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i\bstract 

I'his paper treats a) the s.c. 'capacil~" and -alternatp' i'ractal dirnension~ (fr.dirn.]. 
b) together with numerous illustrating examples of geometry. !1ature and modern arts. 

basin boundaries being often fr.dim. d J finally recent 'control algorithm< for reducing 
ic D10tions into periodic ones. 

capacity. point\\'ise. correlalion. information. LjapUllO\' fr.dirn.: fr.hasin bound
aries, control algoril hrns. 

1. Preliminary Remarks 

1.1 Since approx. 3 centuries. the study of a dynamical <iystem (dS: given 
by the differential equation (DE). mainly linear (lin.) ones and initial date 

m.T l'O 

had performed the classical task: to predict the motion (as 'history') of S far 
into the future. using some couIlting device. In our century, the (electric. 
later electronic) computers had brought greater possibilities for such far 
prediction. 

However, in the last 1-2 decades, certain exact sciences (e.g. fluid, then 
solid mechanics. later electric. electronic, physical-mathematical-technical 
etc. branches. too) had discovered speciaL s.c. chaotic m.otions (Ch-m) 
in non-linear (nlin.) dS, which cannot be predicted generally into the far 
future and exiges also new concepts. ideas, theories and methods, It became 
obvious till now, that 0) the Ch-m can appear in all nlin.dS. 3) it opened a 
ne\': age in the dynarnics and ~I) brought a type of revolution into the exact 
sciences [2]. [6]. 
1.2 Be characterized shortly the class of Ch-m in (deterministic) nlin.dS! 
- a) The motion of nlin.dS 0) - e.g, over a value 6 of control parameter (e.g. 
the frictional one 6 c/,,-') - can be regular (vibration with period T. tendig 

at t -:- ex; e.g. to a stahle limit cycle (Le) GT(§O); then 3) - under the values 
of a certain sequence <h > 62 > ,.' 6n > 6ex; the sequential bifllrcations 
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Q -t Qj -t Qj -t Qq (1: i = 1,2; j = i + 2, ... : q = 2n
-

2 + 2) and stable 

period-duplications GT -t G2T -t G 22T -t G2nT happen: finally ~() - under 

a heaping value 6X) > 6 - the asymptotic motion on the LC 62n T becomes 
an irreg1Llar (aperiodical), s.c. chaotic one: its trajectories are contracted to 
a funny (strange) attractor, on which the points jump irregularly: consequ. 
the prediction of this Ch-m appears totally impossible (practically, already 
for n > N). (This is the very frequent FEINGENBAUM way toward the Ch., 
but also other ways exist, too (see in [3]). In other words, the approaching 
way 0:)-,6) can be qualified as a deterministic input of Ch-m (without random 
or unpredictable inputs and parameters), over 61 with T periodic, then under 
61 > ... > 6n with 2T .... ,211T periodic vibration, which transits on the 
final way ~r) under 6:x; into a stochastic outp11t of Ch-nL under 6:x; with an 
aperiodic irregular jumping on a funny attractor, [Obviously. the Ch-m is 
not a random motion (as e.g. the BROW:\IAN one) with only statistically 
measured parameters and truly without input data]. b) A Ch-m is very 
sensitive to the initial conditions (IC)) that is small differences in the le 
can produce very great (enormous) divergencies in the final phenomenz:. -
'c) It bears a loss of information about IC, when the uncertainty dAo = d:r6 
at time to = 0 (in regular S) grows during t exponentially to dA t = dAo chi 

(in ch.S). - d) Its consequence h = t In ~:t is related (through the entropy) 

to the s.c. LlAPU:\OV exponent (see in [2], [3]) measuring the divergency 
of trajectories in the phase plane (1:, i. t). - e) Searching for the geometry 
of the (irregular become. s.c.) Ch-m, the s.c. 'strange aitractor' (Str-att) 
appears, as unusual (maze-like, multisheeted) structure in the phase space. 
- f) It is often measured by fradal dimension (fr,dim.). g) A cross ~ection 
of Str-att produced by the s.c. POINCARE map (Pc-map) a thread-like set 
of points shows also fr, properties. h) The transition between basin at ch. 
and periodic motions in IC or parameter space is often qualified as fr'. basin 
boundary. 
1.3 Such and other properties of Ch-m were treated in detail i:J. our pa
pers [6]-[7] and mainly in our series of papers [3] (recommended also for 
postgraduate students and doctorands, too), therefore it is unnecessary to 
repeat them now. Obviously, it \vill be here sufficient to recall shortly the 
basic facts) notions, methods, etc .. which are in a relation near enough with 
the fractal lines, dimensions, basin boundaries, etc. So they can help to fit 
- in this long 'fr, chapter' into the mentioned series, (which has given till 
now only short information about the HAUSDORFF's definition). 

