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Abstract

The development in railway vehicle technology requires adequate dynamical analyses to
ensure accurate and reliable information on the expected loading conditions of the ve-
hicle components in the period of design. This paper takes an attempt to formulate an
exact mechanical and mathematical description of the wheel track system. The wheel
is considered as a rigid disk, while the track is modelled by an Euler-Bernoulli beam on
damped elastic foundation. The connection of the wheel and the track is realized by the
linear Hertzian spring and damper. Stability considerations. critical speed determina-
tion and solution of the boundary value problem will be carried out. Also the complex
eigenfrequencies will be pointed out.

Keywords: wheel-track system, continuous beam model, linear partial differential equa-
tions.

1. Mechanical Model and Mathematical Description

The in-plane model introduced in [9] consists of a moving loaded wheel
on elastic foundation where the contact between the wheel and the rail is
modelled through a paralelly connected linear Hertzian spring and damp-
ing. The model is shown in Fig 1.
The partial differential equation of the Bernoulli-Euler beam on an
elastic Winkler foundation has the form
4 2
'-TE—Z—+pA%t—;—+iig—j+sz:(To—mZ)5(3:—vt), (1)
where z(z,t) denotes the vertical displacement of the rail, and Z(t) stands
for the vertical displacement of the wheel. Here the positive real param-
eters I, B, A, p and s mean the moment of inertia, Young’s modulus,




36 1. ZOBORY et al.

vt N

AIEQ z=2z(x t) KeETou

s$'%¥$h’$t$ﬁgl *

7
Demped Winkler foundation

_— =

Fig. 1.

cross-section area, mass density and distributed stiffness, respectively. The
nonnegative real parameter k stands for distributed damping, while the
real parameter v denotes steady longitudinal speed of the wheel.
The sclutions z(z, t) of the partial differential Fq. (1) must satisfy the
boundary condition
Ilir,nv z(z,t) =0. (2)

o

Egq. (1) is coupled with the ordinary differential equation
Ty—m% =ky (% 2 ) Z - z( 3
lo—ms =Ky k — E~(Ut,t)) -+ Sy (A —4(1?t,t)> ( )

with initial conditions
Z(0)=2Z and Z(0)=V;. (4)

Here the constant positive parameters T, m, sy and ky stand for the wheel
load, the mass of the wheel, the stiffness and damping of the Hertzian
spring, respectively.

Remark 1.1. Partial differential Eg. (1) is meant in the distribution or
generalized function sense, i. e. z is in fact a linear functional on the vector
space C§°(R?) of smooth functions vanishing outside a bounded closed
set in Rz, and § stands for the unit impulse or Dirac’s é-distribution, see
e. g. [8].

We are looking for a solution of the system (1-4) in the form

2
z(z,t) = Bo(€) + _ Bi(&)e™™, zm=%+2@“, (5)
=1 i=1

where £: = z — vt is the relative longitudinal displacement, B;(£) is a
complex valued function and §; is a complex constant for j = 0, 1, 2.
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A(vw)EC
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Definition 1.2. A complex number w; satisfying (5) is called a complex
frequency of the system (1-4).
Qur first goal is to obtain a solution for the partial differential
equation
t2 8%z Oz
FI—_ L, A~ L L
Blgg tedge Th%
where w is a complex number, i. e. a possible complex frequency, under
boundary condition (2). Such problems have been solved by KENNEY [6],
MATHEWS [7] and FiLipPOV [3] for the classical case w = tw, w — R. In
this paper we use another method, which is similar to that of DE PATER [2]
in the classical case.

If we are looking for a solution of Eg¢. (6) in the form

+ sz ="'z — vi), (6)

&

2(z,t) = B(€)e", (7)
then by substitution we obtain the ordinary differential equation
EIBY™ + pAv’B" — v(k + 20Aw)B' + (s + kw + pAw?)B =6  (8)
with characteristic polynomial
P(\) = BIN + pAv?A? — v(k + 2pAw)A + (s + kw + pAw®) . (9)

It is to be mentioned that the roots of (9) will be considered as functions
of the two essential parameters, namely v and w. In Fig 2 the allocation of
the roots A\;(v,w); i = 1, 2, 3, 4 is visualized as lying in the complex plane
positioned at a height v.
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In case of our dynamical problem it is enough to restrict ourselves to
the following, so-called moderately damped case, however, computations
of the following chapters can be carried out in overdamped cases, too.

