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1. Preliminary Remarks

1.1 Since approx. 3 centuries. the study of a dynamzcal system (dS given
by the differential equation (DE). mainly linear (lin.) ones and initial date

mT = | (tg) = x0, I(tg) = vg

had performed the classical task: to predict the motion (as ‘hist 0"_\") of S far
into the future, using some counting device. In our century. the (electric,
later electronic) computers had brought greater possibilities for such far
prediction.

However, in the last 1-2 decades, certain exact sciences (e.g. fluid, then
solid mechanics, later electric, electronic, physical-mathematical-technical
etc. branches. too) had discovered special, s.c. chaotic motions (Ch-m)
in non-lineer (nlin.) dS, which cannot be predicted generally into the far
future and exiges also new concepts. ideas, theories and methods. It became
obvious till now, that o) the Ch-m can appear in all nlin.dS. 3) it opened a
new age in the d\ namics and v) brought a type of revolution into the exact
sciences [2], [6].
1.2 Be characterized shortly the class of Ch-m in (deterministic) niin.dS!
- a) The motion of nlin.dS a) - e.g. over a value § of control parameter (e.g.
the frictional one 6 = ¢/w) - can be regular (vibration with period T. tendig

at t — o¢ e.g. to a stable limit cycle (LC) Gp(do); then 3) - under the values
of a certain sequence &7 > 09 > ...d, > 85 - the sequential bifurcations
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6= 0 = 05 = Bg(lii=1,217=10+2..;qg= 2”‘_2-%—2) and stable
period-duplications G — Gor — éQET — Gon happen; finally ~) - under
a heaping value 6o > ¢ - the asymptotic motion on the LC GonT becomes
an irregular (aperiodical), s.c. chaotic one: its trajectories are contracted to
a funny (strange) attractor, on which the points jump irregularly; consequ.
the prediction of this Ch-m appears totally impossible (practically, already
for n > N). (This is the very frequent FEINGENBAUM way toward the Ch.,
but also other ways exist. too (see in [3]). In other words, the approaching
way «)-3) can be qualified as a deterministic input of Ch-m (without random
or unpredictable inputs and parameters). over d; with T periodic, then under
01 > ... > &, with 2T, .. .. 2™ T periodic vibration, which transits on the
final way +) under &, into a stochastic output of Ch-m, under §, with an
aperiodic, irregular jumping on a funny attractor. [Obviously, the Ch-m is
not a random motion (as e.g. the BROWNIAN one) with only statistically
measured parameters and truly without input data]. - b) A Ch-m is very
sensitive to the initiel conditions (IC). that is small differences in the IC
can produce very great (enormous) divergencies in the final phenomena. -
¢) It bears a loss of information about IC, when the uncertainty dAg = da}
at time tp = 0 (in regular S) grows during t exponentially to d4d; = dAyp eht

(in ch.S). ~ d) Its consequence h = %ln ;lj;

is related (through the entropy)
to the s.c. LIJAPUNOV ezponent (see in [2], [3]) measuring the divergency
of trajectories in the phase plane (v.7.t). - e) Searching for the geometry
of the (irregular become. s.c.) Ch-m. the s.c. ‘strange attractor (Str-att)
appears, as unusual {maze-like, multisheeted) structure in the phase space.
- f) It is often measured by fractal dimension (fr.dim.). - g) A cross section
of Str-att produced by the s.c. POINCARE map (Pc-map) a thread-like set
of points shows also fr. properties. - h) The transition between basin of ch.
and periodic motions in IC or parameter space is often qualified as fr. basin
boundary.

1.3 Such and other properties of Ch-m were treated in detail in our pa-
pers [6]-[7] and mainly in our series of papers [3] (recommended also for
postgraduate students and doctorands, too), therefore it is unnecessary to
repeat them now. Obviously, it will be here sufficient to recall shortly the
basic facts, notions, methods, etc., which are in a relation near enough with
the fractal lines, dimensions, basin boundaries, etc. So they can help to fit
— in this long ‘fr. chapter’ - into the mentioned series, (which has given till
now only short information about the HAUSDORFF’s definition).