2. Definition of the 'Capacity' as Fractal Dimension (Fr.Dim.) 

2.1 A very intuitive (geometric) measure for the dimension of a set of points 
has been introduced by HAUSDORFF (7/4, [3], [5]). This is a general defi
nition, which can furnish occasionally - a fr. number. as the dimension 
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of the examined set, so it is suitable to classify the POINCARE map of nu
merous nlin. systems giving quantitative measure for the fro properties of 
their Str-att. - vVe describe now the HAUSDORPP's definition of the s.c. 
'capacity', but later we will mention some other definition given e.g. by 
MANDELBROT, FARMER, etc. 
2.2 Let us observe now a set Sd of points in the (integer) n-dimensional space 
Sn (::::> Sdi, e.g. a uniform distribution of No points a) along some d = 1 dim. 
(plane or space) curve Cl in the space S3, or b) No uniformly distributed 
points on some d = 2 dim. surface F2 C S3. Then we try to cover this set 
of points with small 11 (= 3) dim. cubes of side c: > 0 (or spheres of radius 
c: > 0), namely using such covering cubes in minimal number N(c:) < No. 
If No is large enough. then N (c:) ,,;ill scale for d = L 2 and for arbitrary d 
(:s; n) dim. imuitiwly and approximately - as 

"V(c: ) ;:::: l/c: 

N(c:) ;:::: 1/c: 2 , 

N(c:) ;:::: l/c: d 
= (l/c:)d (c, d > 0) 

There is expected a limit behaviour 

N ( c:) ;:::: (1/ c) d -+ +x at c: -+ +0 . 

(1) 

(2 ) 

(3 ) 

(4) 

namely faster at larger d> 0 (connected with the information on Gl, F2 and 
Sd'S spatial placing, at increased accuracy for c -+ +0). The Eqs. (3)1_(4) 
show a natural way to the approaching value d got explicitly by logarithm 
of both sides: 

In N (c.) ;:::: d . In ( 1 / c:) , 

d ~ In N ( c: ) flIl ( 1 / c) , 

(5) 

(6) 

then to the exact \'alue de (referring with a subscript to the name 'capacity') 
defined by the limit formula: 

. In N(c) 
de = 11m ,with implicit requirement No > N(c:) -+ +00. (7) 

0-7+0 In (1/ c: ) 

It gives in simple cases the usual integer dim. d (= 1,2,3, ... ) (see the 
examples la-Ic): but it furnishes in numerous chaotic cases non-integer = 
fraction result, sc. fractal dim. (see the examples 2-3). 
2.3 Look at some simple. then complicated examples to calculate exactly 
the integer or fractal dim. of a set of points on a curve or surface. 

l/a) Linear distribution points: 

d = In N(c:J/ In(I/c:) = In 10/ 1n(I/0, 1) = 1...... (int.dim.). 

lOne can write more fully: :V(c:.) ;::;: C(l/c:.)d. but the limit c:. -+ +0 on d ;::;: [In N(c) + 
InCl/ln(l/c) makes disappear the term ofC. 
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l/b) Linear distribution on a curve: 

d = ln N(c)jln(1/c) = lnlO/ ln 10 = 1 ... (int.dim.) . 

N(c,)~ l/cS=10<No 

1··j···I··I··1··\·I .. ·I .. I .. + I 
C =0,1 No= 22 

Fig. 1. 

Fig. 2. 

l/c) Planar distribution of point:::: 

d = ln N ( 0. ) / ln ( 10.) = ln in 3:32" 

:2 . ln ln 33 ;::0:: :2 ... (iIlt.c1inl ). 

There waO' a sole step or the covering v;ith a unique :2. it can be 
continued (v>~irh TIne:;:- -:2 a berte~ approach to 2 ,il). 

