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Abstract 

A new generic optimal controller structure and regulator design method are introduced 
avoiding the solution of polynomial equations. The model sensitivity properties of some 
combined identification and control schemes are investigated. It is shown that a new 
structure is superior to the others. An applicable strategy for iterative control refinement 
based on the generic scheme is presented and illustrated by simulation examples. A worst
case optimal input design algorithm is also introduced to increase the robustness of the 
closed-loop control in the relevant medium frequency range by generating a 'maximum
variance' reference signal. The adaptive \"ersion of the control refinement strategy is also 
shown with a special 'triple-control' extension for recursive optimal input design. 

1. Introduction 

The need to design high performance control systems has not lost the impor
tance inspite of the thousands of methods and algorithms published in the 
past decades. The huge number of papers indicates that no unique or best 
method was found. The solution depends on the model, criterion, uncer
tainties, disturbances, constraints, etc: (sometimes even on the designer's 
taste) . 
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Fig. 1. A general closed-loop control system 

A general closed-loop system is shown in Fig. 1, where Yr, U, Y and ware the 
reference, input, output and disturbance signals, respectively. Here discrete
time representations are considered for computer controlled systems. 
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The argument k of variables means the integer value discrete time (integer 
multiple of the sampling period) and z-l means the backward shift operator 
(z-ly(k) = y(k - 1)). 

Many experts believe that the essence of all control problems can be 
led back for the simple problem shown in Fig. 2,. i.e.) how to choose a serial 
compensator transfer function X to S ensuring a unity dynamic transfer. 
The trivial solution X = S-l is not always applicable because S is not in
vertible. This is mostly the case if the control is discrete time and based on 
sampled linear dynamic systems. In a general case the system S = S+S_ 
is factorable for inverse stable 5+ and inverse unstable 5_ components. 
Because S_ cannot be eliminated by simple cancellation mechanism it is 
sometimes called invariant system component. A heuristic but widely ap
plicable solution is to choose X = S.:;::l, when the inverse stable part is 
cancelled, hO\\-pver. the invariant invers~ unstable factor is untouched. Sev
eral controller design schemes are based on this method, inspite of there is 
no optimality connected. Cnfortunately, the remaining invariant factor can 
sometimes cause not tolerable dynamics, so its effect must be attenuated. 
This can be done, if we use a criterion for this purpose. It is known from the 
classical VViener frame'work of optimal stochastic systems, that the solution 
of the minimum mean square error (H2) probleln 

(1) 

can be obtained if 
X = 5.:::- 1 s.:;:: 1 

, (2) 

where 5_ is obtained by reflecting the zeros (they are unstable!) of 5_ 
through the unit circle and oroviding 

n 

1 
~ -

Fig_ 2. The simple problem of control systems 

Note that the solution depends on the applied input excitation n(k). 
Here n(k) is assumed as a white noise sequence. 

A characteristic approach of optimal controller schemes is called pole
placement technique (ASTRO?v! - VYITTEN?v1ARK (1984); LANDAU (1990)) 
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targeting to provide prescribed transient properties for the servo and dis
turbance rejection paradigm of closed-loop controller design. The standard 
technique representing a two degrees of freedom so-called R - S - T con
troller assumes basically the structure shown in Fig. 3. Here R, Sand Tare 
polynomials. The advantage of this scheme is that the implementation of a 
so-called direct adaptive regulator method is very easy, because it is easy to 
construct a predictor equation linear in the parameters of these polynomi
als. The disadvantage of this scheme is that it hides the internal operation 
of an optimal system and special consioerations are necessary in a recursive 
parameter estimation algorithm because the R, Sand T are redundant, 
having more parameters than minimally necessary, furthermore the solution 
of a Diophantine equation is necessary to obtain the regulator polynomials. 