Definition 1.3. We call our system moderately damped if the relation
4pAs — k>0

is satisfied.

2. Stability Analysis of the Characteristic Polynomial

We are interested in the question concerning the number of roots of the
characteristic polynomial

P(A) = EIN 4+ pAv® A2 — v(k + 2pAw) ) + (s + kw + pAw?)

with Re(A) > 0, where 4pAs — k> > 0 is satisfied, i. e. the system is
moderately damped.

For technical reasons we shall introduce the following nondimensional
variables:
instead of A the complex variable

4| _ABIpA
H= M ipds — k2

instead of v the nonnegative real parameter

ci=u¢ __ A
" "V EI(4pAs — k2)’

and instead of w the complex parameter

k4 2pAuw

e
VipAs — k2

Substituting the above new variables, our characteristic polynomial will
have the relatively simple form

p(p) = p* + (ep = v)* + 1. (10)
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Im w==17

—k .. .
Theorem 2.1. If Re(w) # 5T then the characteristic polynomial
Zp

P(A) = EIN' 4 pAv®2% — u(k + 2pAw)A + (s + kw + pAw?)

of a moderately damped system has two roots in the left-hand halfplane
and two roots in the right-hand halfplane.

(The assertion can be illustrated by Fig 2, in which, on the one hand,
the ‘parameter space’ of pairs (v, w) can be seen with the critical plane lo-

cated at Re(w) = — oA perpendicular to axis Re(w), while the allocation
2p.
of roots A;(v,w); i = 1, 2, 3, 4, on the other.)
Proof. We utilize the generalized Routh~Hurwitz theorem in the form of
GANTMACHER [5].
Let a and b denote the real and the imaginary parts of v, respectively.
Then the characteristic polynomial (10) has the form

plp) = '+ (cp—a—bi)* +1. (11)

Instead of (11) we shall use the polynomial

ip(ip) = i(p* — p® + 2bep + a® — B + 1) -+ 2a(cp — b). (12)
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We compute the resultant

1 0 - 2bc a?—b>+1 0 0 0

0 0 0 Z2ac —2ab 0 0 0

01 0 = 2be a’—b>+ 0 0
D000 0 0 2ac —2ab 0 0 _
*Tloo0 1 0 —? 2be a?-b’+1 0 -

0 0 0 0 0 2ac ~2ab 0

00 0 1 0 —? %be a?—p24+1

00 0 0 0 0 2ac —ab

of the polynomial (lZ).
Suppose Dg # 0. Then (11) has no imaginary roots.
Now we compute the even order corner minors of determinant Dg:

I an d Dg > 0 follows, and by the generalized
Routh—-Hurwitz theorem we have

— 1 ', I 7;—‘ DG\ A ! —
TL-——§ p-rl—(-1)-sgn<73-g>)~rl—é.
If ac < 0, then Dg > 0 and Dg > 0 follows, so we have

_1/ e (Ds\\ _
=t (3))-

+1

Lo

Ifc=0, thenn = P = 2 follows.

Hence for Dg # 0 the statement of the theorem is proved.

Condition b* + ¢*(e” + 1) = 0 implies b = ¢ = 0 and p? = +£iva? + 1.
So in this case we also have two roots both in the left-hand and in the
right-hand halfplane, just as in any case with a # 0. O
Theorem 2.2. Let us preserve the notations of the previous proof and
suppose v = bi is imaginary. Then characteristic polynomial (10) has two
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2

3 4
rp = %2_ <C§+ \3/c4+'216—'r 124/3(c*-+108)+ §/C4+216——12 3(c*+ 108)) .

Then minbs = by(—7¢) and maxb- = b-(rg), where rg is the positive
square root of 7.

Polynomial ¢ can only have imaginary roots if ¢ = 0 and |b| > 1, but
then b is in the range of one of the functions b.. .

If b is out of the range of functions by, then ¢ has two conjugate non-
imaginary root pairs, hence two of the roots i = 77 of p lay in the left-hand
halfplane and two of them are in the right-hand side one. O
Remark 2.5. A complex frequency w can kill damping out if Re(w) =

k
_m_
case, see e. g. [1].

Then the situation is similar to that of the undamped classical

3. Critical Speeds

Definition 3.1. We call v a critical speed for the complex frequency w if
the characteristic polynomial

P(A) = EIN' 4 pAv® A2 — v(k + 2pAw) X + (5 + kw + pAw?)

has at least one multiple root. In this case w is called a critical frequency
for v.

