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Abstract 

The development in railway vehicle technology requires adequate dynamical analyses to 
ensure accurate and reliable information on the expected loading conditions of the ve
hicle components in the period of design. This paper takes an attempt to formulate an 
exact mechanical and mathematical description of the wheel track system. The wheel 
is considered as a rigid disk, while the track is modelled by an Euler-Bernoulli beam on 
damped elastic foundation. The connection of the wheel and the track is realized by the 
linear Hertzian spring and damper. Stability considerations, critical speed determina
tion and solution of the boundary value problem will be carried out. AlsQ the complex 
eigenfrequencies will be pointed out. 

Keywords: wheel-track system, continuous beam model, linear partial differential equa
tions. 

1. Mechanical Model and Mathematical Description 

The in-plane model introduced in [9] consists of a moving loaded wheel 
on elastic foundation where the contact between the wheel and the rail is 
modelled through a paralelly connected linear Hertzian spring and damp
ing. The model is shown in Fig 1. 

The partial differential equation of the BernoullicEuler beam on an 
elastic Winkler foundation has the form 

84 :;::,1 8 ...-, _ "'" z u .... z,. z .. 
i:!.Jl 8x4 + pA 8t2 + k 8t + sz = (To - mZ)o(x - vt), (1) 

where z(x, t) denotes the vertical displacement of the rail, and Z(t) stands 
for the vertical displacement of the wheeL Here the positive real param
eters 1, E, A, p and s mean the moment of inertia, Young's modulus, 
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Fig. 1. 

cross-section area, mass density and distributed stiffness, respectively. The 
nonnegative real parameter k stands for distributed damping, while the 
real parameter v denotes steady longitudinal speed of the wheel. 

The solutions z(x, t) of the partial differential Eq. (1) must satisfy the 
boundary condition 

lirr z(x,t)=O. 
X-:::cX 

(2) 

Eq. (1) is coupled with the ordinary differential equation 

.. (. d ) 
To - mZ = l~H \ Z - dt z(vt, t) + SH (Z - z(vt, t)) (3) 

with initial conditions 

Z(O) = Z and .2'(0) = Vo. (4) 

Here the constant positive parameters To, m, Sf:{ and kf:{ stand for the wheel 
load, the mass of the wheel, the stiffness and damping of the Hertzian 
spring, respectively. 

Remark 1.1. Partial differential Eq. (1) is meant in the distribution or 
generalized function sense, i. e. z is in fact a linear functional on the vector 
space CO(R2) of smooth functions vanishing outside a bounded closed 
set in R2, and 5 stands for the unit impulse or Dirac's 5-distribution, see 
e. g. [8]. 

We are looking for a solution of the system (1-4) in the form 

2 2 

z(x, t) = Bo(~) + L Bi(~)e11Jit , Z(t) =;30 + L ;3;e!L'lt , (5) 
;=1 ;=1 

,vhere~: = x - vt is the relative longitudinal displacement, Bj(~) IS a 
complex valued function and ,6j is a complex constant for j = 0, 1, 2. 
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Definition 1.2. A complex number Wi satisfying (5) is called a complex 
frequency of the system (1-4). 

Our first goal is to obtain a solution for the partial differential 
equation 

f)4 z f)2 z f)z 
El 0) .i + pA 0) ? + k-;;; + sz e

wt 6(x - vt) , (6) 
ux' ut- uT; 

where w is a complex number, i. e. a possible complex frequency, under 
boundary condition (2). Such problems have been solved by KEr\NEY [6J, 
?VL-\THEWS [7] and FlLiPPOV [3] for the classical case w = iw, w - R. In 
this paper we use another method, which is similar to that of DE PATER [2J 
in the classical case. 

If we are looking for a solution of Eq. (6) in the form 

z(x, t) = B(Oewt 
, (7) 

then by substitution we obtain the ordinary differential equation 

IV ? 11 ( ) I 2) ElB + pAv- B - v k + 2pAw B + (s + kw + pAw B = 6 (8) 

with characteristic polynomial 

( ) 4 ? ? 2) 
P)' =El), +pAv-)'--v(k+2pAw)'+(s+kw+pAw . (9) 

It is to be mentioned that the roots of (9) will be considered as functions 
of the two essential parameters, namely v and ill. In Fig 2 the allocation of 
the roots ),i( v,w); i = 1, 2, 3, 4 is visualized as lying in the complex plane 
positioned at a height v. 
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" In case of our dynamical problem it is enough to restrict ourselves to 
the following, so-called moderately damped case, however, computations 
of the following chapters can be carried out in overdamped cases, too. 

