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Abstract

In the dynamic analysis and design of vehicles the behaviour of suspensions and tyres
bevond the linear range is often interesting. In order to get acceptable responses it is
necessary to apply large mechanical models with many degrees of freedom. In this paper
a computational method and a computer program. developed for the dynamic analysis
of elastic systems containing local non-linearities are presented. The applicability of this
method and program Is demonstrated by numerical experiments using a 648 degrees of
freedom flat-bed truck finite element model.

Keywords: nonlinear analysis, vehicle dynamics, modal analysis, modal condensation,
transient vibrations
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1. Introduction

Nowadays, in the design or research of mobile machines and dynamically ex-
cited structures. besides experiments, the different numerical computational
methods provide efficient tools. However. the solution of most large-scale
(non-linearj dynamic structural problems is usually extremely time consum-
ing. Therefore. in latest decades, considerable efforts have been made in the
application and development of numerical methods, to increase their accu-
racy and speed of computation. For this type of problems the modal time
history analysis. combined with modal condensation, seems to bhe as a suc-
cessful way. where the local non-linearities are considered as pseudo forces
(1. 12, [3]

The dynaniic behaviour of road and off-road vehicles (cars, buses,
trucks, cross country cars, agriculture vehicles, etc.) can be mentioned as
typical examples for the previously discussed dynamical problems in case of
certain driving conditions. For example, passing over road defects (bulge,
hole) or driving on roads of wrong quality. In these cases the non-linear
.properties of vehicles may not be neglected.

With regard to preliminaries, in this paper. a computational proce-
dure and a computer program is presented, developed for non-linear dy-
namic analysis of large elastic systems with local non-linearities. As it was
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mentioned above, the pseudo force method is applied to the calculation of
internal forces that arise from the effects of local non-linearities [4]. From
the point of view of practical applications. the elaboration of large mechan-
ical (usually finite element) models can give rise to significant difficulties.
Recently the use of commercial finite element programs seems to be the
only reasonable way. In order to utilise this advantage of commercial finite
element programs, the developed procedure consists of two phases. In the
first phase, the linearized and undamped finite element model of the given
structure can be elaborated, using any commercial finite element program.
Great advantage of this way is that the required natural modes (natural fre-
quencies and \ectom) can be determined by these programs. Then, in the
second phase, having considered the local non-linearities (springs, dampers.
gaps, etc.) the dynamic analysis can be carried out.

To verify the applicability and efficiency of the developed method and
computer program, using a flat-bed truck finite element model (with 648 de-
grees of freedom), numerical e\periments are presented The accuracy of the

Iaborated computer program in comparison with COSMOS/M finite ele-
ment program will be demonstrated.

2. Mathematical Formulation
Assume that the dynamic equilibrium equation of the studied structure is

described by n pieces of coupled second order ordinary differential equations,
as follows,

M} + [KH{x} = {F()} + {N ({x}. {x}.{=})} . (1

where:
M] = mass matrix,
K] = stiffness matrix of the linear part of the structure,
F} = vector of time varying forces and kinematic excitations
applied on the structure,
N} = pseudoforce vector of non-linear internal forces,
t) generalized displacement vector,

generalized velocity vector,
generalized acceleration vector,
= time.
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Mode shapes. for modal time history analysis. are calculated from the
left side of Eq. (1) in the next form,

(Al - [M)UK]) {@:) = {0}, (2)
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where
[M]“l = inverse of mass matrix,
1] = identity matrix.
{@ } = i-th natural vector,
= i-th natural value,
{0} = zero vector.

If the natural vectors are normalized to mass matrix, then natural
values are the square of the corresponding natural frequency. The natural
vectors as column vectors can be arranged, according to the ascending order
of natural values. into the matrix ®[ called the modal matrix. Modal
displacement. velocity and acceleration vectors can be defined as.

x} = [@){a). (3-2)
x5 =[®|{a}, (3-b)
%} =[e|{a}. (3-c)
where {q}, {¢} and {§} are ‘Lhe modal displacement, velocity and accel-
eration vectors, respectiveh Substituting Egs (3.2 — ¢} into Eq. (1}, then

premultiplying by [®]7. the transpose of ,@1 we get,
@] M@} + (@) [K][®}{ba} = [8)7 ({F} + {N}). (4)

where [®]7]M][®@] is the n x n identity matrix, and matrix [®]T[M[®] is
a diagonal one and its diagonal elements are equal to the square of the
corresponding natural frequencies. Thus the modal differential equations
can be written as,
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where subscripts ¢ and j are the indices of the elements of previously ap-
plied matrices and vectors. When only the first m (m > n) pieces of modal
differential equations are applied for dynamic analysis, the amount of com-
putational time can significantly be reduced into an acceptable practical
range (modal condensatlon). Modal and Rayleich damping can addition-
ally be included into Eq. (5).