2) I~OCH curve (190.:!o! rrehted in :\I:\;\OELBROT's book :19(7). The 
increasing 
length Lo = EO 1. 

procedure G ') set~ out frorn an inrer-;,-al C;o of 

divides it into 3 segInenrs of length El 
and the !11iddle one :2 seg:nlenTS of sin:..ilar 
the nei\, cun'e (;1 of ,Y1 = -i side~ ha~ obi"iously the total length 
11 = .Y j El -=/3. The continuation happens by repeating of the 

fornlC'T r' - c 11 1 i c·.1 .... ~ ., 0 1 .' '1, 1 th S. .)3 ':) Tor a. Lle -'= "le C~. ""al,lt,~ "lC I. .1 

-in segmem:" of lengrh En (1/3)11 with the total iengrh 
t, 

~\~l1~n Tending n -7 +X. so Gn -C' G. En -7 ..:...0. 
+x and 111 = 'Yn~'71 +x. then 

In 4 
de == linl 

n-<:-c In (1/0. n ) ln 3 
1.261S5 .. (rr.dinl. ) 

and thf> fractional line C;n of -\-71 ::;t?gn1ents looking becomes 
a conrinuou5. bur llov,'here differentiable limir curn, G p _ 19. ,,;). 'This 
set of points C;n C; of din1. de ~ 1.26 appears as trying to coyer 
more rhan a line. bur reaching ro fulfiil le:"" rh an an area only. hcl\'ing 
ne':errilele55 some propenies or area. a5 a young boy's scribbling \\'irh 
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coloured crayons on a piece of sidewalk. We will find such fractal 
like structures for basin boundaries of periodic attra.ctors (see e.g. 

[5] p. 244) and for boundaries between periodic and Ch-m (see e.g. 
here, p.12) therefore this r";:OCH curve is very important for the nlin. 
dynamics. 

:; 
v. 

3) CA~;TOR :;et (di~coyered in 1883) can be produced by a decreasing 
geometric process. ::\amely. this also very significant concept for nlin. 
~y;:tems Ciln be origined by repeated finer and finer pieces 
from the initial line 1\:oc ff Clll"'e. by repeated complementing 
~mailer ane! smalicr segmenrs to the initial interval!. The construc
tion's procedure 5;,: n) to take an interval 10 
of length Lo == :0 == 1. to diyide if into 3 pc!fTS of lCl1gth 

and -: to omit the middle one and ro rlw 
parts as union 11 v:ith rotal L 1 .Y j 01 

El == 1/3 
.\'1 = 2 
('ontin-

nation by repeating of 5;3: after the nth 5;3. there IS the remaining 
In with .Y" 2" segment;: of lE'l1g:th On = 11/3)" and total k·ngth 
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1\ 
Ln = Nnen = (2/3)n (Fig. 5). At 11 -+ +x, these limits appear: 
In -+ I, e -+ +0, Nn -+ +00, Ln -+ +0, then 

. In N n 11 In 2 
de = hm = lim 

n-Hx'ln(l/en) n-+= In2 

In 2 - = 0.63092. . . (fr.dim.) 
In 3 

Consequently, the infinite point-series I of dim de = 0.63 ... shows 
itself more, than a point (of dim. 0), but less than a line (of dim.l). 
On this discontinuous fr. set, one can generate a continuous fro func
tion, namely by integrating a distribution function of the total unit 
mass at the start on the total interval 10, later on the remaining and 
decreasing CAI'\TOR intervals h, .. . ,In' with increasing mass density. 

After the nth step, when In consists of N n = 2n parts of length 

en = (1/3)n, the density is (!n = (3/2)11 ~ en for all the Nnen

segments (obviously: Ln(!n ~ Nnen . (!n = 2n(I/3)11 = 1 total mass) 
o 0 

and (!n = ° for all omitted (vacant) segments of In (el,2e2: ... ,211en: 

o _ 11-(2/3)n _ 1 ('>/3)71.. L Cl _ ('>/3)71. [1 (·)/3)n] - 1 !c. L ) Ln - 3 1-2/3 - - ~ ,n + Ln - - + - - - - o· 
o 

The mass on the interval Ix = [0, xl at J.: E 111 will be calculated by 
integration 

x 

lvf11 (x) ~ J (!n(Od~ = L~(!n = N' enQn = 2v . (1/2)" = (1/2)n-v 

o 

at N' ~ 2v < 2n ~ Nn , but at v = 11 one has A1n(1) = 2"(1/2)" = 
(Fig. 6). 

1,0 

o 1,3 0,5 2,3 

Fig. 5. 