Definition 1.3. We call our system moderately damped if the relation 

is satisfied. 

2 
4pAs - k > ° 

2. Stability Analysis of the Characteristic Polynomial 

'vVe are interested in the question concerning the number of roots of the 
characteristic polynomial 

P(A) = EIA4 + pAv2 A2 - v(k + 2pAw)A + (s + kw + pAw2) 

with Re(,\) > 0, where 4pAs - k2 > 0 is satisfied, i. e. the system is 
moderately damped. 

For technical reasons we shall introduce the following nondimensional 
variables: 
instead of A the complex variable 

f.L := A 4 4ElpA? 
4pAs - k- . 

instead of v the nonnegative real parameter 

c:= v 4 

EI( 4pAs - k 2 ) , 

and instead of w the complex parameter 

v:= 
k + 2pAw 

J4pAs - k2 • 

Substituting the above new variables, our characteristic polynomial will 
have the relatively simple form 

(10) 
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Theorem 2.1. If Re( 'w) i- 2~~' then the characteristic polynomial 

P()..) = El)" 4 + pAv2)..2 - v(k + 2pAw) .. + (8 + kw + pAw2) 

of a moderately damped system has two roots in the left-hand halfplane 
and two roots in the right-hand halfplane. 

(The assertion can be illustrated by Fig 3, in which, on the one hand, 
the 'parameter space' of pairs Cv, w) can be seen with the critical plane lo-

cated at Re(w) = - k A' perpendicular to axis Re(w), while the allocation 
2p1i 

of roots )..i(V,W); i = 1,2,3,4, on the other.) 

Proof. VVe utilize the generalized Routh-Hurwitz theorem in the form of 
GAI\TY1ACHER [5J. 

Let a and b denote the real and the imaginary parts of v, respectively. 
Then the characteristic polynomial (10) has the form 

,~ 2 
p(j.L) = j.L' + (Cj.L - a - bi) + 1. (11) 

Instead of (ll) we shall use the polynomial 

. (') '( 4 ,) ,). ? b? ) ( b) zp Zj.L = Z j.L' - c- j.L- + 2bcj.L + a- - - + 1 + 2a Cj.L - . (12) 
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VVe compute the resultant 

1 0 -c 2 2bc a2 -b2 +1 0 0 0 
0 0 0 2ac -2ab 0 0 0 
0 1 0 -c2 2bc a2 _b2 +1 0 0 

Ds 
0 0 0 0 2ac -2ab 0 0 = 0 0 -c2 a2 _b2+1 0 1 2bc 0 
0 0 0 0 0 2ac -2ab 0 
0 0 0 1 0 ? 

2bc a2 _b2 +1 -c-

O 0 0 0 0 0 2ac -2ab 

A ( , ,.) ) = 16a~ b~ + c"(a- + 1) 

of the polynomial (12). 
Suppose D~ i- O. Then (11) has no imaginary roots. 
Now we compute the even order corner minors of determinant D8: 

Do = 1, D2 = 0, D-l = 0, D6 = (-2ac)3 , 

so we have D2h i- 0, D 2h+2 = 

h = 0, and with p { 
2 

, 3 
roots f.l of (11) with Re(p) > O. 

If ac > 0, then D6 < 0 and 
Routh-Hurwitz theorem we have 

n=~ p+1-1 (" 
2 -

= D 2h+2p = 0, i- ° with 
1f c i= 0, 

Let n denote the number of 
if c = O. 

> 0 follows, and by the generalized 

, (DB)")' 1)2sgn Do + 1 = 2. 

If ac < 0, then DB > 0 and Ds > 0 follows, so we have 

1 ( v (D6)\ n ="2 p + 1 - (-1) 2 sgn Do ) - () 
-L.i. 

p , 1 
If c = 0, then n = + = 2 follo'lNs. 

Hence for Ds i- 0 the statement of the theorem is proved. 
Condition b-l + c-l(a2 + 1) = 0 implies b = c = 0 and / = ±iva2 + l. 