Fig. 3. :\ classical pole-placement controller 

Another well-known classical scheme of optimal control systems is 
called internal model principle. The name originates from the system model 
applied in the controller. This scheme has a much less known form if "''le 
want to use the same principle for inverse unstable factors. This modified 
internal model principle is shown in Fig. 4. if only inverse stable factors 
are cancelled. :'\ote that the whole system should be taken into considera
tion in the internal modeL because realizability problem arises only using 
the inverted model. Here Pr and Pw a.re the desired overall tracking and 
dist ur bance rejection transfer functions (or reference models) for the design 
requirements. They can also be interpreted as predictors for the reference 
and output disturbance signals. In this case, e.g., w is the estimated (or 
predicted) disturbance. (An ideal case was assumed above when the true 
process 5 is known to ease the understanding of the basic schemes. This 
assumption is good to explain the operation of the system, however, only a 
process model jlf is available in most practical cases as it will be discussed 
later.) Ifwe \vant to attenuate the invariant system component then 5=15.:;1 
must be used instead of 5.:;::1 in the partially im'use model, according to the 
optimality of Eq. (2). ' 

The advantage of this optimal control scheme is that the principal 
operation of the regulator is very easy to follow and the computations of 
the regulator polynomials are easy and obvious. The disadvantage of this 
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Internal model 

Fig. 4. Modified internal model pTinciple for inverse unstable factor 

scheme is that the identification (parameter estimation) method indicated 
by the internal model in the closed loop arises several difficulties. 

Both above approaches have the general problems of the known optimal 
controller structures that the identification and control errors are different. 
Therefore these schemes are not the best ones for developing and analyzing 
simultaneous identification and (adaptive) control algorithms. 

In this paper a ne,,' generic structure (KEVICZKY B . .o\NY."-SZ (1994)) 
is discussed which allows a very simple procedure to design optimal con
trol systems when the identification and control errors are identical. Their 
relationships to the previously discussed schemes are also presented. 

2. A New Controller Structure 

Let us introduce another new stru'cture shown in Fig. 5 to design optimal 
controllers. Here 5 is the system, R is the regulator, Pr is a precornpensator 
transfer function. The system output 

- 1 
y(k) = PrSYr(k) + 1 + RS w(k) = Yt(k) + Yd(k) (4) 

is very special, because in spite of the closed-loop the tracking behaviour 

(Yt(k) = PrSYr(k)) is independent of the regulator R. This structure prac

tically opens the loop for the command signal and the selected feedforward 
com pensator (or observer) 

(5) 

provides a desired 
(6) 
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tracking (servo) transfer function by Pr. Observe that selecting a regulator 

R = Pw 5-1 = C5- 1 

1- Pw 

a desired regulating (or disturbance rejection) behavior 

(7) 

(8) 

can be reached by Pw ' The Pr and Pw transfer functions contain the de
sired poles to be placed, so they can be called as reference models. Note 
that arbitrary zeros can aiso be placed, however, the calculation of the pre
compensator P,- and regulator R requires the inverse of the process 5. (Here 
also the idea! case was assumed ",-hen the true process 5 is known. If P1JC 

is the best LS predictor of w, then the obtained regulator is the minimum 
variance (ivlV) regulator.) It is easy to prove that this scheme can be re
arranged to the scheme in Fig. 2 by straightforward block manipulations. 
Assuming that 

R 
E=-' . A,.. 

s= B. 
A 

and 

(9) 

(10) 

the classical pole-placement regulator polynomials can also be easily com
puted according to the previous formulas and they are giYen by 

S = ArB (Aw - Bw) . 

R = AArBtu • 

(ll) 

( 12) 

(1:3) 

(Observe the common factors that make the parametrization for a direct 
self-tuning technique redundant and the recursive estimation difficult. 

r------------------l 

: J : ~ ~ I_~~~ ~ 'v..r;-L. 
I ~ L~-'-l: ~~~ 
I _ - - I 
: f1. Internal model '==~=R=====I=========o=!i 
j Controller ..J 1.: ________ . ____ --- ---

Fig. 5. The new control system structure 

If we use the abov . precompensator and regulator the controller shmvn 
in Fig. 5 can be further simplified according to Fig. 6. The advantage of this 
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Fig. 6. Equivalent form of the new controller 

approach is that the three transfer functions of the controller can directly 
be computed without solving the usual polynomial equation. A further and 
very important advantage is that the identification and control errors are 
identical, so this scheme is especially good for combined identification and 
control problems. (The very limited usability for inverse stable systems will 
be eliminated in the next section.) It is easy to show that Fig. 5 can be 
rearranged to the schemes either in Fig. 3 or in Fig. 4 by straightforward 
block manipulations. So the classical pole-placement regulator scheme and 
the internal model principle scheme are identical to each other and to the 
new scheme if the appropriate transfer functions are selected. 