Remark 3.2. The analysis of the solutions for (6) over the critical speed in
the classical case is given by Bogacz, KrRzYZINSKI and POPP in [1].

For the sake of simplicity instead of characteristic polynomial (9) we
shall use our nondimensional characteristic polynomial

p(p) =pt + (ep—v)? + 1

of the moderately damped Fgq. (6).

Theorem 3.3. Any nondimensional speed ¢ appears as a critical speed for
some nondimensional critical frequencies v satisfying the equation

160° + (* + 48)v* + 4(5c* + 1207 + (¢! —4)° = 0. (13)

If neither ¢ = #++v/2 nor ¢ = 0, then there exist six distinct critical
frequencies £bi, v, £7, where bi is imaginary and v is neither real nor
imaginary.
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If ¢ = £+/2, then the critical frequencies are 0 and the square roots
of -é (13 £v343).

If ¢ = 0, then ¢ appear as critical frequencies.
Proof. Characteristic polynomial (10) has multiple roots if and only if
its discriminant D is vanishing. Evaluating D we have the result VD =
16 (c8 + (vt + 2007 —8)ct + 16(% + 1)3>. From this we obtain Fg. (13),
that is a cubic equation for v? with real coefficients. The discriminant of

this latter equation turns to be

5—16

d = cg(cgi + 108)3 )

27
If c = 0, then d = 0 and we have 1* = —1.

If ¢ is nonzero, then d > 0 and we have one real solution and a
conjugate pair for v?. We shall prove in 3.5 that this real solution is always
nonpositive.

The complex solutions for v can coincide if and only if v = 0, that
implies ¢ = £+/2. O

The spatial allocation of the critical parameter pairs (c,v) are visual-
ized in Fig 4. As it is obvious from the Figure, we have a punched critical
plane C’ fitting on the imaginary axis of plane v and four critical spatial
curves 7;, ¢ = 1, 2, 3, 4 intersecting the imaginary axis of plane v at v = 1.

| Er (4pAs - k2>

343
pPA
ization to the damped case of the well-known critical speed in the absence
of damping, see e. g. [4].

Remark 3.4. If c = +/2, then v = , what is the general-

Proposition 3.5. There are no critical speeds for v = a # 0 real.
If v = bi imaginary, then there exists always a critical speed c satis-

fying

o]

2c* =8+ 2007 — b* + [b|(b° +8)7 .
Proof. If we expand Egq. (13) by ¢, then we have a quadratic equation
E+ (0 +2007 - 8)ct +16(07 +1)° =0

. 4
in ¢, what can be solved as

5

2¢* =8 — 200° — v* £ v(* = 8)

[R1{#

(14)

Formula (14) provides a critical speed if its right-hand side is non-
negative real.
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This latter equation has been found in the proof of Thm. 2.2.
Its nonnegative real root 7o determines the least frequency bi with
imaginary roots for a given speed ¢ < /2 by

2
b = —crg +/r§+ 1= —cr 0+—T-—()-

On the other hand we have
2¢* = 8+ 206" — b* — [p| (6" + 8)

1180

for the least ¢ for a given b by 3.6. O
Corollary 3.9. Formula |b| = 7o (2?— - c) with

£ 3/ 4 i 41 _'_3/4 y — 4
\ = <03+\/C +216+124/3(c*+108)+ {/c! +216-12,/3(c +108)>

is inverse to formula

L
c3

(1A

2¢* = 8+ 206" — 5" — o] (b” +b)

4. Solution of the Boundary Value Problem

In this chapter we construct a solution for the boundary value problem

643 ' 6 z a wi
EI<9334 6t c% +sz=¢e" §(z —vt),
lim z(z,t) =0,

where w is a complex number.
If we are looking for a solution of the form

where £ = = — vt, then we obtain the inhomogeneous linear ODE
EIBY 4 p4v?*B" —y(k+ 2pAw)B + (s+ kw + pAw')B =6  (15)

with Dirac’s §-distribution as a right-hand side.
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A particular solution By of (15), called the fundamental solution of
the ordinary linear differential operator on the left-hand side, can be con-
structed as

Bp(&) = H(§)Bs(€),

where H is Heaviside’s unit jump function and By is the solution of the
homogeneous equation

EIBY 4 pAv*B" - v(k + 2pAw)B’ + (s + kw + pAw®)B = 0

under the initial conditions
1

B;(0) = B;(0) = Bf(0) and Bf(0) = =,

(16)
see e. g. [8].