3. On the Developed Computer Program

On the basis of previous relationships an algorithm has been elaborated and
a computer program, called MODANAL, has been coded in MICROSOFT
FORTRAN V.03. This program contains approximately 1200 FORTRAN
statements.
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As it was mentioned above, the complete, modelling and computa-
tional, process is divided into two phases. In the first phase the elaboration
of the (undamped) linearized finite element model and its mode shape cal-
culation can be carried out by the use of an appropriate commercial finite
element program. Thereafter. in the second phase, having utilized data and
results from the first phase and having prepared the additional data, con-
cerning to the description of local non-linearities and external excitations,
the non-linear dynamic analysis can be performed by the developed com-
puter program. This program uses six input files, three output files and
seven temporary files. detailed below.

Input files.

~n

- file 1o store control parameters, description of non-linear characteris-
tics and the specification of required output,

- file to store natural frequencies and vectors involving into the non-
linear analysis (extracted from the output file of the applied commer-
cial finite element program),

— file to store mass data of the whole model to the calculation of inertial
forces (extracted from the input data file of the applied commercial
finite element program),

- file to store initial displacements and velocities (initial displacements
can be calculated. for example, bv static analysis of the linearized finite
element model, carried out by the applied commercial finite element
programj,

~ file to store kinematic excitations.

— file to store external forces and moments.

Output files.

- file to store required displacements.
- file to store required velocities,
- file to store required accelerations.

To the numerical step by step solution Hamming’s predictor-corrector
method is applied. The characteristics of local non-linearities are described
by piecewise linear functions. as it is usual in finite element programs.

4. Description of the Applied Truck Model

In order to demonstrate the applicability and effectiveness of the discussed
computational procedure and the related computer program. a simple flat-
bed truck model has been elaborated. making use of COSMOS/M com-
mercial finite element program (Fig. {). In the suspension sets leaf springs
are applied and their elasticity is considered at the extremities of the leal
springs, while the dampers {in suspensions) are positioned at the midpoint
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of the rigid spring arms, just above the truck axles. In Fig. 1, the damper
and springs of the right hand side front suspension are shown up with short
thick lines. The elasticity and damping of each tvre is represented by three
springs and (viscous) dampers positioned in longitudinal, lateral and verti-
cal directions. Linearized and non-linear suspension spring characteristic are
shown in Fig. 2, where the non-linear sections of spring characteristic rep-
resent the upper and lower bumpers which limit the stroke of suspensions.
The non-linear spring characteristic is shifted along the linear one, in ac-
cordance with the initial displacements arising from pavload and the weight
of the truck. Similarly, the linearized and non-linear suspension damper
characrteristics are represented in Fig. 3. The linearization of the non-linear
damper is based on manufacturer’s data, and both of them absorb the same
kinetic energy in case of the prescribed frequency and stroke (1.67 Hz and
100 mm strokej. Anti-roll torsion bar (stabilizer) is built in between the

chassis and rear axle.
[ Node: 25

Node: 92 ] N[ Node 99

Fig. 1. Skeleton structure of the studied truck

Finite element model data:

Total number of nodes: 125
Number of degrees of freedom: 648
Total number of beam elements: 159
Total number of mass elements: 51
Total number of non-linear spring elements: 12
Total number of linear spring elements: 8
Total number of non-linear damper elements: 4
Total number of linear damper elements: 8
Total mass (payload is included): 13751kg

[t is necessary to emphasize that this truck model has been developed for ver-
tical excitation (its velocity is assumed to be constant during the analysis),
only to demonstrate the applicability and effectiveness of the computational
method and computer program presented here. In this truck finite element
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Fig. 3. Damper characteristics (in suspensions)

model, there can be found such kinds of simplifications which practically do
not affect disadvantageously on the following demonstrations. however, they
may not be applied in most cases in the dvnamic analysis of actual struc-
tures. For example, the finite element model of the truck is not detailed
enough for strength calculation, payload is connected to nodes. structural
damping is considered roughly by Rayleigh damping (only to avoid the un-
desirable fictitious resonance because of the lack of internal damping), etc.
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5. Verification of the Applied Method