So in this case we also have two roots both in the left-hand and in the 
right-hand halfplane, just as in any case with a i- o. 0 

Theorem 2.2. Let us preserve the notations of the previous proof and 
suppose IJ = bi is imaginary. Then characteristic polynomial (10) has two 
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roots both in the left-hand and El the halfplane if and only if 
the relations 

C1'O 
r--;-

< b < -CTa + V1''O + 1 

are fulfilled, vvhere 

1 f 

\ 12 

a 

In 

It ·n r has 

I 
T 

an 

1'0 

if lel < IS 

has 

4: 
-r 

real coefficients must have at least 
q IS a 
is a root of q~ 

real wots. 
E1. so have b == er ± 

The P()SSlDle values C)f b real roots r are in the range of the 
smooth real 

r •• 
IUnC1:10nS 

Functions have zeroes > 
ha.ve real roots. 

FOT the branch 

Ilihile for the n~'G",+iv'" branch 

b- -00 

" ,... , 
IS satlsneG.. 

Extrerna can be found vlhere the , , " aeIrVa-CIVe 

C± 
)r4 -i- 1 

IS vanishing, what implies a cubic equation IT! r2: 
with a nonnegative real solution 

so In that case 

~'lle have 
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Then min b+ = b+ ( -ro) and max L = L (ro), where ro is the positive 
.) 

square root of rij. 
Polynomial q can only have imaginary roots if c = ° and ibi ~ 1, but 

then b is in the range of one of the functions b± . 
If b is out of the range of functions b±, then q has two conjugate non

imaginary root pairs, hence two of the roots f.L = ri of p lay in the left-hand 
halfplane and two of them are in the right-hand side one. [] 

Remark 2.3. A complex frequency w can kill damping out if Re(w) = 
k 

Then the situation is similar to that of the undamped classical 
2pA' 

case, see e. g. [1]. 

3. Critical Speeds 

Definition 3.1. We call v a critical speed for the complex frequency w if 
the characteristic polynomial 

has at least one multiple root. In this case w is called a critical frequency 
for v. 

Remark 3.2. The analysis of the solutions for (6) over the critical speed in 
the classical case is given by BOGACZ, KRZYZIN'SKI and Popp in [1]. 

For the sake of simplicity instead of characteristic polynomial (9) we 
shall use our nondimensional characteristic polynomial 

of the moderately damped Eq. (6). 

Theorem 3.3. Any nondimensional speed c appears as a critical speed for 
some nondimensional critical frequencies v satisfying the equation 

If neither c = ±.J2 nor c = 0, then there exist six distinct critical 
frequencies ±bi, ±v, ±v, where bi is imaginary and v is neither real nor 
imaginary. 
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If c = ±.j2, then the critical frequencies are ° and the square roots 

of -~ (13±iv'343). 
If c = 0, then ±i appear as critical frequencies. 

Proof. Characteristic polynomial (10) has multiple roots if and only if 
its discriminant D is vanishing. Evaluating D we have the result v'I5 = 
16 (cS + (v.f + 20v2 

- 8ki + 16(v2 + 1)3). From this we obtain Eq. (13), 

that is a cubic equation for v 2 with real coefficients. The discriminant of 
this latter equation turns to be 

+ 108)3. 

If c = 0, then d = ° and we have v 2 = -l. 
If c is nonzero, then d > 0 and we have one real solution and a 

conjugate pair for v 2
. We shall prove in 3.5 that this real solution is always 

nonpositive. 
The complex solutions for v can coincide if and only if v = 0, that 

implies c = ±.J2. 0 

The spatial allocation of the critical parameter pairs (c, v) are visual
ized in Fig 4. As it is obvious from the Figure, we have a punched critical 
plane C' fitting on the imaginary axis of plane v and four critical spatial 
curves {i, i = 1, 2, 3, 4 intersecting the imaginary axis of plane v at v = ±i. 

4/
i 

El (4pAs - k 2
) . 

Remark 3.4. If c = .j2, then v ~ , p3 A3 ' what is the general-

ization to the damped case of the well-known critical speed in the absence 
of damping, see e. g. [4]. 