3. A Generic Scheme for Optimal Pole-Placement Controllers 

Because the above method is based on full pole and zero cancellation the 
extended applicability can be reached by partial cancellation of those system 
(model) components only, which are inverse stable. Assume that 

(14) 

where S+ means the inverse stable factor. Here S_ = 5_ z-d is the non
invertible part where the discrete time delay z-d is also a factor whose 
inVf~rse zd is not realizable. In case of a partial cancellation we should use 
the precom pen sal or 

( 15) 

instead of (.5). This results in 

(16) 

Selecting the regulator as 

(17) 
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one can obtain the regulatory transfer as 

(18) 

Eqs (16) and (18) show that in case of partial cancellation, which is the 
general case, when we have inverse unstable system factors (e.g. nonmin
imum phase systems) or time delay we cannot reach the ideal servo (Pr) 
and disturbance rejection (1 - Pu .) transfer functions only their modified 

(PrS_z- d) and (1- PwS_::-d) forms. :\"ote that the modifications do not 

depend on us, instead they depend on the system itself only. Therefore 5_ 
is sometimes called invariant process factor (mostly zeros). (Because rea
sonably P,.(l) 1 and Pw(l) 1 are selected. it is also reasonable to choose 
5_ (1) 1 in t he factorization Eq. (14)). Fig. 7 shows the transfer functions 
in the new controller scheme, which can even be called a geneT"ic optimal 
pole-placement controller in this case. This scheme can be further simplified 
according to Fig. 8. It is easy to sho\\' th2J: Fig. 7 can be rearranged to the 
schemes either in Fig. ,J or in Fig. 4 by straightforward block manipulations. 
So the classical pole-placement regulator scheme and the modified internal 
model principle scheme are identical to each other and to the new generic 
scheme if the appropriate transfer functions are selected. 

I 

~ • r 
=r== 
! 
i Internal model 
l Controller j ----- -- - --- - -- ---

I 
I 

Fig. 7. The generic pole-placement controller 

I Controller 
~-----------------~ 

Fig. 8. The equivalent form of the generic controller 
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Assuming that instead of (9) the system transfer function correspond
ing to (14) is given by 

5 
B+B __ cl 

- 7 - A ~ (19) 

only the PO("'Homial S '.vill be changed 

S - 4 B (4 B B _-cl\ - ~ -r + .J. -"w - ill - '" ) (20) 

and the computaTion of T and R remains according to (11) and (13). 

----------------! 

I Controlter : 
~-----------------~ 

Fig. 9. The generic model based pole-placement controller 

The final optimal controller is already very general because it covers 
the most critical processes \,'here the design is not trivial. In the practice 
we should rather use the model ?vI instead of the system 5 in the internal 
model. so the design procedure should apply 

:'vf = AI+M 
.4 

(21 ) 

instead of (14). Here i\1+, and are the inverse stable, inver:::e 
unstable factors and the delay time of the model. respectively. So the opti
mal controller will change according to Fig. 9, This controller is very easy 
to implement in a computer controlled system and it keeps the advantage 
of the original idea of the ne\\' controller structure, i.e., it does not requin~ 
the solution of a polynomial (Diophantine) equation to obtain the controller 
transfer functions or polynomials, instead (11), (13) and (20) should bE: 

~ ~,J ~ 

applied now, where B+B_z-- and A are the numerator and denominator 
polynomials of the model ,VI instead of the system 5, as Fig. 10 shows. 