The accuracy of the developed computer program was comprehensively in-
vestigated earlier. Herein a comparison is made between the presented com-
puter program and COSMOS/M. For this purpose steady state harmonic
force excitations are applied, in vertical direction. at the extremities of the
front axle, in case of linearized springs and damper characteristics. Zero
initial conditions. and no weight of the truck and payload, are applied. Am-
plitude of exciting forces is equal to 50000 N and their frequency is equal
to 9.5 Hz. Calculation is carried out between 0 and 12.5 seconds in 5000
steps. There can be seen, in Fig. 4. the vertical displacement response of
node No. 99 caiculated by COSMOS/M. The difference, for this node be-
tween the responses calculated by COSMOS/M and MODANAL. is shown
in Fig. 5 It can be seen from Figs 4/ - 5 that the relative difference between
the amplitude of these responses is no more than 0.45%, which is an ex-
cellent agreement. From computational aspect it is worth to mention that
for numerical solution in COSMOS/M Newark’s iterative method. while in
MODANAL a predictor-corrector method is applied.

Usual principle in vehicle structural dynamics is that it is enough to
apply the low natural modes up to 20 Hz. To confirm this principle the same
harmonic kinematic excitation is applied on both tyres of front wheels in
vertical direction. Its amplitude is 20 mm and its frequency. being propor-
tionate to time, is swept from 0 Hz to 20 Hz. The linearized and non-linear
response of node No. 25 (a structural point in chassis), for this sweeping
excitation, can be seen in Figs 6 ~ 7, respectively. These figures confirm
this reduction of the numbers of natural modes, since the amplitudes of
vibration above 6 Hz significantly decrease in the function of frequencies.
In correspondence with this principle, in this paper. the first thirty natu-
ral modes are applied for dynamic analysis. The magnitude of the highest
natural frequency is equal to 21.45 Hz.

6. Numerical Experiments
6.1. Passing through a Bulge

In this example the better damping properties of non-linear dampers, in
suspensions, compared to the linearized ones are demonstrated. For this
purpose, assume that a small bulge is in the perfectly smooth road surface,
positioned in lateral direction and described by a simple cosine function. Its
length is 1.5 m and its maximum height, in the middle, is equal to 25 mm.
In this case the spring deflections remain in linear range, therefore, the
linearized and non-linear dampers can be compared directly. The truck is
passing over this bulge with the speed of 72 km/h. Both, left and right,
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§.2. Driving on a Minor Road of Wrong Quality

In case of actual vehicles the stroke of suspensions is limited. which is taken
into consideration here by the highly non-linear parts of spring character-
istics (Fig. 2). When a vehicle is driving on a road of wrong quality, the
undercarriages can collide with the body of vehicle at both extreme posi-
tions of suspensions. In Fig. /0 there can be seen road profile realizations.
generated from a two dimensional isotropic power spectral density function
of road surface roughness [5], [6] .[7]. It is assumed that the truck is driving

on this road with a speed of 36 km/h. Initial displacements and the total
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Fig. 7. Nen-linear response of node No. 25 for sweeping excitation

weight of the truck are involved into the dvnamic analvsis. Time delay be-
tween the excitations of front and rear wheels is considered. In Fig. /1 there
can be seen the linearized and in Fig. /2 the non-linear vertical acceleration
of node No. 48 under the action of this excitation. Node No. 48 is the point
of attachment of one of the front springs in the right hand side suspension
above the front axis. The greater values in non-linear response (greater
lower and upper peaks) with respect to the linearized one, are arising from
the collisions of the front undercarriage to the chassis of the truck at both
extreme positions of this suspension. From Figs [1 - 12 it is clear that, in
this case. the linearized response is underestimated.