Proposition 3.5. There are no critical speeds for v = a =f. 0 real. 
If v = bi imaginary, then there exists always a critical speed c satis

fying 

2c
4 = 8 + 20b

2 
- b4 + Ibl(b

2 + 8)~ . 
Proof. If we expand Eq. (13) by c, then we have a quadratic equation 

cS + (v4 + 20v2 
_ 8)c4 + 16(v2 + 1)3 = 0 

in c4
, what can be solved as 

:1 2.~ ') 3 
2c" = 8 - 20v - v'" ± v(v- - 8)2 . (14) 

Formula (14) provides a critical speed if its right-hand side IS non
negative real. 
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C /~ 
/' I 

,. I 

Q:::ReV 

?icr:eS /J.,5yrn~tots 

~ 
( 

2(1= 2t):= C 

2o=-2b:: 
) 

2e: c=O 
'::::0::: 2b=-( 

-L~' 
_\" 

7£ 
c- STflooth 

functioil so IS 

Tf then the D{'''''-;-'''''' branch 
I 

-;-

b < 1. C; 

Th,eOTeYn J. more than OTIe 11 

and if < .L. in This case there are 
critical 8Deeds 
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3.5 vve have observed that In the case v hi both branches of 

if 101 :::; 1. b'1 I 7 (b2 - ::cO - are 
coincide if and only if b = O. 

nO\i\J that 
branches of 8 -

if and 

IS neither real nor ilJQ.c6g.inaJ':Y, and both 

are m)lJ'nef';atp'le real. This latter COTI-

dition mJ.f}lles Soiu:are of both that can be achieved 
III the But. in that case the nl'p';:,j:i,)'P branch 

V'Jould have an .l11:1a,gJ.n'':1ry value. o 
Late? on vv~e shall IT.:ake use of the 'Ut" Hrv""'" statement. 

3. The PC)lY'TI()TIllcLI 

+ + 
root and i/::::: ±i~ 

of distiIlct double roots if c == 
In all the other cases ca.D. root. 

roots JLl a.nd 
the coefficients either v 

aad 1 so 'vve nave J-Ll or C == pl 

~et us an.otI-lef root 

nBITl..bers r 
Ol 

critical 

nXecl E 

Let llS suppose that 
a~d the derIvative 

+ 1 

anc 
b) 0 , 

that lead to the equation 

2 2 O. C T C 
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This latter equation has been found in the proof of Thm. 2.2. 
Its nonnegative real root TO determines the least frequency bi with 

imaginary roots for a given speed e ::; J2 by 

c;;-:-; 2T 3 
ibl = -eTG + V T6 + 1 = -ero + _0 . 

e 
On the other hand we have 

3 

2e4 = 8 + 20b2 
- b4 

_ Ibl (b2 + 8) 2" 

for the least e for a given b by 3.6. 

(

?T2 
Corollary 3.9. Formula Ibl = TO -co 

is inverse to formula 

o 

e) with 

4. Solution of the Boundary Value Problem 

In this chapter we construct a solution for the boundary value problem 

4 2 o Z 0 Z oz wt. ) 
El £:l .! + pA £:l .) + k-;::;- + sz = e 5(x - vt , 

uX' ut- ut 

liI):l z(x, t) = 0, 
x-::!:oc 

where w is a complex number. 
If we are looking for a solution of the form 

z(x, t) B(f,)eWi
, 

-where ~ = x - "t, then we obtain the inhomogeneous linear ODE 

IV 2 11 ( A ) I ( 2 ) B s: EIB + pAv B - v k + 2p w B + s + kw + pAw = u (15) 

with Dirac's a-distribution as a right-hand side. 
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A particular solution Bp of (15), called the fundamental solution of 
the ordinary linear differential operator on the left-hand side, can be con
structed as 

where H is Heaviside's unit jump function and B f is the solution of the 
homogeneous equation 

IV ? 11 ( ) I ( ?) ElB + pAv- B - v k + 2pAw B + s + kw + pAw- B = 0 

under the initial conditions 

B f(O) = Bj(O) = B'j(O) and B';/(O) = ~ 
J El' 

( 16) 

see e. g. [8]. 
Let us first suppose that our characteristic polynomial (9) has neither 

multiple nor imaginary roots. In this case we have two distinct characteris
tic roots )\} and A2 with negative real parts and two distinct characteristic 
roots A3 and A'1 with positive real parts by Thms. 2.1-2. 

