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Abstract

The stochastic simulation of random road surfaces as well as of parallel tracks is considered.
Starting from the spectral density

S{a) =

a fast simulation method is derived and demonstrated for the surfeces as well as their
derivatives. Thereby the theory of weakly correlated functions supplies the theoretical
background.
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simulation to vehicle dynamics can be found in [3], [5] and [11]. A closed
presentation of the simulation methods described in this paper, a compari-
son with theoretical results and also more concrete applications are included
in [11].

2. Mathematical Models and Statistical Adaptation

Starting from the often used spectral density of road profiles f

o o -
S(Q):—:T'—,). ~ >0, (1}

F i & o

[

with the corresponding correlation function
R(t) = o7 7Y (2)

an approximation of f is derived in WOHRL {14, and vOM SCHEIDT: WOHRL
[12] in form of a linear functional

t
flt.w) = /6_7(t_5;.f5(;.u:)a’.s‘ (3)

-

where fo(s,w) is a wide-sense stationary and weakly correlated process.
Weakly correlated processes are random functions without “diszant effect’ or
functions of ‘noise-natured character’. The exact definition and the resulting
limit theorems or expansions of stochastic characteristics are given in [10].
Especially, their expectation function is zero. the correlation function of such
processes has the form

(fels1)fo(s2)) = { Relsproa) or ot = o2l <2

0 otherwise

and the so-called intensity is in case of wide sense stationary processes de-

fined by

: g
a = 1—1{1(} T/R:—(:)d: . (4)

(f(t1)f(t2)) = & it~

2

results in the approximation for small values of the correlation length ¢ > 0

(F(t1)f(ta)) o —emla=til (5)

~
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which corresponds to the desired correlation function (2).

Whereas the original correlation function (2} is not differentiable, the
approximation (3) is twice differentiable if f. is continuously differentiable
for £ > 0. It follows

j;(f.,;u) = foltiw) = feltw) + A / e 7 (s w)ds

Because of the appearance of these explicit derivatives f;. and f: VOM
SCHEIDT [10] introduced a smoothing function (polynomial) Qg(¢,6) de-
pending on the parameter § > 0 and having the properties Qg(0,4) =
@4(0,46) = 0. Putting

where Q(t ~— s,6) = Qolt — 3.5)6_7“-‘9), the approximation corresponding
to the correlation function (3)

<

(F(t1)flt2)) = ;6”711‘«2—2&1;

is true if § | 0. Here we have only linear functionals of f-

t

FE Gt w) = / QM — s)fu(s,w)ds, k=0,1,2

as derivatives. This second model is especially advantageous for the theo-
retical stochastic analysis of random vibration systems (cf. for instance [10},
(11] and [13]). In our former papers (cf. [1], [2]) we also used this model.
But, it needs some special efforts with respect to the numerical calculations
because of the structure of the smoothing function Q¢. Therefore, we use
now the first model (3) to derive a quicker simulation procedure. To this end
we need in (6) also simulations of differentiable weakly correlated processes.
In section 3 the resulting procedure is given.

After modelling the random road profile as linear functional (3) and
subsequently its derivatives by (6) the next problem is to specify the model
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parameters v, ¢ and a by comparisons with statistical estimates from mea-
surements of real roads. This can be carried out by means of an Interactive
procedure. Firstly, the scale parameter ~ is adapted by consideration of the
correlation function R(t) (see Fig. I).

Secondly, the correlation length ¢ is determined by calculating the
theoretical spectral densities of the 15 and 2"¢ derivative

za ~2
Sff(a) = stfs(a)_ ;m
ca ~4
) 9. ) g H
Spple) = (7 =)Spple) t oy

and comparing them with the estimates of the measured road. The final
result is plotted in Fig. 2

felz,w)

Fig. 3. Realization of a differentiable weakly correlated process

After all, the intensity is calculated from relations (2) and (5) by a =
262~ /¢, where 62 denotes the estimated dispersion of the measured road.

