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Abstract

The determination of dynamic responses (accelerations. stresses) of linear systems with
es of freedom costs much work and time. Practically thes s
large number of degrees of freed t ! kandt Practically the same results
cin be obtained by using an appropriate method by which the given dvnamic system can
be re leving less cost and time required for computation.
be reduced achieving less cost and | 1 fi t
Retaining the structure of physical model the static reduction is the most frequently

is heuristic, therefore only the stiffness matrix of the given system is problematic.

Considering the computational possibilities there are more ways to determine the
stiffness matrix of a simplified model. A reduced stiffness matrix, elaborated from the
results of dyvnamic analysis of finite element models. is competitive from the point of view
of accuracy and computational costs.

Keywords: FEM analysis, structural dvnamics, static condensation, vehicle dyvnamics.

1. Introduction

Concerning the caleulated outputs of dynamic systems the increase of de-
grees of freedom (DOF) causes several problems. such as: the computational
time increases exponentially, where the power term is about 3 and 4. and
on the other hand the punctuality of computation is reduced. The reason
of these failures is the more segmented. detailed model. Therefore the time
or frequency domain functions can be calculated with smaller time or fre-
quency sampling intervals and required time to calculate the independent
variable, as the answer function is proportional with the 2nd-3rd power of
the unknown functional.

By increasing the DOF of model, the information obtained by the
computation also increases. Although the information must be considered
very carefully. hence the possibility to measure data on a real system is
very much limited in comparison with the calculated points of available
model. The results obtained from computation are adjusted according to
real measurements.
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From the afore-mentioned facts it is clear that in the selection of the
number of unknown parameters the designers should be careful, hence the
computational facilities allow us much freedom. Therefore the models de-
signed for static modelling must be simplified for dynamic analysis. From
the reduction technics the method of static condensation is the most known.
A practical implementation is shown in this paper, used to model vehicle
undercarriage systems.

2. Dynamic Structure of Vehicle Undercarriage Systems

The description of the defo
based very often

parameters, such ’ s, stimnes g parameters are sou hf
from finite element (FEAI) ._1odelling. For example the mechanical model
of a bus structure can be represented by 300-300 nodes, where each node

has six DOF.
In

duced significantl;
points, and on the other hand to a furt
dynamics of vehicle are considered. I‘iez we suppose that from the vertical
lateral vibration
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excitation no lateral force exaggeration exist
occurs. (A small scale lateral displacement can only occur due to three-
dimensional geometrical and stiffness constraints of the model). The DOF
is equal with the number of nodes.
i lead to further

~

of dynamic mmll therefore

mplifications. The sI:
. . .
of vehicle. where
During the model

description of the, before mentioned phenommw concerning rhe dyuumc
impacts. Then the dinamic models of buses could be described by 140-200
DOF.

Although. we can state without going into details that the global equa-

tions of motion of a bus can be described with appropriate 40-60 DOF.
moreover if we on 1:\' consider the bending modes then this number can be
reduced to further 8-12. which results in two times smaller DOF.

3. Berivation of Stiffness Matrix of the Simplified Dynamic

Model
After the selection of the unknown paramerters of dynamic model the system
matrices of the static finite element model have to be transformed info
the dynamic free 10'11< In the following, only the reduced stiffness matrix
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is considered. In theory the solution is simple: after the participation of
stiffness matrix the unimportant unknowns of the dynamic calculation are
eliminated {static condensation. Guyan algorithm):

S11 Si9 X1 B
- — foy 1
Sa1 S99 X 0 (1)
x2 = =S5 Sa1x) (2)
S7G(IX1 = (3)
Sred = Si1 — S12855 Sa1 . (4)

"reduced stifiness matrix is not problemless, hence
W the market have no such option. moreover

em has no access. The stiffness matrix of

- be sought from the optional facilities of
FE \I pro
built up from 5 digit. rounded results of the internal calculations. Although
this data file consists the errors of numerical calculation. too.

