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Abstract 

The one-point contact problem roughly describing the rolling behaviour of wheels and 
the sliding behaviour of sleds was defined by Hertz, Cartheodory, Hamel and others. 
Extending this idea to a continuous field of contact points in a closed 2-dimensional 
domain produces the nonstationary field of tractrices in the contact area. One has to solve 
nonlinear partial first order differential equations or integral equations. Discretisation of 
the whole wheel in dynamic contact gives rise to a new method which is not based on 
finite element method. Measurements and computations of rolling wheels on a glass plate 
show that high frequency behaviour of the contact of wheels has to be taken into account 
to understand all phenomenas. 

Keywords: non-holonomic constraints, transport equations, friction, stability, rough con­
tact. 

1. Introduction 

The one-point contact problem roughly describing the rolling behaviour of 
wheels and the sliding behaviour of sleds was first solved by Hertz, later on 
by Caratheodory, Hamel, Neimark and Fuvaev and others. The analytical 
expression for a pure rolling condition is shown in Fig. 1 and because of 
the fact that the angle G: for rolling must be zero there exists a differential 
condition en . ds = 0 or 

- sinl/JdxI + cos 'lj;dYI + Od'lj; + Odt = 0 

and a rolling condition: 

dXI cos l/J + dYI sinl/J = Rdy , 

with the components to be seen from Fig. 1. 

dXI . 
-d = Xl = VRoll cos 11;, t .. 

dYI . 
dt = YI = VRcll sin 11;, 
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Yo 
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b) 
VRo!! = RSI 

Xo 
Fig. 1. Rolling wheel: fixed plane Xo, Yo, contact point Xl, YI, sliding velocity VG, 

rolling velocity VRoll, radius of wheel R, angular velocity [2, increments of 
moving dXl. dYl, en) unit vector of wheel axle, direction of wheel plane 
non-holonomic condition is Cl' 0 and VG = VRoll 

which is a 'Pfaff's' form. The heading angle .lj; is a free parameter and 
must not be chosen continuously in time. The two differentials dXl and dYl 
cannot be integrated because of the fact that the factors - sin 1jJ and cos1/; 
should hold the 

I condition I of integrability: 

d'f - 8 f d I 8 f d ..L 8 f d I + 8 f dt if ~ _ 8
2 f 

. - 8XlX1 T 8Yl Yl I 8,pW Ft . . . 8Xi8x] - 8x]8x i 

which obviously they do not (therefore it is called non-holonomic con­
strained condition). In analytical mechanics it was shown by Appel, Pfaff 
and Routh that such a condition can be used together with the equations of 
Newton. In the case of a skater-shoe which belongs to the same condition \,,'e 
get, see in Fig. 2, the following acceleration vector for the center of gravity: 

. ') 

ax Vx - WVy - w-a, 

ay Vy - wvx - wa . 

After some manipulations, see Appendix 1, we find the following condition 
for the heading angle lj; : ;p = w, 

w+Aw = 0, A = mavx 

Js + 

For the starting conditions that the velocity vx and ;p are also constant, 
the parameter a shows that there are two solutions possible. One solution 
is stable the other one unstable. If the center of gravity is in front of the 
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Fig. 2. Ice-skating shoe: moving plane x, y, contact point A, \veight of skater G, 
distance to C.G (=S) is a non-holonomic condition Vy = O. 

contact point the solution is stable. Otherwise the solution is unstable. 
In this case the motion of the system produces also singular points where 
the center of gravity is rotating around the contact point which is fixed a 
moment in the contact plane. From this behaviour one can conclude that 
every vehicle equipped with laterally not stiff front wheels and stiff rear 
wheels is stable (understeering). 

In reality wheels show a small amount of deformation ,vhen rolling 
forces laterally or longitudinally occur. In Pig. 3the lateral force is produced 
by a constant deformation y and linear increasing deformation of the profile 
elemef!ts along the contact length of a deformable wheel. B. v. SCHLIPPE 

and R. DIETRICH and also RIEKERT have shown that at the front of the 
contact area a non-holonomic rolling condition can be defined ,vith a heading 
angle .lj; relative to the plane of the wheel. Using the assumption that the 
deformation laterally of the leading point of contact is proportional to the 
created lateral force and it is also proportional to the heading angle "Il, we 
get the so-called 'relaxation length' L which marks a point on the x axis 
around which a simulated swiveling 'leading wheel' is rotating. Using the 
non-holonomic constraint equation for this leading wheel one can derive 
the differential equation of first order in time for the linear behaviour of the 
lateral force generation of the wheel (see Appendix 2). Today this differential 
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M 
h h 

. . v 
Fig. 3. Rolling lateral elastic wheel: moving plane X, y, contact length 2h, corner-

ing force S, cornering moment M, concerning angle J, swiveling angle 1/;, 

lateral global deformation y, entrance E, outlet A, local deformation at A 
is 2h1j;, relocation length is L, simple model, load slowly changing. 

a) b) 
Fig. 4. Two surfaces which can be flattened without deformation: a small pen­

etration of two elastic bodies produces small tangential deformation and 
can be added to the relative motion of the two planes, cone angle produces 
spin. 

equation is generally used in industry. It can be used also for longitudinal 
forces by aid of a shorter relaxation length. 