Let us first suppose that our characteristic polynomial (9) has neither
multiple nor imaginary roots. In this case we have two distinct characteris-
tic roots Ay and A2 with negative real parts and two distinct characteristic
roots Ag and A4 with positive real parts by Thms. 2.1-2.

A solution of the homogeneous differential equation (8) has the form

B(¢) = Z ae™e,

Initial conditions (16) result in the system of linear equations

1 1 1 1)(a 0
A1 Ao Az Mg asz | _ 0
MM A A e |9
3 33 3 3 o
Al )\2 As /\4 a4 EI
with solution
4
1+ 1 1
a; = — = , (17)
EI (;’1 Ai— A P(\)
JF
where P is the derivative of (9):
P'(\) = 4EIN* + 2pAv° ) — v(k + 2pAw) . (18)

The general solution of the inhomogeneous Fq. (15) can be given as

4

B(€) = H(&)Bs(€) + Bu(€) = > _(a:H(€) + b;)e™*

=1
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If A3 = A4, then instead of the second term in (19) we get

—€A3€+wiH(—§) . 4)\3
EI(s - A)(s —Xa) I° (s = A)(hs — Azl

Proof. The case of single roots has been discussed above.

By Proposition 3.7 we cannot have double roots on both sides to-
gether. The proof for the multiple root case can be given either in a similar
way as it has been done for the single root case or by using I.’Hépital’s rule.

Let us compute, for example, the following limit:

e eMé

. 1 B
Ve W W [(,\1 VS TSV v Sl G PR v T v m} =

6’\lf [ _ 2A1 - >\3 — )\4 ]
(A1 = A3)(A1 — Ay) (1= A3) (A — Al
In characteristic polynomial (8) the cubic term is missing, so we have A; +
A2+ Az + g = 0. Hence for A1 = A2 we get 2A1 — Az — As = 45,

It can be easily checked that the solution obtained this way satisfies
Eq. (6) and boundary condition (2). [

5. Determining Complex Frequencies

We introduce the complex function

)= B * IO,
T = P n@)) T PL(e(w))’

where
Pu(A) = EIN' + pAv* A2 — u(k + 2pAw)A + (s + kw + pAw?),

A1(w) and Ag(w) are the root branches of P, with negative real parts, and
PL()\) = 4EIX® 4 2pAv® X — v(k + 2pAw) is the derivative of polynomial
Pw.

g(w) is well-defined if A1 (w) # Az(w).

If Re{w) # {;% and A (w) = Az(w), then g(w) can be defined as

. — 1 1
g(w) = (Pé) (A3(w)) + Py, (/\4(10)))



50 I. ZOBORY et al.

by Proposition 3.7 and Thm. 4.1. Here A3 and A4 are the roots of P, with
positive real parts.

~k
Hence g(w) is correctly defined for any w with Re(w) # ﬂ
Lemma 5.1. Function g preserves conjugation, i. e.
9(w) = g(w).
Proof.
(w) ]
glw) = —— 4 — =
Pr((@) P (Aa(0))
1 1 1 1 _

1 (o)) P4 (%))  Pulhalw))  Pu )

Now we return to the solutien of our original system (1-4). We are
looking for a solution of the form

2

2(z,t) = Bo(€) + ) Bi(§)e™',  Z(t)=Po+ Z Bie ™,

=1 i=1

where w1 and ws are distinct, at the moment unknown nonvanishing com-
plex numbers, and £ = z — vt. Note, that the mentioned w; complex
numbers will be reckoned with as known quantities, and later on they will
be determined by solving an appropriate algebraic equation.

If we substitute these expected solutions into our PDE, then (1) splits
into the following three ODEs:

EIBYY + pAviBY — vkB) + sBy = Ty6,

EIBY + pAv? B! — v(k + 2pAw;)B; + (s + kw; + pAw?)B; = —mBwis,
1=1, 2, and by Thm. 4.1 we have

Bo(0) = Tog(0) and Bi(0) = —mBwig(w)) for i=1,2.
If we substitute our solutions into (3), then we obtain equations
Ty = su(Bo — Bo(0))

and
(s + kgw;)(1 —,L-mw?g(wi)) = —mw?!, i=1, 2.
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From the first equation we can compute constant Gy:
1
Bo="To|—+g(0)]} .
SH

The second equation above gives the possibility to determine complex fre-
quencies w;.