The stiffness matrix of the dynamic model can be determined based

~

on the concepts of

L_mecxw\ that the elements of the condensed matrix are

a, kinematic load,

b. ﬁe,:i‘Lili‘r_\' matrix and inverse matrix theorems or instead of the con-
cept of static load the marrix can be obtained as a result of dynamic
analysis, as

¢, the combination of eigenvectors and eigenvalues.

oe
C>

Concerning the above mentioned methods the ¢ variant has given the
best results obrained from the tests made on different underframe structures.
This method needs less work and computational time and the obtained re-
too (the comparison

e GAMM'94 Confer-

sults are satis-ac ory concerning numerical punctualit
of different methods is summarized and presented at

ence in Braunschweig).

I\
1
th

The meaning of stiffiness matrix reduction based on the knowledge of

modal parameters (ei lue and eigenvector) is as follows:

ag
(D
/
f\)
jany

nechanical system can only be done, if

I¥ this condition is satisfied, then the system has to be transformed
into the place of degrees of freedoms of the non-zero elements of the mass
matrix, which means static condensation.

M, a7 X1 N St Sp» ’ X1 10 (5)
0 o [‘{2 "1 S;1 S22 || x 0]

X2 = “577 So1x7 . (6)
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MiX) + Sregx1 =0, (7)
Sred = S11 — S12555 S21 - (8)

The solution of eigenvalue problem simply means the determination of the
modal parameters of the simplified model. From the results, the missing ele-
ments of eigenvalues and that of the reduced mass matrix can be calculated
by the inverse transformation method. If the mass matrix of the simplified
model is identic, then the equation of motion described in the subcoordinate
system is as follows:

T'ETq+T!S,.yTq =0, (9)
Eg +

Agq =0, (10}

from which the searched condensed stiffness matrix:
Sred = TATT . (11)

where

A - diagonal matrix, consisting the eigenvalues (square values of own
frequencies),

T - normated eigenvector matrix sought from the non zero elements of
mass matrix.

The way to determine the reduced stiffness matrix is as follows: in the
places of degrees of freedoms to be reduced, identity mass distribution is
considered and then the eigenvalue problem is solved as an option of FEM
analysis. At the end, when the modal parameters are selected, the masrix
is built up and the required operation is carried out.

4. Numerical Investigation and its Results

In the afore-mentioned paragraph the obtained condensed matrix can have
different errors, such as the errors of the numerical procedure. which can be
introduced through the process of condensation of mass matrix. the ifera-
tion procedure of eigenvalue analysis and from the truncated and rounded
presentation of modal parameters (eigenvalue, eigenvector) in the data sheet
cof FEM analysis. While the error mentioned at last can be approximated,
the errors of numerical calculation are unknown (besides the eigenvalues).

In the evaluation procedure of reduced mass matrix punctuality, the
static equilibrium equations can be considered as the basis. If the flexible
constraints of the svstem are removed then a free system is obtained. whose
stiffness matrix only has internal contact forces. The force system of the
kinematical loads existing in the rows of the stiffness matrix must fulfill the
conditions of weight point and moment. This means that the sum of the
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elements in the rows of the matrix and the moments calculated to the weight
points must be zero. Although the satisfaction of the equilibrium condition
is only a necessary condition. Further information can be obtained to the
reliability of the condensed stiffiness matrix, if the modal parameters are
calculated to the free systems, too. Without going into details it is evident
that the eigenvectors used as kinematical loads must fulfill the equilibrium
conditions. The shape of eigenvectors, the number of nodes, i.e. lines, and its
situation given for a construction (for example bus system}, gives additional
information for the experts in order to check the computed results. Hence,
in this way the contents of errors can be detected.

The numerical analysis is carried out for a grid system of a bus and
in the other hand four FEM bus models were under investigation by the
application of SUPERSAP software package. The reduction has been made
in the vertical plane of the underframe of the vehicles, according to the
imagined vertical deformations of beam elements.