There are three statements which need to improve this equation: 

1. The area of contact has a deformation field perhaps with short wave­
length which is only poor approximated by linear increasing deforma~ 
tion with contact length. 

2. The real pressure distribution does not allow tangential forces bigger 
than the friction limit. 

3. Non-smooth surfaces need a discontinuous theory. 



Fig. 5. 
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I y moving system 

contact area --L-
A t--1 

Z: ... local deformation 

E = x - k 
equator - plane 

x 

rixed system Xo 

~---1j~ 

Rolling elastic wheel: global deformation k, local deformation A, fast 
changing contact area h = h(t), fast changing of J(t), v(t), w(t) and load, 
complex model 

x 

v 

h h 

contact 
\f!=w-r area 

Fig. 6. Stationary rolling of a deformable cylindrical surface: local deformations 
when the equator line (2) has no longitudinal slip 

2. Non-Holonomic Rolling Condition for 2-Dimensional Contact 

We begin with the first statement. The non-holonomic rolling condition 
in this contact area can now be formulated by the idea that we have t\VO 
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reference planes which are moving one on another. The basic plane xo, Yo 
is the road and the moving plane x, y is oriented by the intersection line 
of the wheel plane with the road plane. On this line is laying the idealized 
contact point LA, which is the intersection of the steepest descent line with 
the road plane. 

Looking for bodies and surfaces with small deformation in normal con­
tact we find only a cylinder on a horizontal plane rolling with horizontal axis 
or a cone on a cylinder, Pig. 4. For both cases there exists in the surface 
Xo, Yo there exists a point jI,;[ around that point the wheel is turning. So we 
can use this simplified geometry to define the real contact in case of very 
small deformations. A small flattening of the wheel can be used to define 
very small tangential deformationsu(x, y) and u(x, y) in the moving plane 
x, y. We distinguish between small, 'local' deformations .6. x (x, y), .6.y(x, y) 
and 'global' deformations (for instance lateral bending or eigenmodes) of 
the wheel kx(x, y) and ky(x, y), see Fig. 5. 

u(x, y) 
v(x, y) 

kx(x, y) + .6. x (x, y), 
ky ( x, y) + .6.y ( x, y) . 

The area of contact must be knmvn from a contact theory or from measure­
ments, also the functions k and 6-

Because of the fact that the two planes have a common point lyJ which 
is not moving in both planes we can formulate the non-holonomic rolling 
condition: 

e p (x) . dx = 0 . 

At first we look for the movement of a contact point in the plane x, y when 
it is fixed in the plane xo, Yo, see Pig. 5: 

Xo = a + x = const! 

In the moving system x, y we get by aid of the Euler equation: 

v+x+wxx = o. 

From this we get the differential equation: 

(*) I x = Ax + f I 
the matrix A and vectors f, x are 

A = (0 w ) f = { - v ~os_ 15} x = { x } 
-w 0 vsm 0 y 

If all parameters are constant (wovo15o) the solution consists of circles 

\vhere D(t) = eAo(t-tJ), xp = _AOlfo. Expanding eAo(t-tJ) one finds: 
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D - (COSY sin y ). y=wo(t-td. 
(t) - - sin y cos y . 

This solution produces the following field of relative motions, see Fig. 6. 
If the contact points 1,2,3 are touching the ground plane at the same time 
t1 = tE and defining the running time in contact by T = tA - tE the angle 
y is for all points 1,2, 3 the same. 

For a differential element of the way of the moving point we get 

(x - x p ) • dx = 0 

which is a non-holonomic constraint. The location of 1\11 is in every case 

(
v. _ v _) 

xp = ,~sm 0. :; cos ° 
so one gets the constraint equation: 

( x - : sin 8) dx + (y - : cos 8) dy = 0 . 