It was already mentioned that the not cancellable factors of the system 
will be factors of the modified reference models, so they are invariant to any 
control strategy. However, their influence on the original reference models 
can be minimized, if we use a criterion for this purpose. Using the Wiener 
design principle shown in the introduction the precompensator 

- .:::.-1_ 1 Pr = PrS_ 5+ 
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; Controller 1....- _______ _ 
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Fig. 10. The polynomial design of the generic pole-placement controller 

and the regulator 

R= 
1 

must be used and the overall system equation 

125 

(23) 

is obtained. Fig. 11 shov,'s the practical realization of this strategy if the 
model of the system is used. 

--1 
Note that the application of the compensator 5_ on 5_ is optimal 

for a given excitation only, in this case for white noise (or approximately 
for wide bandi':idth) disturbance. Therefore, the optimal pole-placement 
controller shown in Fig. 8 is suggested for most practical applications. 

r-----------------------, 

Fig. 11. Attenuating the invariant factors by Wiener design 

4. Combined Identification and Control Schemes 

Since the beginning the key paradigm of designing control systems is how to 
handle uncertainties associated with the plant. One of the main techniques is 
adaptive control intending to learn parameter and disturbance uncertainties 
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in varying circumstances. Another important approach is to implement 
robustness features at simultaneous identification and control procedures. 

In the traditional approach to analysis' and design of an adaptive con
trol system the unknown plant is represented by a model, which is almost 
known except a few parameters assumed time varying. Having the estimated 
parameters the controller is updated according to the certainty equivalence 
principle. The unstructured uncertainties are mostly ignored in these cases, 
therefore these adaptive regulators are not robust. To tell the truth it is not 
easy at all to consider these uncertainties at the classical adaptive systems 
and to guarantee proper transients during the learning adaptation phase or 
abrupt parameter changes. 

In a classical robust control approach the regulator is designed on the 
basis of a nomina.l ElOdel of the plant associated \vith the associated para
metric and unstructured model uncertainties explicitly taking into account. 
(Unfortunately, mostly analytical forms are required which are very rarely 
available at practical applications, except a few special real cases or the 
examples 'god given' apriori information). Here stability robustness is guar
anteed and performance robustness is achieved sometimes. The weakness of 
this approach is that it considers only the apriori information on the model 
and neglects that the characteristics of the plant could be learnt even when 
it is controlled. Therefore classical robust control approaches mostly result 
in a conservative design in terms of performance. 

(In Section 8 a new approach will be introduced. \vhen the uncertainty 
of the model coming from the parameter estimation will be minimized in 
the rele\"ant medium frequency range around the cross-over frequency.) 

4-1. Open-loop Identifieation and Closed-loop Control 

The simplest strategy to combine modelling and control if the identification 
is performed in an open-loop experiment to obtain an optimal fLodel :'yfx, 

selected from a model class .i\1, by minimizing an identification criterion 
QiO (Eo) function of the open-loop identification error Eo, i.e., 

J.r = arg min QiO (Eo) = arg min Qio(jV1, x, 6..) = ;1,10'(;\1, x, 5), (2.5) 
MeM MEM 

where x = {x(k): k = 1, ... S} is the applied input excitation series and 

6..=5 M (26) 

is the additive model uncertaintv between the svstem 5 and model J1 
(Pig. 12). The optimal regulato~ RX, selected fr;m a regulator class R, 
is obtained by minimizing a control criterion Qc (ec) function of the closed
loop control error ec (Fig. 12), i.e .. 