The mathematical models can be extended to considerations of two
parallel tracks using methods described e.g. in PARKHILOVSKII [6] and
ScHIEHLEN [8]. Taking into account the concepts mentioned above two
correlated excitations (tracks) fr(t.w) and fr(t.w) with distance b and an
orthotrop behaviour, i.e.

Ry, altr-ta) = (fr{t1)fR(t2)) = o Il =0D
can be derived. They have again the form of linear functionals

1

frlt.w) = / 6"7(1“3)[‘f15(s,w) + fo-(s.w)]ds .

-
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with independent weakly correlated processes fi-(s,w) and fa-(s,w). The
derivation and some further considerations with respect to the coherence
function can be found in [2] and [11].

3. Simulation Procedure

Now we tur the simulation of the mathematical models (3) and (6). First
of all, the s differentiable weakly correlated process f-(s, w

1 j
is given. reby, a bounded domain s € |, F] of interest is decomposed

into n intervals laj,a;41] with length A = (8 — a)/n and a; = o + ih,
i = 0.1.....n. Farther {£(w)}; and {&;(w)}i, i = 0.1.....n, denote two
sets of independent, identically distributed random variables with < & >=

_5,—;' >= 0 and < 5;-2 >= Ug for all 1.
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the coefficients in (7) are determined by

2(‘51 - §z+l) + (fz + §i+1)h
pi = =

38y — &)+ (26, + &g )
4= 52
o= & and vi=&

in consequence of the independence of the random variables & and §; the so
correlated with correlation length ¢ = 2h. Its
the intensity depends only on

de ﬁned process f. is weakly
nsity can be determined by ¢ = 03/2, Le.
stochastic behav1<>ur of £. Hence. a simulation of a differentiable weakly
simulation of the random variables &;

ted process can be obtained by
re a simulation is drawn with ¢ = 0.1

rela
€;. In Fig. & a realization of such

Now we consider the simulation of the approximation of f. f and f
en

according to (3) and (G) To this end, we need the determination of the
integral or linear functional, respectively. Firstly, we separate this integral

a
I3 I )
fli.w) = / et fo(s.w)ds + f _‘((L—S)fs(S
/ o
re o has to be chosen such that the first integral is neglectably small.

There are possibilities to su pp thls choice by some mathematical esti-

mates. Secondly, the integral over fa.f} is determined by
f e—1 Qi H
I“ A3 ~
i —li—s) , _ —~y{t=s) . i (f—5) RUR
/ Fels.w)ds = 5 / el gils)ds + e gn. (s)ds
A =0 4 n,
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Fig. 6. Estimated and adapted correlation function and spectral densities

with ny = entier [(¢+ — a)/h]. Some straightforward calculations lead to

TLg—‘l

t
flt,w) = / TN f (s w)ds = Y e ) e (eI L (8)
&

i=0
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where
b R®  3hr 6h 6 R?2  2n 2
G = e P\ T Ty Tyt T~ 2Tt
i 7 i i 7 o 7
h 1 1 6p; 2q; u; vy
o (to ) eut] e [To 2 by
Yo ¥ g g ¥ ¥

and c¢p, (¢) corresponds to ¢; if h is substituted by ¢ — ay,.

4. Numerical Simulation

Finally we present some concrete simulation results. According to a realized
adaptation the values v = 1.2, ¢ = 0.021 and a = 0.222 are chosen. To
demonstrate two parallel tracks the distance b is put b = 0.0673 s which
corresponds to 1.5 m (v = 80 km/h). In the Fig. / the simulated profiles
fr(?) and fgr(#) are drawn and in Fig. § the measured profile f(#) is drawn
for a visual comparison.

A good coincidence can also be stated investigating the characteristics
of the simulated profile. In Fig 6 the estimated correlation function and
spectral densities of the simulated profiles are drawn in comparison with
the adapted characteristics.
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