A solution of the homogeneous differential equation (8) has the form 

4 

B(~) = L aie>'i~ . 
i=l 

Initial conditions (16) result in the system of linear equations 

with solution 
1 4 1 1 

ai=- IT ---
El (~*D Ai - Aj - pi (Ai) , 

(17) 

where P is the derivative of (9): 

pl(A) = 4ElA3 + 2pAv 2 A - v(k + 2pAw). (18) 

The general solution of the inhomogeneous Eq. (15) can be given as 

4 

B(O = H(OBf(~) + Bh(~) = L(aiH(~) + bi)e>'i~, 
;=1 



where 

tion and = 
above. 

Our solution 

that 

b; 

J. ZOBORY et cl. 

gE:n,era! solution of the equa-

must 

[ IT 

-ai if 

solution constructed 

OC)U.il'C12"r.y condition 

< 
> 

l-ience the solution of fOl:"ITl 

if C~: 
t) 

if 

Vi here Ui can be CCJD:lpnlted the characteristic roots 

Theoren7., .4.1. If characteristic 

nas no 
'"Thms. 

IS 

t) 

, 
~vnere 

as 

'U.;t e 

El 

1Jt, 

I , 

( e)·l~ 

\ 

2 -v + + 7·z;1)) + 

and sufficient a.re 

the 

I , 

t) = 

e'\2~ \ 

+ P'C\2)) 

the roots of the characteristic P,)l:VllOm,lEll 

III 

vlith negative real f- .\4 are the ch2.racteristic roots 'vf\7ith positive 
real 

, 
ana IS the derivctive of j:>. 

== A2, then instead of the nrst term In (19) ,\ve have 
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If A3 = A4, then instead of the second term in (19) we get 

Proof. The case of single roots has been discussed above. 
By Proposition 3.7 we cannot have double roots on both sides to

gether. The proof for the multiple root case can be given either in a similar 
way as it has been done for the single root case or by using L'Hopital's rule. 

Let us compute, for example, the following limit: 

In characteristic polynomial (9) the cubic term is missing, so we have A1 + 
A2 + A3 + A4 = O. Hence for A1 = A2 we get 2A1 - A3 A4 = 4A1. 

It can be easily checked that the solution obtained this way satisfies 
Eq. (6) and boundary condition (2). 0 

5, Determining Complex Frequencies 

We introduce the complex function 

1 1 
g(w):= P!n(A1(W)) + P!v(A2(W)) , 

where 

A1 (w) and A2 (w) are the root branches of Pw with negative real parts, and 
P~(A) = 4EIA3 + 2pAv2A - v(k + 2pAw) is the derivative of polynomial 
Pw • 

g(w) is well-defined if A1(W) =1= A2(W). 
If Re(w) =1= 2~~ and A1(W) = A2(W), then g(w) can be defined as 
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by Proposition 3.7 and Thm. 4.1. Here A3 and A4 are the roots of Pw with 
positive real parts. 

-k 
Hence g( w) is correctly defined for any w with Re( w) i= 2pA' 

Lemma 5.1. Function 9 preserves conjugation, i. e. 

g(w) = g(w). 

Proof· 

o 

Now we return to the solution of our original system (1-4). v'le are 
looking for a solution of the form 

2 2 

z(x, t) = Bo(~) + I: Bi(~)elL'it , Z(t) = PO + I: PielL'i t 
, 

i=l i=l 

where W1 and W2 are distinct, at the moment unknown nonvanishing com
plex numbers, and ~ = x vt. Note, that the mentioned Wi complex 
numbers will be reckoned with as known quantities, and later on they will 
be determined by solving an appropriate algebraic equation. 

If we substitute these expected solutions into our PDE, then (1) splits 
into the following three ODEs: 

IV') 11 I 
ElBo + pAv- Bo - vkBo + sBo = Tob , 

IV 2 11 ( I ? .) 
ElBi + pAv Bi - v ,k + 2pAwi)Bi + (s + kWi + pAwi)Bi = -mpiwib, 

i = 1, 2, and by Thm. 4.1 we have 

Bo(O) = Tog(O) and for i = 1, 2. 