Theorem 5.2. A complex number w is a complex frequency of the system
(1-4) if and only if

L Ll =0 (20)

mw?  sg -+ kgw

is satisfied. O

Proposition 5.3. Algebraic equation (20) can have only real solutions or
conjugate pairs of solutions.

Proof. Lemma 5.1 shows that g preserves conjugation. Rational function

1

mw? sy + kyw
w, then W is also a solution. a

Our original problem is correctly defined if we have exactly two com-
plex frequencies. Numerical experiments support this consideration, so we
are interested in the following two cases:

either we have two real frequencies,

or we have a conjugate pair of complex frequencies.

clearly preserves conjugation. Hence if we have a solution

Theorem §5.4. If the algebraic equation

1 1
mw? sy + kyw

+g(w) =0

has two solutions w, and ws, where both w; and ws are real, and damping
k is nonvanishing, then the moderately damped system (1-4) always has
the solution

2 2

(e, t) =) Bj(€)e™', Z(t)=)_ Be",
j=0 j=0

where £ = ¢ — vi,wp = 0 and

etk eria

Bj(f) = 2v;Re (E(f)m - H(”é)%)
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with constants +; later to be determined. Here A;; and Aj3 are roots of the
characteristic polynomial

Pj(A) = EIX* + pAv?A2 — o(k + 2pAw)A + (s + kw; + pAw?)
with Re(A;1) < 0 and Re(A;3) > 0, and P} is the derivative of P; for

i=0,1,2
The constants can be determined as

Bo="Tp (;—1; + 2Re (7%(%65)) , B = w2(ﬂi;_‘zfu)2+ LY

_wi(fo = Zo) + W
132 - 3

w2 — Wi

vo = Ty and 71 = -—mﬁiw? fori=1, 2.
. -k .
Proof. Real frequencies w; # —— cannot have a critical speed by Propo-

2pA
sition 5.3. If £ > 0 is satisfied, then 0 also cannot have a critical speed, so

we have

Boiey = lgeey [0 L e ehet gl

by Thm. 4.1. _ B
If w; is real, then Ajp = Aj; and Ajy = A;3, and we obtain, e. g.

eMi1€ izt A€
7 + 7 - 2R€ <"—T——“‘ .
Pi(Aj1) ~ Pi(Aj2) Pi(A1)

Constants 81 and 2 can be determined by initial conditions (4). ]

Theorem 5.5. If Eq. (20) has two nonreal solutions w and w, and damping &
is nonvanishing, then the moderately damped system (1-4) has the solution

z(z,t) = Bo(€) + Re(B(§)e™),  Z(t) = Bo + Re(Be™)

with £ = ¢ — vt.
Here B¢ and By are the same as in Thm. 5.4, while

wW(Bo — Zo) + Vo

= iIm(w)
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and

2 prty 2 e3¢ ettt
B(&§)=—mpu [H(g) (P'(,\l) i P’(A2)> e (P'Qs) " P'(f\4>>} ’

where A1 and A9 are the roots of the characteristic polynomial

P(X\) = EIX* + pAv? 2% — v(k + 2pAw)A + (s + kw + pAw?)

with negative real parts, while A3 and A4 are the characteristic roots with
positive real parts. If P has a multiple root, then formulae of Thm. 4.1
can be applied in computation of B(§).

Proof. If we = w1, then B2 = B; and B2(€) = B1(£), so we have Bre“ i+
+ AY
Bae*?' =2Re (,Bmwlt) and B1{€)e" '+ By(£)e”?* =2Re (Bl(f)ewlt). On the

other hand 1= @1 (B :_ZO) = wl.('BO ) = é follows. a
w1 — W1 2iIm(w1) 2

Special Case 5.6. If we are looking for a real frequency w in the case v = 0,
then Fg. (20) has the explicit form

1 1 1
+ + =0
mw?  sy+kyw  {BAEI(s + kw + pAw?)3

Limit Case 5.7. In the case v — co we have lim g(w) = 0, hence in this

case the complex limit frequencies are

_ —kn xi/Amsy — kS

wig =
2m

3

6. Conclusions

In our paper a new mathematical treatment has been elaborated for the
solution of a set of equations describing the joint problem of the combined
motions of the continuous beam and the discrete wheel moving on the lat-
ter at a constant longitudinal speed. The two subsystems connected with
each other by the Hertzian spring and damper are completely character-
ized through the closed-form expressions based on the complex frequencies
obtained from the solution of the auxiliary algebraic equation.
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