Multiplying by w, re-arranging and using the time element dt leads to 

dx 

wy - 1..'COS 

dy 

wx - 1..'sin 8 

dt 

1 

\vhich defines a family of characteristics. Defining x == XX(x, y, t) as a non­
stationary field of moving lines of contact points 

it follows 

. 8x ( r) 8x ( -) 8x f x = - wy - 1..'COsu -L - WX - vsin ° + - = Ax + 8x I 8y 8t 

which are nonlinear because ofwx,wy. It is important to mention here that 
numerical integration uses time increments tlt and increments 6:.w, SSI' tlsy 
defined by 

S1j; = w6:.t, uS I = V cos 8tlt, uSy = v sin Sut . 

So we get for the new position of the point x(t + ut) == x' in all cases, 
even when xp goes to infinity (that means pure translation), the follO\ving 
expansions 

x' = D(x - x p) + xp = Dx + (E - D)xp , expanding D to third order: 
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Xl 

yl = 

A transformation which is regular. nevertheless if tan 8 = ~Sy is small or 
w'Sx 

not. The rotation !:iw must be small, therefore it is necessary to look for the 
highest frequency of the rolling system with respect to the shannon theorem 
(for numerical treatment). 

The created tangential forces in the contact area are computed in every 
timestep using the local deformation vector A. With these forces one has to 
compute the dynamics of the global deformations of the wheel and getting 
the axle forces of the wheel one computes the dynamics of the vehicle masses. 
So one gets for the next timestep t", 8, w. 

The local deformation vector is in every case an approximation. As 
it is the difference between x and k it is an engineering judgement. For 
instance if we say that the idealized wheel is flattened without deformation 
(cylinder or cone'surface without bending resistance) there is the only global 
vector for the cases a) and b) of Fig. 4: 

k={ 
XE - R0.T } k = {XE - RnT } 

T 
h-x 

!leos 0 
a) b) 

h2 _x2 
~ YE YE + ---z;;- P sina 

with h <f:.. p. 

In case of small lateral movement y(x, t) of the contact points along -h ::; 
x ::; h, 181 <f:.. 1, Iwhl <f:.. 1 and constant velocity v, we get the well known 
equation of B.v. Schlippe, R. Dietrich: 

oy(x, t) (_) oy(x, t) __ . "' 
ox v + ot - wx + vu . 

This equation was then solved by Smiley using power series in time. 
Starting again from first formula (*) and changing to integral equations 

one may use a Picard iteration with T as the running time of the point x: 

T 

X v+l = XE + J (Axv + f)dT , 

o 
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and beginning with straight line running of every point 

h-x 
T==---, 

v cos,b ' 

we find for a cylindrical wheel with small lateral deformation y(x, t) 

a first iteration. 

T 

y(x, t) = YE(t - T) + J (Vb - WX)dT 
o 
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By definition dT = - ~: and vx=v = Rn (no longitudinal slip) we get 
the differential form: 

y(x + dx, t) = y(x, t - dT) + (Vb - WX)dT. 

Expanding this to first order 

ay ay_ 
y(x, t) + ax dx = y(x, t) - at dT + (vo - WX)dT, 

dropping dT: 
ay ay 
- - v - = vb -wx 
at x ax 

which shows, that this type of equation is only a first approximation. 

3. Dynamics of Real Wheels Using Continuum Theorie 

For technical applications the contact points are not only sticking on the 
surface of contact they are also slipping when the friction limit for a given 
pressure distribution is reached. To simplify the model in these cases the ve­
locity of sliding is computed only using the rotation velocity and vibrational 
velocities of the eigenmodes of the wheel. The local deformation velocity 
is neglected. So only low frequency self excited excitation is possible. Be­
cause of decrease of the friction function with increasing sliding velocity a 
dynamic rolling stability problem arises: stiction forces and friction forces 
are nonconservative and so there is a need to get energy losses into the wheel 
body to stabilize the fast rolling system. 

Looking through a running glass plate for the contact behaviour of the 
points is contact area, see Fig. 7, and estimating the moving of white points 
w'hich are labelled on the surface of the tire and using image processing for 
instance fir a rolling situation of five degrees of slip angle one sees, see Fig. 8 
that in front of the contact area the points are sticking and later on they are 
slipping. This behaviour was also computed, see Fig. 9, using t\VO lateral 



56 F. BOHM 

eigenmodes of the wheel, local shear deformation behaviour of the profile 
elements and given pressure distribution. The area of contact is assumed to 
be a section of the toroidal shaped tire surface. To increase rolling stability 
the eigenmodes must be damped. 

Finding by resonance excitation for the first two lateral eigenmodes of 
the tire where the damping is placed, it was found that it is mostly damped 
in the sidewalls, which can be shown by thermography, see Fig. 10. Also 
the friction behaviour of the profile elements produce damping, which was 
computed and controlled also by thermography, see Figs. 11 and 12 and 
the computed tire forces are also controlled by sinusoidal excitation of the 
steering angle running the tire on a drum. Reaching the flutter point of the 
tire at a wavelength of one meter there is shown a ninety degree phase lag 
in the Fig. 13. 