If we substitute our solutions into (3), then we obtain equations 

To = SH(PO - Bo(O)) 

and 
i = 1,2. 
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From the first equation we can compute constant /30: 

/30 = To (s~ + g(O)) . 

The second equation above gives the possibility to determine complex fre
quencies Wi. 

Theorem 5.2. A complex number w is a complex frequency of the system 
(1-4) if and only if 

(20) 

is satisfied. 0 

Proposition 5.3. Algebraic equation (20) can have only real solutions or 
conjugate pairs of solutions. 

Proof. Lemma 5.1 shows that g preserves conjugation. Rational function 

~ + 1 k clearly preserves conjugation. Hence if we have a solution 
mw- SH + 'HW 
w, then w is also a solution. 0 

Our original problem is correctly defined if we have exactly two com
plex frequencies. Numerical experiments support this consideration, so we 
are interested in the following two cases: 

either we have two real frequencies, 
or we have a conjugate pair of complex frequencies. 

Theorem 5.4. If the algebraic equation 

1 1 --+ +g(w)=O 
mw2 SH + kHw 

has two solutions Wl and W2, where both Wl and W2 are real, and damping 
k is nonvanishing, then the moderately damped system (1-4) always has 
the solution 

2 2 

z(x, t) = 2:: Bj(e)eWji 
, Z(t) = 2:: /3je Wji 

, 

j=O j=O 

where e = x - vt ,WO = 0 and 
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with constants "fj later to be determined. Here Aj1 and Aj3 are roots of the 
characteristic polynomial 

with Re( Ajl) < ° and Re( Aj3) > 0, and Pi is the derivative of Pj for 
j = 0, 1,2. 

The constants can be determined as 

PI = W2(pO - Zo) + Vo , 
Wl - W2 

132 = Wl(pO - Zo) + Vo , 
W2 - Wl 

"fO = To and "f1 = -mpiwt for i = 1, 2. 

Proof. Real frequencies Wi i= -A
k 

cannot have a critical speed by Propo-
2p 

sition 5.3. If k > ° is satisfied, then ° also cannot have a critical speed, so 
we have 

by Thm. 4.1. 
If Wj is real, then Aj2 = Xjl and Aj4 = Xj3 , and we obtain, e. g. 

Constants PI and 132 can be determined by initial conditions (4). 0 

Theorem 5.5. If Eq. (20) has two nonreal solutions wand w, and damping k 
is nonvanishing, then the moderately damped system (1-4) has the solution 

z(x, t) = Bo(e) + Re(B(e)ewt
), Z(t) = Po + Re(pewt

) 

with ~ = x - vt. 
Here Po and Bo are the same as in Thm. 5.4, while 

8 = 11)(130 - Zo) + Vo 
'ilm(w) 
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and 

where Al and A2 are the roots of the characteristic polynomial 

with negative real parts, while A3 and A4 are the characteristic roots with 
positive real parts. If P has a multiple root, then formulae of Thm. 4.1 
can be applied in computation of B (e). 

Proof. If W2 = Wl, then f32 = /31 and B2(e) = B1(~)' so we have f31e w1t + 
f32 ew2t =2Re (B1e w1t ) and Bl(E)ewlt+B2(E)eW2i=2Re (B1(E)ew1t

). On the 

th h d f3 - Wl(f30-Z0) - Wl(f3o-Z0) fi f 11 0 
o er an 1 - - 2'I ( ) 2 0 ows. 

WI-Wl 2 m Wl 

Special Case 5.6. If we are looking for a real frequency W in the case v = 0, 
then Eq. (20) has the explicit form 

111 -+ + =0. 
mw2 SH + kHw {/64EI(s + kw + pA.w2)3 

Limit Case 5.7. In the case v -. 00 we have lim g( w) = 0, hence in this 
V""" 00 

case the complex limit frequencies are 

6. Conclusions 

In our paper a new mathematical treatment has been elaborated for the 
solution of a set of equations describing the joint problem of the combined 
motions of the continuous beam and the discrete wheel moving on the lat
ter at a constant longitudinal speed. The two subsystems connected with 
each other by the Hertzian spring and damper are completely character
ized through the closed-form expressions based on the complex frequencies 
obtained from the solution of the auxiliary algebraic equation. 
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