Its figure is a fractional, but continuous line consisting of oblique 
(increasing with tan'-P = (3/2)71) and horizontal segments. - The 
limit curve at 11 -+ +x is the s.c. 'devil's staircase' l11(x) having 
Af'(;r) = (!(x) .L~l J(x - ~i). 
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Fig. 6. 

4) 'Decreasing' triangular set: To = Tl = ~To. T2 = j96TO .... , 

Tn = or': En = (1/2)71, ,V71 = 371: de 1n3/1n12 = 1.5737, .. . 

(Fig. 1). 

3. Alternate Definitions for the Fr.Dim. 

3.1 The earlier introduced capacity de to measure the fr.dim. of Str-atts is a 
geometric metric (considering without the frequency of urbit the covering 
set of cubes or balls in phase space), but also a numeric one (counting the 
mentioned covering process often by computer). The following alternate 
definitions giving for many Str-atts roughly the same dim. - will be good 
controllers for the capacity de [5]. 
3.2 Pointwise dim. (Pw-dim.) On a long-time trajectory in phase space. 
we sign time-sampled points of motion in large number No. then place a 
sphere of measure l' at some point Qi of orbit and count the points in it: 
N(r). The proportion P(r, Qi) = N(r. Qi)/No gives us the (combinatorial) 
probability of finding a point in this sphere (from No ones). - For a I-dim. 
(closed periodic) orbit will be (at l' -t 0, No -t (Xj): P(1', Qi) ~ br: for a 
2-dim. (toroidaL quasiperiodic) orbit: P(r,Qi) ~ br2; for a general case: 
P(r, Q;) ~ b1'dp , consequ. [5] 

InP Inb 
----~d 
In1' In1' p, 

finally d =limlnP(1',Qi). 
p r-rO In r 

(8) 

For some attractoL dp is independent of Qi; but generally dp = dp(Qi), when 
it is suitable to count an averaged Plc-dim. on the randomly chosen set of 
points 91, ... ,9i,··· ,9A1 at 111« No (e.g. distributed around the Str-att): 

1 11,[ 

In - L P( r, Qi) - In a ~ dp . In r , 
111 i=1 
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f. 

In 
(9\ 

Practically, at _Vo ~ 103 
rv 104

. one use Ji ~ lO:! cv 10:3 . 

3.3 Correlation dim. (Cr-dim.). It is used successfuliy 5111ce 1983. main!;: 
by experimentalists, they find it often as lelated to the Pw-dim. 

\Ve discretize the (coIltinuous) set TO one of _V points L?i}.Y 111 the 

phase space, then count the distances Sij = Qj I !' [:Lk(:q,i - Xkj 
1/2 

(or S;j = :Lk Ix/,; - .Tkj I) for the Cr-function [5] 

C(r) lim _1_. ( number of pairs i.j ) 
.Y-+x ,y2 . with distances Sij < r . 

that is the number of points Qj 111 each sphere of centre Qi and radius r 

(where the unit spring function 1(1' {01 at r > S;j : the sum is 
at l' < Sij 

performed 
only). For 

here about every point, but at the Pw-dim. about .If <K Xo OIles 
Illany Str-att. one can find a po\\'er law (for I' -+ 0) 

In Clr) 
lim " 
1'-+0 In I' 

C( r) ~ ar dc , from which the Cr-dim. originates de 

(10) 
3.4 Information dim. (1nL dim.) This definition 10' similar to one of dc . 

but it tries to take into account the frequency of visits each cO\·ering cube by 
the trajectory (assumed: it is long enough to cO\'er dfectively the Str-att). 
Having again a set of points No to discretize uniformly the (continuous) 
trajectory and covering it with a set of ~V cubes of size E. one counts the 
number of points Xi in each of _V cubes and the probability Pi of finding a 
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point in the i th cell: 

S 

Pi = :VJYo (eY«:Vo) LPi 1 . (11) 
;=1 

Then the information entropy (approached for small c. too) appears so: 

.V 

I(E:) = L Pi In Pi ;::: 1n(1 
i-=l 

and from this the definition of Inf. dim. origines [5]: 

I(c) t .. LiPi1nPi 
lim --- = 1un =-'--------
~~Oln(l/c) ~~o 1nc 

(12) 

(13 ) 

I(c) is a measure of the ll.npredictability in Cl system. For uniform proba· 
i\ f. 