R = arg min Qc (e c) = arg min Qc(R, 5) = RX(R, 5). (27) 
ReR RER 
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(Note that the open-loop input excitation x is different from the closed-loop 
input u acting on the process.) Because only the model of the system is 
known in a practical case, therefore the most widely applicable strategy is 
to su bstitute 5 by M in (27). This strategy is called the certainty equivalence 
principle and realized by 

R = arg min Qc (cc) = arg min Qc(R, I\ll) = iC(R, AI). (28) 
RER RER 

In this case the optimal regulator does not reach the theoretical optimum, 
because the model ;."\11 is used instead of the system S. However, it is possible 
to form an iterative control refinement procedure improving the model and 
regulator step by step: 

1. Identify the model using the modelling step 

(29) 

2. Calculate the optimal regulator 

Ri = le (R, :'vl,) . (30) 

3. Determine an optimal input excitation for the open-loop identification 

Xi = Xo (1i, :Hi , R;) VxO{ (1i, x. ?tl;, Ri) . (31 ) 

Here 1i is the (mostly amplitude or energy) constrained input signal 
domain. This step is sometimes called optimal input design and the 
operation is denoted by D ( ... ). 

4. Once Jlf, and Hi are found we can continue to increase the closed-loop 
bandwidth repeating the procedure. The iterative process is continued 
from step 1, while a stop condition is not fulfilled (until the ultimate 
control objective is achieved or it is terminated because of reaching 
some vital constraints). 

For comparison it is interesting to see that in the above case the iden
tification and control errors are 

(32) 

and 
1 ~ 1 

1 + RS Yr + 1 -L RS w: (33) 

where Pr is the reference mode~ fir = PrYr is the desired process output 
(model output or predicted reference signal) andw is the output disturbance. 
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Regulator 
design 

Fig. 12. Combination of open-loop identification and closed-loop control 

4-2. Closed-loop Identification and Closed-loop Control 

The formal description of the procedure how to combine modelling and 
control if the identification is performed in a closed-loop experiment is very 
similar to the pre"ious section, however, the identification criterion Qic (Ec) 
is now the function of the closed-loop identification error Ec, i.e. 

jVr = arg min Qir (Er) = arg min Oie (M. R. Yr. 6.) = M: (\)\/(. liT) 5) '. 
,'vIEA1 - - ~ .\IE/vl v .., -' ~ 

(34) 
and the regulator is designed again by Eq. (28). It is possible to form dif
ferent combined schemes depending on the structure of the optimal control 
and the combination of the sequential identification and control steps. In 
this sequential procedure it is a general observation that 

1. The human first learns to control over a limited bandwidth. and learn
ing pushes out the bandwidth over which an accurate model of the 
plant is knmvn. 

2. The human first implements a 10\\' gain controller. and learning allows 
the loop to be tightened. 

On the basis ofthese observations an adaptive robust control philosophy. the 
windsl1rfer approach, was proposed by A:-:DERSO:-: Kosvr (1991). They 
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use a parallel closed-loop optimal controller scheme, which is very widely 
used in the analysis of control relevant identification and iterative control 
refinement procedures. Note that the classical so-called direct adaptive con
trol algorithms generally use a somewhat different scheme which is called as 
parallel in-loop optimal controller scheme. We will analyze these schemes 
and the new generic optimal controller scheme also in the sequel. For the 
sake of simplicity this comparison will be discussed here for inverse stable 
processes first. 
The generic optimal controller scheme. The generic optimal controller 
scheme (KEVICZKY - B.t\.NYt\.SZ (1994)) ivas shown in Section 2. 

The structure of the optimal controller gives a special insight to un
derstand the operation of a feedback loop for the servo and disturbance 
rejection paradigm. It is easy to see the role of the kno"';ledge of the model 
of the system and the role and appearance of the factors of the system that 
are invariant to any control strategy. A little bit modified form of the generic 
scheme of Fig. 5 ivill be used here as Fig. 13 shows. 

----------------------, 
I I 

I i I f i W 

( j't0~ 
I Controller : l _ ______________________ J 

Fig. 13. The geneTic optimal controlleT scheme 

This structure has further advantages in handling system uncertainties 
and a new canonic sensitivity scheme can also be obtained. This generic 
scheme opens a ne\\' way to analyze combined modelling and control issues. 
Fig. 13 is the long searched ideal scheme for the combined identification 
and control problem, because in this case the control and modelling errors 
are identical. So the neiY scheme provides an excellent possibility also to 
study robust identification for control. 

