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Introduction 

The dynamics of a rolling railway vehicle can be described as a mechanical 
dissipative multi-body system, which is fundamentally nonlinear. The fun­
damental nonlinearity stems from the stress-strain relation in the wheel­
rail contact surface. In many vehicle constructions nonlinearities may also 
arise through impacts between bodies, dry friction between bodies in con­
tact or nonlinear characteristics of springs or dampers - either through 
nonlinear dependence of the forces on the deformation and/or the rate of 
deformation. The dissipation in the system is provided not only by the 
dampers but also by the friction forces in the wheel-rail contact surface. 

General nonlinear parameter dependent dynamical dissipative sys­
tems very often have parameter ranges, in which the dynamics is chaotic 
- it has even been claimed that chaos is the natural state of dynamical 
systems. Chaotic behaviour, in the sense of a fully deterministic evolution 
of the system in time, yet erratically looking behaviour, bounded in phase 
space with sensitive dependence on initial conditions, might therefore be 
expected to occur also in railway vehicle dynamical systems. In order to 
secure a calm ride in spite of the unavoidable disturbances on the real rail­
way, the attenuation of dampers in railway cars and locomotives is quite 
large. Therefore it might be expected that chaos in realistic models will be 
observed only in case of large external forces, and when it occurs, the cor­
responding attractor will be of a low spatial dimension in the phase space. 

Discontinuities in the forcing function have been found often to be 
sources of chaotic behaviour. In contrast the effect of discontinuous deriva­
tives of first or higher order on the development of chaos is hardly explored 
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at all. Since the simple mathematical model of the dynamics of a rolling 
wheelset does have a discontinuity at zero in the second derivative of the 
contact force in the wheel-rail contact zone, and since the contact zones 
may jump depending on the wheel-rail contact geometry several possible 
discontinuities exist. The theoretical investigations of the dynamics of ve­
hicles therefore serve as examples of unexplored features in the mathemat­
ical theory of dynamical systems in general. 

The theoretical vehicle models posses several symmetries. In param­
eter dependent nonlinear dynamical systems such symmetries often break 
at certain parameter values. A train moving along the track is generally 
modelled with a reflexion symmetry about the center line of the track. It 
is generally assumed that lateral oscillations will have the center line as a 
neutral line, and this is indeed found to be true in many cases. However, 
the symmetry is broken in certain parameter ranges - often as a prelude 
to chaos - whereby two equally probable modes develop. One is a re­
flexion of the other in the track center line, but they are both oscillations 
around an off-center neutral line. Such asymmetric oscillations give rise 
to an asymmetric wear of the wheelsets, and under certain circumstances 
such an effect may become self-amplifying. 

The seemingly erratic component of the lateral motion of a vehicle 
rolling along a track is normally caused by the disturbances in the track 
geometry. They are generated by fluctuations within the tolerances of 
manufacture, by errors generated by wear, by uncontrollable variations 
in the flexibility of the track structure, weather conditions and more. It 
may be very difficult - perhaps impossible to detect the deterministic 
chaotic oscillations on a background of such high noise level. The chaotic 
oscillations are therefore mainly of academic interest, unless situations can 
be determined, where chaos constitutes a safety hazard. 

The asymmetric oscillations, however, may be detected through the 
long term effect of the wear of the wheelsets. Such - hitherto unexplained 
- asymmetric wear has indeed been detected on certain unit freight trains 
and suburban train sets limited to run on a certain line. The connection 
with an asymmetric oscillation has not yet been established, but it remains 
an interesting possibility that deserves attention. 

We shall briefly describe two theoretical models of railway bogies. In 
the first model - the so-called Cooperrider bogie - the nonlinearities are 
purely dynamical. One arises from the strain-stress relation in the wheel­
rail contact zone. It is better known as the creep force-creep age relation. 
The other nonlinearity arises as a result of the modelling of the flange 
as a very stiff, linear spring with a dead band. When the amplitudes of 
the wheelset in the lateral direction are sufficiently large, impact occurs 
between the wheel and the spring. In the second model we consider a wheel 
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running on a rail with realistic profiles. Then the flange contact takes place 
'naturally' as a consequence of another nonlinearity, which replaces the 
impact in the first model. This other nonlinearity stems from the nonlinear 
kinematic conditions determined by the contact geometry. 