bility Pi cYirVO l!-Y ~ P. it has a maximlLm: 

.Y 

I(c) LP; In Pi 
1 

-.V . P in P = :v . - In :v 
.V 

in X(c) = i(c). (14) 
i=1 

nloreover 

J
- t r j (=: ) l' In cV ( =: i\ I 

(I = .lnl --- = !In ( c : 
;:-+Oln(l/=:) ;:-+Oln(l/=:) 

(15 ) 

as it is provable. ciJ S de in general. 
For a sole filled (and each other empty) cube:V1 'Yo. P1 = 1 (so at 

i :f. 1: .Vi = Pi = 0). there is I(=:) = In P1 -1· In 1 = O. consequ. 

d! lim;:~o In(~/") = 0: this is the case of maximal predictability. 

Let still be mentioned the qth order Inf. entropy and dim. (1984: useful 
in statistical mechanics and inf. theory): 

1 .\' 
--In LP;, 
1 - q i=1 

(16 ) 

Its cases q = O. L 2 (with q = 1 + 0,.q -+ 1 at q -+ 0) make connection with 
dc . cl! and de so [5]: 

10 
.\' 

In L p? = In .V . 1 = In X ~ j (c) . 

i=1 

1 '\' ~'1 lim -In L PiP. = 
~q-+o 0,.q. 1 

1=1 

:v 
- L Pi In Pi ~ I( =:) . 

;=1 

.\' 
'\' .) 

In LP;- 1im In 2· :VoC(e) . 
• \ 0--+ 0 

;=1 

(IT) 

(18) 

(19) 
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Finally, it was proved (1983), that de ~ dl are lower bounds of dc • however, 
they are very close for many known Str-atts: 

(20) 

3.5 Fr.dim. based on LJ..\pl':'\;ov (Lj.) numbers & exponents. As 
memorable, there exponents ,\; = In Li measure the (rate of the) velocity of 
2 trajectories (going out from 50(,:): Iq~ - qo! ~ E and) diverging on the 
attractor with Iq" - q, I -+ ex: (at n -+x), or converging off the attractor 
toward another one with q" -+ qi. (at n -+ cc). During this dynamical 
process, the initial conditions' sphere SOlE) is imagined to deform into an 
ellipsoid (in 3 dim.). - At a chaotic 2 dim. map Q,,+l f(Qn)' the circle 
Co (E) deforms into an ellipse having - after ~\Io steps of itera t ion the main 

axes Ll and L2. where Ii > 0 at (i = L 2) as over the whole atnClctor 

averaged values are the Lj. numbers, their logarithm /\; = In Ii r.he Lj. 
exponents. KAPLA:\ and YORK (1978) have proposed to calculate for a fr. 
attractor this Lj. dim.: [2]-[.5]: 

1n Il 
elL = 1 + --=-

In (1/ I 2) 
(21) 

A DE § = F(Q.f) of 4 dim. (Q,§ E E4) given for Cl clissipative system has 
a POI~CARE map Qn+l = f(Qn) of 3 dim. (Qn:Qn+l E E3). For its Str-att. 
one can find 

(22) 

that is the ellipsoid has tension, length-keeping, contrac~ion in the 1st , 2nd , 

3rd main direction, resp. Because of dissipation. the ellipsoid's volume is 
less than the sphere's one, so that 

(23) 

This circumstance leads us to use the K. and Y. formula (as the special case 
k = 2 of their general one) for Lj. dim.: 

(24) 

where it is difficult to measure the contraction's Lj. number I3. 
For an N-dim. POI:\CARE map of such a system and at the order 

they have given for the Lj, dim. the following general form1/,la [5]: 

(26) 
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which is also a lower bound for dc, that is 

(27) 

Remarkable that FAR\!ER (1983) has given for the Bir the following con

nection (at Ia = Ib = I): 
In(l/a) + (1 - a)ln[l/(l - a)] !\ H(o::) 

1+ =l+--=-
In ( 1 / /\) + (1 - a) In ( 1 / /\ ) In ( 1 / /\ ) 

(28) 

moreover at 0:: 0:: = 1/2 and H(o::) = In 2. one obtains: 

(29) 

and the map is like the horseshoe. or CANTOR map. - \Vorth mentioning 
that the studied dynamical process can lead to a nonuniform POINCARE 

map, v,,-hen the different f1'.dims often yield different results. 