2. Definiticn of the ‘Capacity’ as Fractal Dimension (Fr.Dim.)
2.1 A very intuitive (geometric) measure for the dimension of a set of points

has been introduced by HAUSDORFF (7/4. [3], [5]). This is a general defi-
nition, which can furnish ~ occasionally - a fr. number, as the dimension
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of the examined set, so it is suitable to classify the POINCARE map of nu-
merous nlin. systems giving quantitative measure for the fr. properties of
their Str-att. — We describe now the HAUSDORFF’s definition of the s.c.
‘capacity’, but later we will mention some other definition given e.g. by
MANDELBROT, FARMER, etc.

2.2 Let us observe now a set Sy of points in the (integer) n-dimensional space
S™ (D Sa). e.g. a uniform distribution of Ny points a) along some d = 1 dim.
(plane or space) curve G} in the space $%, or b) Ny uniformly distributed
points on some d = 2 dim. surface Fy C $3. Then we try to cover this set
of points with small n (= 3) dim. cubes of side ¢ > 0 (or spheres of radius
2 > 0), namely using such covering cubes in minimal number N(cg) < Np.
If Ny is large enough, then N(z) will scale for d = 1.2 and for arbitrary d
{< n) dim. - intuitively and approximately — as

N(gy = 1/z, (1)
Nig) ~ 1/£%, (2)
N(z) x 1/ =(1/)¢ (e.d > 0). (3)

There is expected a limit behaviour

N(eg) = (l/s)d — +oc  at - +0 . (4)

)

namely faster at larger d > 0 (connected with the information on G1, F» and
Sd’s spatial placing. at increased accuracy for ¢ — +0). The Egs. (3)1-(4)
show a natural way to the approaching value d got explicitly by logarithm
of both sides:

In N(z) ~ d-In(1/e) , (5)
d~InN(g)/In(l/e) . (6)

then to the exact value d. (referring with a subscript to the name ‘capacity’)
defined by the limit formula:

In ‘N(E)
de = lim ———=, with implicit requirement Np > N(¢) = 4+o0 . (7
o= Jim m S plicit require 0 > Nie) (7
It gives in simple cases the usual integer dim. d (= 1,2,3,...) (see the

examples la-1c); but it furnishes in numerous chaotic cases non-integer =
fraction result, sc. fractal dim. (see the examples 2-3).

2.3 Look at some simple, then complicated examples to calculate exactly
the integer or fractal dim. of a set of points on a curve or surface.

1/a) Linear distribution points:

d=InN(z)/In(1l/z) =ln10/In(1/0.1) =1...... {(int.dim.) .

'One can write more fully: N(g) & C'(1/¢)?, but the limit £ — +0 on d = [In N(g) +
InC]/In(1/g) makes disappear the term of C.
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1/b) Linear distribution on a curve:

(int.dim.) .

=InN(g)/In(l/e) =1n10/In10 = 1...

N(E)x 1/£=10<Np
BEREEEEnNn

1
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coloured crayvons on a piece of sidewalk. - We will ind such fractal
- like structures for basin boundaries of periodic attractors (see e.g.
[3] p. 244) and for boundaries between periodic and Ch-m (see e.
here. p.12) therefore this KOCH curve is very important for the nlin.
dynamics.
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Lo 2 Npep = (2/3)" (Fig. 5). At n — +oc, these limits appear:
In—-1,¢— +0, N, » 400, L, — +0, then

In N, . nln?2 In2

== 1 e pu—— i .‘7... . i -
de nl_l_r)noo o1/ nh_r,noo 3 o3 0.63092 {(fr.dim.)
Consequently, the infinite point-series I of dim d. = 0.63... shows

itself more, than a point (of dim. 0), but less than a line (of dim.1).

On this discontinuous fr. set, one can generate a continuous fr. func-
tion, namely by integrating a distribution function of the total unit
mass at the start on the total interval Iy, later on the remaining and
decreasing CANTOR intervals [;....,[,. with increasing mass density.
After the nth step, when I, consists of N, = 2" parts of length

) e n A .
en = (1/3)7, the denmsity is g, = (3/2)" = ¢, for all the Npep-

: A s
segments {obviously: Lnon = Npén - op = 27(1/3)" = 1 total mass)
[

(e}
and 2, = 0 for all omitted (vacant) segments of [, (£1,222....,2%¢p;
° 1—-(2/3)™ 2 A
Ln= 30 = 1 (2/3)" LutLn = (2/3)"+1-(2/3)7] = 1 2 Ly).
<]
The mass on the interval I, = [0,2] at ¢ € ], will be calculated by
integration

z

Mp(z) £ /gn(f)df = Lypon = N'enon =27 (1/2)" = (1/2)"7"
0
at N/ 2 ov < on £ Ny, but at v = n one has Mp,(1) = 2%(1/2)" =1
(Fig. 6)
10
M3(X)
105

0 13 05 23 10
Fig. 5.