The common identification and control errors are 

1 ( ~ \) ~ 1 [H (~\ ~ E ] 
e1 = El = 1 + RS 1\1 y, - 1 + RS W = - 1 ,\1) Y,. +1 W . (3.5) 

5. On the Generic Optimal Controller Scheme 

Inverse stable processes. It was presented above that the generic optimal 
controller scheme has certain advantages comparing to others sho·wn. It 
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is also interesting to show that the common modelling and control error 
el = El given by (35) can be also expressed as 

el = El = - [HI (.6., ) Yr + ElW] = -[(5u + w) - Mu1 = -(y - Y). (36) Ivl . 

This form and Fig. 13 shows an obvious way how to perform the identifica
tion step in a combined identification and control scheme, i.e., we should use 
a regular identification algorithm based on the auxiliary variable u and the 
measured controlled variable y as Fig. 14 shows. Note that V. and y must 
be obtained from the closed-loop operated by the generic optimai controller 
structure. 

Because u depends on the model 1'vl only an iterative control refine
ment procedure can be performed. Its simplest so-called relaxation type 

iteration can be formed in the follmving way for an off-line case using ~V 
sam pies (i- th iteration is shown): 

1. Calculate the auxiliary variable Ui based on the available model .M'-l, 
the reference model Pr and the applied reference signal series y~ = 
{y~(k): k = 1, ... , N} 

k = 1. ... , N. (37) 

Herei denotes the index of the iteration and note that y~ does not 
necessarily change by iteration. 

2. Identify a model between Ui and Yi using the modelling step 

arg ,mfj~A Qic (A1,.6., Ui, Ri-I, Pw ) = 
:\/ t:JV( 

A1; (A1, ;\I1i-1, Ri-I, Yr, 5, Pr, Pw ) 

(Ui = {ui(k); k = 1. ... , N}; Yi = {Yi(k); k: = l. 
3. Calculate the optimal regulator based on (7) 

the compute the process inputui as 

k = 1. .... N 

and apply to the process. 

(38) 

N}) . 

(39) 

(40) 

4. (There is a possibility to optimize the applied reference signal series 
in this step by a proper input design procedure.) 
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r---~ - - -- -----·----------1 

i I 

u8;~ 
I 

___ ---1 

M u y R 

Identification Regulator design 

Fig. 14. Identification and regulator design at the generic optimal controller 
scheme 

5. Once 1\1; and Ri are found we can continue to increase the closed-loop 
bandwidth repeating the procedure. The iterative process is continued 
from step L \'1' hile a stop condition is not fulfilled (until the ultimate 
control objective is achieved or it is terminated because of reaching 
some vital constraints). 

Inverse unstable processes. Note that both u and R need the inverse of !vI. 
Since this method is based on full pole and zero cancellation the extended 
applicability can be reached by partial cancellation of those system (model) 
components only, which are inverse stable. This extended generic optimal 
controller scheme is shown in Fig. 15 which corresponds to Fig. 7. The 
identification and control errors are identical at this scheme. too, i.e., 

(41 ) 

The off-line iterative control refinement procedure described by Eqs (37), 
(38), (39) and (40) and steps 1 5 can also be applied here, if instead of 
these equations the corresponding 

u;(k) = (1\![~-1)-1 PrYr(k); k = 1, ... , N. ( 42) 

Ri = 1 ~ ~ w (l'vf~) -1 = C (M~ ) -1 ) ( 43) 
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u;(k) = Pr (RiM~ + (lv!-+.)-l) y~(k) - R;y,(k): k = 1, ... , N ( 44 ) 

formulas are used. 

r--------------------! 