6.3. Demonstration of Wheel Bouncing

In order to illustrate the wheel bouncing, the total mass {(sum of the dead
mass and payload) of the truck is decreased from 13751 kg into 6696 kg and
its velocity is risen to 108 km/h. Total weight of the truck and the initial
displacements under the action of total weight are included in the analysis.
For the sake of better visualisation the roughness of the road surface is
neglected. In Fig. 13, there can be seen the applied ramp. Its upward-slope
portion is equal to 15 m and its downward-slope portion is equal to 30 m.
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[n the upward-slope portion. the gradient of left track is different from the
gradient of the right track. Therefore there are different vertical velocities
of the left and right hand side wheels at the top of the ramp, originating
a rotation of the truck along its longitudinal axis (rolling motion). Fig. 14
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Fig. 11. Linearized respense (acceleration} of node No. 48

shows the rotations of front and rear axles in radians. At the same time.
because of this rotation, there exists a lateral motion of different elements
of the truck. There can be seen in Fig. 15 the lateral motion of the centres
of the right hand side wheels.

in Fig. 16 the vertical position of node No. 80. connected to the road
surface by springs and dampers. is illustrated. Node No. 80 represents the
lowest point of the right hand side rear wheel disc. The thick piecewise
linear line in Fig. 16, symbolizes the right track, while the parallel thin
one represents the position of node No. 80 when the tyre is assumed to be
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Fig. 13. Ramp to demonstrate wheel bouncing

unloaded. The distance between the two piecewise linear lines illustrates
the vertical dimension of the unloaded tyre.

The curved line shows the vertical position of node No. 80 calculated
from its excited displacement while the truck is passed over the ramp. When
the curved line is below the thin piecewise linear line the wheel is in contact
with the surface of the ground (ramp), and when it is above this line the
wheel is bouncing. In Fig. 17, similarly to Fig. 16, the vertical position of
the lowest point of the left hand side rear wheel disc is shown.

The magnitude of bouncing of a given wheel can be determined if the
unloaded position of the lowest point of wheel disk is subtracted from its
excited vertical position at each step. When it is greater than zero the wheel
is bouncing. The magnitudes of the bounces of rear and front wheels are
demonstrated in Figs 18 — 19. In Fig. 18 there can be seen consecutive
bounces of the right hand side rear wheel. An interesting thing can be seen
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in Figs 18 - 19, fxamely each wheel is bouncing at the same time from 1.209 s
to 1.386 s, that is the truck is flying over the ramp 5.31 meters.
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7. Conclusions and Closing Remarks

The numerical experiments presented herein indicate the accuracy, effective-
ness and applicability of the presented computational procedure and com-
puter program, using in non-linear structural dynamic analysis. It is par-
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ticularly effective when the order of largest stiffness of local non-linearities
is not significantly higher than the order of stiffness of the linearized part of
the studied structure. Road and off road vehicles (cars, trucks, buses, cross-
country cars. agricultural vehicles, etc.) fall within this category. Numeri-
cal examples show that the discussed method is especially useful in case of
wrong driving conditions, such as. driving vehicles on minor roads of wrong
quality, or driving overland cars on terrain containing large irregularities.
The number of degrees of freedom of the applied truck finite element
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model, in this paper, is equal to 648 and the lower 30 natural modes were
- involved into the non-linear dynamic analysis, up to 20 Hz. The time period
of numerical solution phase. during 5000 steps, was equal to 123 seconds
which contain the time for binary output of modal variables in each step.
and the total solution time period was equal to 197 seconds. Since natural
modes depend on structural properties rather than the number of degrees
of freedom of the applied finite element model, the writer assumes that this
method, in vehicle dynamics, can be applied for significantly larger finite
element models in case of more thousands degrees of freedom. and probably
more than ten thousand ones. To support this assumption. the solution
time duration of a similar non-linear dynamic analvsis of a bus structure,
containing 1848 degrees of freedom, was equal to 162 seconds (the total
solution time was 281 seconds). In the analysis the lower 50 natural modes
were involved, up to 20 Hz, and the calculation was also carried out in
5000 steps [8].

In this paper. in all the numerical examples only vertical excitations
are applied, however. the model description and the directions of excitations
are not restricted in this method. consequently. it can also be applied for hor-
izontal dynamics of vehicles. Moreover, additional equations and conditions
of different mechanical effects can be attached easily to the modal equa-
tions, describing the vehicle motion. This possibility significantly enlarges
the fields of application of the method presented in this paper, for example,
the equations of breaking processes for simulation and to support the design
of brake systems (including optimal ABS (Anti-lock Brake System) control
strategies). Other important areas are: the simulation, the behaviour and
support the design of optimal active suspension systems, application in the
identification of vehicle parameters and, at last, numerical stability analysis
of vehicles subjected to complex driving and loading conditions.

A program module for the calculation of internal forces and stresses
can be built in the developed finite element program.
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