Its figure is a fractional. but continuous line consisting of oblique
(increasing with tan¢ = (3/2)") and horizontal segments. - The
limit curve at n — +oc is the s.c. ‘devil’s staircase’ M(z) having

M'(z) = o2) Ey 6(z - &).
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Fig. 6.
4) ‘Decreasing’ tri - . - V3 — 3 _ 37
1 ing’ triangular set: Tp = 5, Ty = 5T, Th = 15T0=--'=
2 = 2
Th = (%)7 En = (1/'2)77. N, = 3% d. = In 3/ In12 = 1.5737....

(Fig. 7).

3. Alternate Definitions for the Fr.Dim.

3.1 The earlier introduced capacity d; to measure the fr.dim. of Str-atts is a
geometric metric (considering - without the frequency of orbit - the covering
set of cubes or balls in phase space), but also a numeric one (counting the
mentioned covering process often by computer). — The following alternate
definitions - giving for many Str-atts roughly the same dim. — will be good
controllers for the capacity d. [5].
3.2 Pointwise dim. (Pw-dim.) On a long-time trajectory in phase space,
we sign time-sampled points of motion in large number Ng. then place a
sphere of measure r at some point p; of orbit and count the points in it:
N(r). The proportion P(r,e;) = N(r,p;)/No gives us the {combinatorial)
probability of finding a point in this sphere {from Ny omes). — For a 1-dim.
{closed periodic) orbit will be (at 7 — 0, Ng — oo): P(r,0;) = br; for a
2-dim. (toroidal, quasiperiodic) orbit: P(r,p;) =~ br?;: for a general case:
P(r, 0;) = br%  consequ. [5]
InP Inb . In P(r, ;)
— =~ dp, finally d, = hm ————— . (8)

r—0 Inr

Inr Inr

For some attractor, d, is independent of g;; but generally d, = dp(0;), when
it is suitable to count an averaged Pw-dim. on the randomly chosen set of

points 91,....0i,...,00M at M < Ny (e.g. distributed around the Str-att):
LM LM
EJ;ZP(r,Qi)zard.ﬂ. 1nﬁzp(7‘19f)—lna%dp~lnr,
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by experimentalists, they

We discretize the (continuous) set 1o one of N points {p;}nx in the

s
phase space, then count the distances s;; = [9; — 651 = |2 _plvn — 24

(or sij = Y_p |vki — z4j]) for the Cr-function [5]

. 1
In NI
—oC iY T

number of pairs 7.7
with distances s;; <7

that is the number of points g; in each sphere of centre p; and radius r
{ 1 at r> Sij
0 ar r < sy
performed here about every point, but at the Pw-dim. about A & Ny ones
only). For many Str-att. one can find a power law (for r — 0)

s

(where the unit spring function 1(r — s;;) = the sum is

L

dg . . . . InCiry
C(r) = ar”® ., from which the Cr-dim. originates : dg = lm —— .
- r—0 Inr
(10)
3.4 Information dim. (Inf. dim.) This definition is similar to one of d..

but it tries to take into account the frequency of visits each covering cube by
the trajectory (assumed: it is long enough to cover effectively the Str-att).
Having again a set of points Ny to discretize uniformly the (continuous)
trajectory and covering it with a set of N cubes of size z. one counts the
number of points N; in each of N cubes and the probability P; of finding a
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point in the i* th el

N
Pi=Ni/Ng (N <No) > Pi=1. (11)
1=1

Then the information entropy (approached for small £, too) appears so:

N
Ie) =~ Pl Py~ n (1/5)% = —d;Ine (12)

and from this the definition of Inf. dim. origines [3]:

If_.{) A ZPIHP .
di = lim ————— = lim =l (13)
e=+01In{l/z) =0 Ine
I{z) is a measure of the unpredictability in a svstem. - For uniform proba-

- JAN s . .
bility Py = N;/Ng = 1/N = P. it has a mazimum:

A . N - 1 - . . T
I(g) = — ZPithg =-N -PnP=N-—InhN=I=aNe=Iz, (14)
i=1 .'\V ’
moreover
(=) N(z) =
(/1 = lim — hm =d.: (15)
==01n(1/z) =0 ln( /)

as it is provable, dj < d, in general.
- For a sole filled (and each other empty) cube V; = Ng, P = 1 (so at
1% 1 Ny = P; = 0), there is I{le) = =Py InP; = —1-Inl1 = 0. consequ.

dy = lim ;9 I = (; this is the case of mazimal predictability.

