for the single tooth pairs. In some cases only one tooth
pair contact develops, consequently one curve is sufficient. The marking on
the upper diagrams corresponds to the pitch points.

In all cases. the length of the represented angular interval ¢, is equal
to the real vibration period.

Based on the curves WBIin. the following can be concluded:

~ at n; = 180/min, the period of the response vibration is the triple of
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the period of the excitation (being equal to the period of one pitch
length) and limited tooth flank separation zones develop,

- at ny = 320/min, one can find a double period response vibration,
with important tooth flank separation zones,

- at ny; = 600/min, the period of the vibration equals the period of the
excitation and there is only one tooth pair contact, around the pitch
circle, so the length of angular intervals with zero force (tooth flank
separation) are important,

- atn; = 900. 1200/min, the basic vibration shape remains similar, with
increasing one tooth pair contact zones.

For the non-linear single tooth pair stiffness case, WBHKp. similar re-
sponse vibrations are found, however, the contact force elevations are con-
siderably reduced.

As it was seen on resonance curves of Fig. 11 at low load level, the
real unstable regions displace to smaller speeds and do not correspond of
the theoretical N values. The reason of that is the development of the
tooth flank separations on more or less long angular intervals, leading to
the softening of the system, i.e. with ’contact intervals’ without contact, so
with zero stiffness.

Based on the contact force functions on Fig. 12, one can identify the
real stiffness values of the system at each contact point, with zero stiffness
on the zero load intervals. Determining the integral mean on one vibration
period of the 'realised stiffness function’, one can find a more softer system,
as it should be without tooth flank separations, i.e. with tooth contact
during the whole vibration.

Table 1 contains for the two stiffness cases at the given speeds, the real’
gear engagement stiffness ¢, and the input speeds 7}, which introduces the
excitation involving the main resonance, i.e. the resonance to N = 1.

Table 1. Tooth engagement spring stiffness values and input speeds to ¥ =1

WBIin WBHKp
(1/min] | [N/mm -pmm)] | [1/min] | [N/mm -gmm] | [1/min]
180 11.54 866 8.24 702
310 - - 5.87 293
320 8.84 27 - -
600 5.04727 549.4 - -
900 8.84 727 4.19 500
1100 - - 7.7 655
1200 11.7 837 -
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Fig. 13 represents the excitation frequency values corresponding to
the resonance at N = 1, expressed in input speed 7., in the function of
the input speed n;. On the diagram, there are marked the different vth
order resonances to different kth order Fourier components of the excita-
tion function, which fall together, see chapter 2.2., Egs (3). (4}, (5). The
thin line is the line, where 7}, = n; . The intersection of this latter with
the curves indicates the input speeds, which are just the speeds, involving
excitation frequencies to the main resonance, at N = 1. This permits us to
identify approximately the resonance order of the different peak values on
the resonance curves. i.e. which N value can be attributed to them.

Mg 4lF/p] F,/b=50 N/mm
900~ = WBlin

s0r ““"\’“"BH //] k
By
Jv

(k L (N=1]2)

{
\Y)

211
(N=1/3)
2 1316
31211
(N =1/}
2 {418
L1271

200 400 600 800 1000 1200  ny{1/min]

Fig. 13. Resonance frequencies expressed in pinion speed versus pinion spead

Based on Fig. 13 and the resonance curves on Fig. [I. Fy/b =
50 N/mm, the following can be concluded. for the case WBlin:

- atinput speed interval 180/min < n; <320/min the resonances corre-
sponding to N= 1/4,1/3 develop.

- on interval 320/m1n < ny <600/min the resonances at N=1/2.1are

overrun, but the two unstable regions do not separate,
— at speeds n; >600/min the <xstem is in overcritical recﬂon and the

resonance at n; = 1430/min is the overcritical one, with v{1) = 1.
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¢

Similar conclusion can be drawn for the case WBHKp.

6. Conclusions

The simulation results of gear trains with normal involute profiles and with
toothing with tooth tip relief presented in this paper have shown that even
in the case of ideal tooth geometry, but with considering real mesh, i.e.
taken into consideration of mesh irregularities due to tooth deflections at
the beginning and end points of contact. non-linear system behaviour itself.
as a result of kinematic excitation. In the case of profiles with tip relief,
strong load dependent behaviour was found, with important vibrations at
low load levels and tooth flank separations on broad speed intervals. The
analysis of the vibrations at low load levels has shown that resonance regions
move to lower input speeds and more resonance regions fall together. The
results have shown that the single tooth pair stiffness characteristics have
important effect on vibration characteristics.

In case of complex gear train dynamic simulations, the real tooth ge-
ometry parameters and mesh conditions, as components of the kinematic
excitation, and real single tooth pair spring stiffness characteristics are to
apply, for arriving to more realistic system respouse results.
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