3.6A The nature exhibits f1'. geometry in rich variety. Fr. curves (as frac
tioned lines consisting of straight pieces with free length and direction): a) 
border the coastal region of oceans, seas, lakes. b) similarly one of (pen)isle 
countries (as Island. England. ;\orway, etc.) (with longer frontier at finer 
measuring). Such (often randomlike) f1'. formations appear (in the plane or 
space): c) on the ice of lake, as clefts: d) at the lightning, as trace lines of 
discharge: e) the contour line of mountain chains (looking from far): f) on 
the snowflake, as its contour and surface: g) on the frost - works of win
dow. as strange figures: h) at the leaves' falling in windy autumn. as layered 
spread of foliage; i) fleecy clouds on the sky; j) the (randomly) ramifying of 
certain plants (e.g. cauliflower), bushes (e.g. blackberry); k) similar spread 
of weeds among the plants; 1) sinking down sand grains during a sand storm: 
etc. [2]. [5]. (Fig. 8). 

3.6B The artists' senSitIVeneSS to the f1'. properties is remarkable. E.g. 
at the beginning of the century, a) the impressionists have used coloured 

points to make perceptible different effects in the space: b) in its 2nd half. 
VASARELLY and others are using a rich world of colours and fitted geometric 
forms for various effects of space. c) Today. some textile designers create f1'. 
figures for ladies' wear [2]. [5]. 

4. Fractal Basin Boundaries 

4.1 Attractors and their basins. In most lino systems (given e.g. by a 
lDE). there is just one possible motion for certain input and one attractor: 
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5. Control of Chaotic Motions (Ch-m) into Periodic Ones 

5.1 As it was stated (e.g. in 1.1), a Ch-m 2 cannot be predicted into fu
ture. Therefore the applied sciences (e.g. the appl. math.-phys.-biology
chemistry, etc.) intended recently to keep a firm hand on such a motion and 
reduce it possibly into a regular one. In the last 3-5 years, the researches 
have proved that the Ch. systems can be controlled really, that is their 
Ch-m can be moderated into a periodic one. 

In research institutes of various applied sciences, mainly interdisci
plinary teams have found 8everal 'control algorithms' (CA) for such pur
poses. Of course, these CA look very specific with strongly different details. 
but yet one can state some general steps Stk of common quality: such are 
e.g.: St1 diagnostic step: one observes with suitable feedback. or mea
suring tool - 'just where is walking the Ch. system S', that is in which 
direction and measure are deviating its control parameter (C p) values from 
their normal ones: St2 correcting step: one betters the Ch-S's behaviour 
by small perturbations of the mentioned Cp. to drive its Ch-m towards a 
periodic one: Sti>2, repeating steps of Stl and St2, too, for hindering 5 
from reverting to the Ch [7]. 
5.2 Stay here some example! 

1) It is obvious. that the medical treatm.ent of an ill person can be con
sidered, as a CA (it is suggested also by our naming of St;). There is 
now the illness, as Ch; S1 happens by a clinical thermometer, ECG, 
blood test, etc.: St2 happens by prescribed medicines, dietary meaL 
gargling. inhaling, hydrotherapy, etc.: St ;>2 are the repetition of St 1 
and St2; the restored normal state is the health. 

2) Let be mentioned some sllccessful CA from the last years! - a) OTT
GREBORI-YORKE (:0ilaryland) CA (having St-type steps), which was 
the beginner of such experiences. - b) DITTO-RAUESEO-SPA:'-iO (Na
vy) C, which reduced the Ch-m of an elastic band in magnetic field 
into a regular one. c) R. Roy and team (Georgia) increased the 
energy product of a solid laser by slmving up its Ch - onto 10-
15 times. - d) SHOWALTER and team ,,"ith Hung. cooperation [7] 
examined resultsfully- a simple CA to regulate the chemical Ch etc. 

5.3 Let us close this paper with the hope that the applied mathematics 
in cooperation with other applied sciences - can promote surely the quick 
development and the ind·ustrial propagation of this recent branch 'CA of Ch
m', namely by more fine and profound discovery of Ch-m (and Cp. sequential 
bifurcations, Str-a tt, fr.lines-dimensions-basin boundaries). by elaboration 
of optimal CA for various Ch systems, ete. The expected success of the 
'controlled chaos' promises a giant practical im.portance for the next decades. 

2 which is signed e.g. just by fr. properties. 
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