Longitudinal and lateral oscillations with higher frequency of the pro­
file elements were introduced into the system by OERTEL who has shown 
the infl uence of friction oscillation of the profiles on the generated tangential 
contact forces (increasing roughness). 

4. Dynamics of Rolling Wheels with Non-Smooth Surface 

A further discretisation of the whole wheel and of the contact elements was 
made using particle dynamics. So it was possible to compute simultaneously 
global deformations, local deformations, pressure forces, see Fig. 14 and 15, 
and friction forces. A non-holonomic constraint equation is not used. There 
is only used a holonomic constraint equation \vhen a particle is touching 
the ground. It is assumed that it is sticking in the first time step when 
touching the ground because there is no tangential local deformation. In 
the next time step it is proved if it is sliding or not. Naturally one has a 
high frequency system of particles and one has to use a very short time step 
for integration. 

Lastly the footprint of the tire was computed, see Fig. 16, and it \vas 
compared with thermographic estimated footprint see Fig. 17. So we end 
with this research, looking for the high-frequency behaviour in contact area 
up to 2000 Hz, producing solutions and measurements of this behaviour 
but do not use non-holonomic constraints again, which was done at a first 
attempt as a good working hypothesis, and later on looking for nonsmooth 
surfaces the practicability was bad. Going into the details of the profile 
deformation discretization is always necessary, but we have to be aware of 
the fact that we lose a possibility of analytical treatment. But otherwise, to 
understand all phenomena \vhich occur in the contact region, it is necessary 
to develop complex numerical models for the behaviour of rolling wheels. 
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Continental 195/65 R 15 Super Contact 
Cornering Angle 5°, Camber Angle 0°, Vertical Load 4000 N, 

2.0 bar 

57 

Fig. 7. Tire rolling nonstationary on a glass-plate beginning from upper left to 
right down: white marked points on the profile elements sho\v the move­
ment relative to inclined motion (5 = 5°) of the plate. At the entrance 
the points move with the same angle, then they slide laterally, velocity is 
v = 2.5 cm/so 
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Fig. 8. Computation of rolling situation with 0 = 6°,8°,10° using 21 lines and 13 
collocation points on every line 

Fig. 9. Local deformation computed for 0 = 5° 
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Fig. 10. Eigenmode n = 0 for lateral excitation of the tire 

Fig. 11. Thermography of frictional heat up of the slipping profile elements, con­
cerning angle 50, camber angle 50, vertical load 3000 1'\ 
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Fig. 12. Computed results of friction work, tangential forces and pressure distri­
bution, stationary rolling 
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Fig. 13. Computed flutter point for a 225/60 R 15 V tire 
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Fig. 14· Computed deformation of a tire model with profile elements, cornering 
angle 50

, load 3000 N 

Fig. 15. Computed lateral deformation of the tire carcass 
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Fig. 16. Computed footprint of model on a plate 
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Fig. 17. Thermography of a rolling tire with this profile on a flat bed test ng. 
cornering angle ·5° 

Conciusion 

The concept of a non-holonomic condition for a single contact point was the 
first step into dynamics of vehicles. The next step \\'as to extend the concept 
to a contact line and to a contact area. 

Introducing a friction law big problems arise: there is no theory for 
friction oscillations in continuum theory. But for discrete systems it was 
possible to produce correct and stable numerical solutions. So it 'was shown 
that high frequency behaviour of rolling wheels always needs an engineering 
decision what eigenmodes have to be used. 

Rolling and slipping of real wheels can only be simulated numerically 
using particle dynamics. Computing the contact of the surface particles 
touching the ground, it is necessary to use holonomic constraints, The 
frequency range of the solution is limited to avoid excessive computing time. 
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Appendix 1 

m(vx - WVy - w2a) 
m(vy + WVx + wa) 

I sw 

0, 
R, 

-Ra, 

° < Vx = const., Vy = i,y = 0, w = w, 

w 
m(wvx + wa) = -15 -, 

a 

{
stable: 
unstable: a> ° } 

a < ° solution ..;.) 

Appendix 2 

v E = { -v8~ hw } + { 0
0
L } + { 

-+ vljJ + hw + L-0 - v8 = ° 
-v 
v'lj; 

. e~\t wO 

YE 0=- hw~O , L' ( h« P = ~) , 
w 

YE + v (Yt - 8) = 0, eSYE = S, 

S = esL (8 - Y:) = esLpeff., 

esL .. . comering stiffness, 

lvl == ~hS (linear distribution) 
3 
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