This flexible beam represents the average reduced stiffness of logitu-
dinal underframe structures. incorporating the effect of lateral beams, too.
Then the global bending stiffness parameters are given.

The eigenvalue problem is only solved to the free system consisting a
grid structure. The applied FEM program is only capable to handle the
modal parameters of constrained system, therefore the model is fixed with
small value of stiffness.

The goal of investigation is to prove the applicability of the mentioned
theorem. The most important information of the given figures in the ap-
pendix can be summarized as:

the DOF of the system and its reduced counterpart,

the size of the elements of reduced matrix,

the geometrical location of weight point and

the sum of errors in one row of the matrix. which is defined as the sum
of elements and their moments.

e @ 0 0

5. Conclusions

1. The reduced stiffness matrix practically satisfles the equilibrium con-

ditions. The values of the sums derived in every row have not reached
the size of rounded errors.
For example concerning the grid model of bus system, the maximal
rounded error 0.5, due to the 5 digit displaying (while in case of 5th
order approximation, the roundoff error is 3), while the error conse-
quence concerning the moment is not else than the maximal distance
multiplied by the value of error 0.57480 = 290.

2. Concerning the last model the values of errors are greater and the
sum of moments shows a large scale deviation in a range. which can
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be located geometrically. The probability of this phenomenon can be
found in the fault of FEM program made for statistical analysis. This
comes from the investigation so that the errors deduced for the moment
are very close to the already determined values by the application of
kinematical load (a, variant). Although by this the usefulness of the
concept, i.e. that the matrix is derived by the modal approach can
be counteracted with the results obtained by the static condensation
method, moreover it can be deduced that the relative error is within
the range of round off errors.

The above statements are concerned with the simplification of an order
of two models. therefore one can conlude that such a large size of
reduction can be used in numerical way.
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6. Appendix A
Model of the side wall of the bus

LN N

static model: 17t DOF
dynamic model: 9 DOF
Sinax™ 5.5180E4 Smin= 121.6 [-10 N/cm] Xmay™ 480 fom]
max. round off error: AF=035 A M= 240
DOF 1 2 3 4 5 6 7 8 9
AF 037 -077 0% -0.55 023 -055 0.9 -0.77 037
AM 41 -135 102 -22 0.0 28 -102 135 -41

FE model of the Midi-bus

static model: 1969 DOF
dynamic model: 8 DOF
Smax= 6.4682E4 Spmin= 1.0784 [-10 Nem] Xmax=330 [em]
max. round off error: AF=035 A M= 163
DOF 1 2 3 4 5 6 7 8

J
AF -0.05  0.03 002 036 036 036 -0.02 -0.08
AM -4 16 -95 140 -85 31 -67 13
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FE model of the citybus (vers. A.)

Smax™ 6.9082E4
max. round off error;

DOF 1
AF 0.06
AM -29
1%
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Smax= 1.7078E5
max. round off error:

DOF 1 2 3
AF 009 -008 0.64
AM -058 -151 291

AM, -0.57 -153 291

static model: 1737 DOF
dynamic model: 8 DOF
Smin= 9.7424 [-10 N/em] Xmax= 327 [cm]
AF=035 AM=263
2 3 4 s 5 7 8
-0.11 0.1 0.36 +1.08.°098 © -0.28 0.03
82 =225 296 277 191 -102 43
FE model of the citybus (vers. B.)
T ]
S
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static model: 2668 DOF
dynamic model: 12 DOF
Smin= 5.3274 {-10 N/em] Xmax= 517 [em]
AF=5 AM=258E3
4 5 6 7 8 9 10 11 12
-0.19 -076 074 042 -133 331 -221 -0.74 034
-0.94 0.14 -0.18 014 -024 050 -024 0.07 -0.07
-0.92 012 -0.16 013 -022 039 -0.15 008 -0.08
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E4