_0_
n{l/s)

Let still be mentioned the ¢/ order Inf. entropy and dim. (1984; useful
in statistical mechanics and inf. theory):

I, (¢ ,
1 . d, = lim ——— . (16
nZ] . dy im Yy )

¢e=01In(l/e)

—

T 1oy =
Its cases ¢ = 0.1,

2 (with ¢ =1+ A¢ = 1 at ¢ — 0) make connection with
de. dy and dg so [3]:

N
Iy = ny PP=laN-1=WN = [() (17)
=1
. Ag \ . R /100
L = Al;rilroggln HPP —ZP, n P 2 1) . (18)
L = —-mZP = hm In?2- NoCfs) . (19)

=1
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Finally, it was proved (1983), that dg < d; are lower bounds of d.. however,
they are very close for many known Str-atts:

dg < dj < de. (20)

3.5 Fr.dim. based on Liapunov (Lj.) numbers & exponents. As
memorable, there exponents \; = In L; measure the (rate of the) velocity of
2 trajectories (going out from Sp(z): lgg — go) < ¢ and) diverging on the
attractor with |g, — §,] = oc {at n — oc). or converging off the attractor
toward another one with ¢, = §. (at n — oc). During this dynamical
process, the initial conditions’ sphere Sg{z) is imagined to deform into an
ellipsoid (in 3 dim.). — At a chaotic 2 dim. map dp+1 = f(0,). the circle
Co{c) deforms into an ellipse having — after 1/: steps of iteration — the main
axes L) and L; where L; > 0 at {z = 1,2) —~ as over the whole attractor
averaged values - are the Lj. numbers, their logarithm \; = In L; the Lj.
exponents. KAPLAN and YORK (1978) have proposed to calculate for a fr.
attractor this Lj. dim.: [2]-[5]:

in :/:—'1 j\~]
dy =1+ —— = ] — = (21)

In{1/Ly) A
A DE 5 = F(§.t) of 4 dim. (§,§ € E4) given for a dissipative system has
a POINCARE map 0pei = £(4,) of 3 dim. (4,:6,+1 € E3). For its Str-att,

one can find . B
L1>1, o=1., La<1, (22)
that is the ellipsoid has tension, length-keeping. contraction in the 157, 224,

31‘d

main direction, resp. Because of dissipation, the ellipsoid’s volume is
less than the sphere’s one. so that

f fgf . but flfg > 1. (23)

This circumstance leads us to use the K. and Y. formula (as the special case
k = 2 of their general one) for Lj. dim.:

in(Ly-1 X
L1 D oagy, A1 (24)
In(1/L3) A3

where it is difficult to measure the contraction’s Lj. number Lj.
For an N-dim. POINCARE map of such a system and at the order

f1>f2>‘..>—fk>...f_,\r with Lll,z P> 1. {25)

they have given for the Lj. dim. the following general formula [5):

In{LL
In(1/

dp =k +

2.
(1 }:"
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which is also a lower bound for d., that is
dr < d.. (27)

Remarkable that FARMER (1983) has given for the Bir the following con-
nection {at Ay = \p = A}

di=dp =1+ ln(l/a)j— (1 —«a)ln[l/(1 :a)] Ay M; (28)
In(1/A) + (1 —a)la(l/)) In(1/X)
moreover at ¢ = 1 — a = 1/2 and H{a) = ln 2. one obtains:
dr = dp = d., (29)
and the map is like the horseshoe, or CANTOR map. - Worth mentioning

that the studied dynamical process can lead to a nonuniform POINCARE
map, when the different fr.dims often yield different results.