. Controller I 
!- ------- ---- ------ ---...! 
Fig. 15. The d'itnded 

cesses 
optimal controller schone for inverse unstabiE: pro-

6. Examples for Off-line Iterative Regulator Refinement 

Example 6.1 Let the process be given by 

s = _ O.007~69 1,:;-4 

1 - 0.606.J31,:;-
( 4.5) 

which is a sampled-time (sampling time is h = 0.0.5 sand d = 4) nrst order 
approximation of a helicopter 'stick-input/roll-rate-outpnt' model. Apply 
the unity gain tracking and disturbance rejection reference models 

0 .. 5,:;-1 

1 - 0 . .5,:;-1 
and ( 46) 

and start the iterative control refinement by the model 

~\1o = 0.01 z-4 
1 - 0.4z- 1 

( 47) 

i.e., dm = d = 4. Fig. 16 shows the control and identification loss functions 
(variances) by the iteration. It can be well seen that the iteration is quite 
fast reaching the optimal values after 4 steps. 

A unity amplitude square wave reference input signal with periodic 
time 40 samples was applied and the off-line procedure used N = 100 sam
ples. In the simulation runs an additive white noise was used as output 
disturbance with a standard deviation ,\ = 0.01. We used a simple off-line 
LS method for parameter estimation only to demonstrate the operation of 
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16 
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Number of iterations 

Identification loss function 

Number of iterations 
Fig. 16. Loss functions in an iterative control refinement procedure (first order 

example) 

the iterative algorithm. (Our experience showed that this method works 
very fine in this scheme while the noise level is low. However, in a noisy 
case the proper parameter estimation method (ELS, ML, etc.) should be 
applied corresponding to the given process and noise model structure.) The 
outputs of the tracking reference model (continuous) and the controlled 
process (dashed) are shO\\'n in Fig. 17 before and after the iterative control 
refinement. 
Example 6.2 Let the process (GEvERs (1991)) be given by 

0.0364z- 1 (1 + 1.2z- 1 ) 
5= . 

1 - 1.6z- 1 + 0.68z- 2 
(48) 

where the same reference input and output noise was used as in the previous 
example with the initial model 

0.04z- 1 (1 + 1.0z- 1 ) 
i\lf, - ----'-----'
.. 0 - 1 1 4 -1 0 ~ -? 

- . Z + .. JZ -
( 49) 

Fig. 18 shows the control and identification loss functions (variances) 
by the iteration. The outputs of the reference model (continuous) and the 
controlled process (dashed) are shown in Fig. 19 before and after the iter
ative refinement performed by off-line LS parameter estimation. Outputs 
of the controlled process (continuous) and identified model (dashed) before 
and after the iteration are shown in Fig. 20. This figure is a nice example 
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Reference model and 
controlled process outputs 
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Reference model and 
controlled process outputs 

2.-------------------, 

o 

-1 f -1 r I I I I 
-2 O~--::-'-::-----;"':::----:6:':::O--::8:':::O-~100 -20L--2

L

O,-. -4LO --6LO --eoL----l100 

Fig. 1 T Outputs of the reference model and the controlled process before and after 
the iteration (LS) 

to explain the necessity for iterative control refinement. One can see that 
the identified model output fits very nicely to the process output before and 
after the iteration, too, so the model error is smalL However. the control 
error is very bCid before the iteration shown in Fig. 19. 

7. Adaptive Solution for the On-line Iterative Regulator 
Refinement 

The previous examples demonstrated the nice operation of the off-line iter
ative control [efll1ement procedure based on the genEric SChEmE. Inspite of 
the good convergence properties che necessary measurements are remark
able, In many applications this is a costly and long procedure to design 
the optimal regulator. However. it is easy to construct the adaptive control 
refinement procedure based on the iterative scheme. Following the same 
steps and properly' changing the iteration i to sampling time k the following 
formulas are obtained (not discussing here the details): 

u(k) = (~VI!-l) -1 P,-Yr(k), (50) 

f (k - dm ) = [u (k - dm ), U (k - dm - 1), ... , -y(k - 1), -y(k - 2), .. . ]T, 
(51 ) 

K _ 1 {K -L Kk-l f (k - dm ) fT (k - dm ) Kk-1 } 
k - k-l I ? fT (k d) K f (k d \ , p- + ~ -m k-l ' - m J 

(52) 

Pk = Pk-1 + Kkf (k dm) [Y(k) - fT (k dm) Pk-1] , 

~ r~bk ~bk ~k ~k 1T 
Pk= L 0' l' ... , aI' a 2 , "', ' (53) 
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0.022 

0.020 

0.018
0 

Number of [teratio ns 
Fig. 18. Loss functions in an iterative control refinement procedure (second order 

example) 

(54) 

(55) 

where p is an exponential forgetting factor and Eqs (50) (53) represent 
a recursive LS method (RLS) in the simplest so-called naive programming 
form. Several other recursive parameter estimations can be applied instead 
of the above RLS algorithm. 