3.6 A The nature exhibits fr. geometry in rich variety. Fr. curves (as frac-
tioned lines consisting of straight pieces with free length and direction): a)
border the coastal region of oceans, seas, lakes, b) similarly one of (pen)isle
countries {as Island, England, Norway, etc.) (with longer frontier at finer
measuring). Such {often randomlike) fr. formations appear (in the plane or
space): c) on the ice of lake. as clefts: d) at the lightning. as trace lines of
discharge; e) the contour line of mountain chains (looking from far):; f) on
the snowflake, as its contour and surface; g) on the frost - works of win-
dow, as strange figures; h) at the leaves’ falling in windy autumn, as layered
spread of foliage; i) fleecy clouds on the sky; j) the (randomly) ramifying of
certain plants (e.g. caulififower). bushes (e.g. blackberry); k) similar spread
of weeds among the plants: 1) sinking down sand grains during a sand storm:
etc. [2]. [3]. (Fig. 8).

3.6B The artists’ sensitiveness to the fr. properties is remarkable. E.g.
at the beginning of the century, a) the impressionists have used coloured
points to make perceptible different effects in the space; b) in its ond half,
VASARELLY and others are using a rich world of colours and fitted geometric
forms for various effects of space. ¢) Today, some textile designers create fr.
figures for ladies” wear [2], [5].

4, Fractal Basin Boundaries

4.1 Attractors and their basins. In most lin. systems (given e.g. by a
IDE), there is just one possible motion for certain input and one attractor:







i
SN
A
N

i
P
.

e

e

&

.
A
v

|
-

0
=
-

y
2

N

)

,«\%/fw
SR mww 4
wrga

F

whe

by o e ,,

b
|
L b
N,?M—
Nl o
|

N
-4




36 F. FAZEKAS
5. Control of Chaotic Motions (Ch-m) into Periodic Ones

5.1 As it was stated (e.g. in 1.1), a Ch-m? cannot be predicted into fu-
ture. Therefore the applied sciences {e.g. the appl. math.-phys.-biology-
chemistry, etc.) intended recently to keep a firm hand on such a motion and
reduce it possibly into a regular one. In the last 3-5 vears, the researches
have proved that the Ch. systems can be controlled really, that is their
Ch-m can be moderated into a periodic one.

In research institutes of various applied sciences. mainly interdisci-
plinary teams have found several ‘control algorithms’ (CA) for such pur-
poses. Of course, these CA look very specific with strongly different details,
but yet one can state some general steps St; of common quality; such are
e.g.: St; diagnostic step: one observes - with suitable feedback, or mea-
suring tool - ‘just where is walking the Ch. system §°, that is in which
direction and measure are deviating its control parameter (C'p) values from
their normal ones; - Sty correcting step: one betters the Ch-5’s behaviour
by small perturbations of the mentioned (. to drive its Ch-m towards a
periodic one: St;s9. repeating steps of St; and Sty, too, for hindering S
from reverting to the Ch [7].

5.2 Stay here some example!

1} It is obvious, that the medical treatment of an ill person can be con-
sidered, as a CA (it is suggested also by our naming of St;). There is
now the illness, as Ch; S; happens by a clinical thermometer, ECG,
blood test, efc.; Sty happens by prescribed medicines, dietary meal,
gargling, inhaling, hydrotherapy, etc.: St;»y are the repetition of Sty
and Sto; the restored normal state is the health.

V)
—

Let be mentioned some successful CA from the last years! - a) OTT~
GREBORI-YORKE (Maryland) CA (having St-type steps), which was
the beginner of such experiences. - b) DITTO-RAUESEO-SPANO (Na-
vy) C, which reduced the Ch-m of an elastic band in magnetic fleld
into a regular one. - ¢) R. ROY and team (Georgia) increased the
energy product of a solid laser -~ by slowing up its Ch - onto 10-
15 times. - d) SHOWALTER and team with Hung. cooperation [7]
examined resultsfullvy— a simple CA to regulate the chemical Ch etc.

5.3 Let us close this paper with the hope that the applied mathematics -
in cooperation with other applied sciences - can promote surely the quick
development and the industrial propagation of this recent branch ‘CA of Ch-
m’, namely by more fine and profound discovery of Ch-m (and (), sequential
bifurcations. Str-att, fr.lines—dimensions-basin boundaries). by elaboration
of optimal CA for various Ch systems, etc. The expected success of the
‘controlled chaos’ promises a giant practical importance for the nezt decades.

*which is signed e.g. just by fr. properties.
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