Note that after having the estimated parameter vector Pk correspond
ing to (21) obtained ;,\,1+ and AL should be computed by factorization. The 
above procedure is an on-line strategy performing all refinement steps (50) 
(55) in one sampling instance. Here we assumed that the signal Yr(k) itself 
or its generation rule is given apriori. 

8. Adaptive Examples 

Example 8.1 Let the process be given by 

s = 0.001 (1.1 + 1z- 1
) ",-2 

(1 - 1.6693z- 1 + 0.7788z- 2 ) 
(56) 
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Reference model and 
co ntrolled process outputs 

2r-----------------------~ 

Reference model and 
controlled process outputs 

2r---------------------~ 

o 
-1 ,_,-1 

-20~~~--~--~--~--~100 -20~~2~0---4~0~~7-~~--1~OO 

Fig. 19. Outputs of the reference model and the controlled process betore and after 
the iteration (L5) 

ControHed process and identified 
model output signals 

2r---------------------~ 

Contro(led process and identified 
model output signals 

2r-------~--~------, 

-1 

-2L-__ L-__ ~--~ __ ~--~ 
100 0 100 

Fig. 20. Outputs of the controlled process and identified model before and after 
the iteration (L5) 

which is a sampled-time (sampling time is h = 0.05 sand d = 2) second order 
approximation of a helicopter 'stick input/roll rate output' model. Here the 
same Pr, Pw , A and square wave Yr excitation was used as in Example 6.l. 
The initial model was 

u 0.001 (20 + O.5z- 1) _? 
iV10 = . z -

(1 - 1.5z- 1 + 0.8z- 2 ) 
(57) 

i.e., dm = d = 2. The outputs of the reference model (continuous) and 
the controlled process (dashed) furthermore the control (continuous) and 
modelling (dashed) error signals are shown in Fig. 21 for N = 200 samples 
using the adaptive control refinement strategy (50) - (55) with To = 1001 
and p2 = 0.95. 



OPTIMAL CONTROL OPTIMAL IDENTIFICATIO:-J 

Reference model and 
controlled process outputs 

Control and modelling 
error signals 

137 

2~---------------------' 2r---------------------~ 

o 

~ ~ 

-2~---J----~----~--~ -2~--~----~----~----~ 
o 50 100 150 200 0 50 100 200 

Fig. 21. Operation of the adaptive control refinement 

9. Conclusions 

The paper introduced a new structure to design optimal pole-placement 
controllers. This new scheme allows to avoid the explicit solution of a poly
nomial equation obtaining the transfer function elements of the optimal 
controller directly. The new design principle is quite general and applica
ble for non minimum phase (inverse unstable) and delay time systems, too. 
The controller is easy to be implemented in computer controlled systems. 
The structure of the optimal controller gives a special insight to understand 
the operation of a feedback loop for the servo and disturbance rejection 
paradigm. It is easy to see the role of the knowledge of the system model 
and the role and appearance of the system factors that are invariant to any 
control strategy. 

This structure has further advantages in handling system uncertain
ties and new canonic sensitivity schemes can also be obtained. The new 
generic optimal controller scheme seems to be the best among the investi
gated methods. It behaves also well because the identification and control 
errors are the same and they can vanish only at the same time. This scheme 
is easy to be implemented because general identification techniques can be 
applied between a calculated auxiliary input and the measured closed-loop 
output variables. 

An applicable strategy for iterative control refinement based on the 
generic scheme was presented and illustrated by simulation examples. The 
adaptive version of the control refinement strategy was also shown and 
demonstrated by an example. 
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