The Model 

Linear Constraints 

V-le examine the COOPERRIDER model [1] of a bogie running with constant 
speed V on a perfect, stiff, level and straight track. The displacements are 
measured relative to a coordinate system moving along the straight track 
with the constant speed of the vehicle. In this moving reference frame the 
displacements are assumed small. The wheels, axles and the bogie frame 
are stiff, and friction is only included in the wheel-rail forces. 

In the first model flange forces are described as stiff linear springs with 
a dead band, the ~vheels are assumed conical, and the railheads are arcs of 
a circle so gravitational stiffness is not included. The model is described in 
detail with all parameter values in [2]. It is shown on Fig. 1. 

Realistic Wheel and Rail Profiles 

The other model consists of the same bogie but now it has wheels with 
a DSB 82-1 profile running on UIC60 rails with nominal gauge 1435 mm 
and a cant of 1/40. The equations of constraint must then be added to the 
system. 

These equations define the wheel and rail profiles and are used si­
multaneously with the dynamic system to determine the points of contact 
between the wheelsets and the rails as long as they touch each other. 
VVhen a normal force at a contact point becomes negative, the constraint 
equations are substituted by dynamical equations for the motion of the 
wheelset under the action of gravity and inertial forces on that wheel until 
contact happens again. 

Fig. 2 shows the point of contact in dependence on the lateral dis­
placement of the \vheelset. 

Our models have seven degrees of freedom. They are: Lateral and 
yaw motion of each of the two wheelsets and the bogie frame and roll 
motion of the bogie frame. The only nonlinearities in the models arise from 
the creepage-creep force relationship and in the second model also from 
the equations of constraint. The seven second order ordinary differential 
equations are transformed into an autonomOllS dynamical system consisting 
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Fig. 2. Position of the contact point on the wheel profile as a function of the lateral 
displacement (mm) from the centred contact position calculated by means of 
W. Kik's RSGEO 

of fourteen first order ordinary differential equations with the speed V as 
the control parameter through the substitution: qn = X2n-l, qn = X2n, 

n = 1,··· ,7. See KAAS - PETERSEN [2]. 

The Method of Investigation 

We use numerical methods for the investigation of the mathematical 
model. Primarily the program 'PATH' is used to follow the solutions in 
phase-parameter space in dependence on the control parameter, the speed 
ofthe vehicle V. The application of 'PATH' in vehicle dynamics is described 
earlier [2], [3]. When we find chaos, we display it by numerically determined 
time series and phase space projections. 
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The Results 

Bifurcation Diagram for the Cooperrider Bogie, Linear Constraints 

The bifurcation diagram for the Cooperrider bogie from [4] is shown on 
Fig.3. 

On the diagram we have plotted the amplitude of the - stationary 
or time dependent - lateral displacement of the rear axle versus the speed 
V. It must be noted that X5 = 0 is a solution for all V ~ O. This solution 
is asymptotically stable below A (V = 65.4 m/s). Beyond A the solution 
is unstable, and in A a periodic solution bifurcates away from the zero 
solution. 'Iba periodic solution is unstable, and it has a growing amplitude 
for decreasing speed until B (V = 63.6 m/s), where the amplitude is so big 
that the flange hits the rail. 
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Fig. 3. Bifurcation diagram for linear kinematic conditions. Dotted line indicates an 
unstable solution. 

The flange contact stabilizes the oscillation, and its amplitude contin­
ues to grow - now with growing speed - until C (V = 114.6 m/s), where 
the solution 'bends back' into another unstable oscillation. 
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In the speed range 109.7 < V < 114.6 m/s a complicated sequence 
of bifurcations occur, and Vie show a blow up of this range on Fig. 4. 
The interesting feature is the TWO asymmetric solutions that are created 
at Cl and which turn stable at D (V = 112.7 m/s) and remain stable 
up to V = 203.3 m/s (point E on Fig. 5). The curve from D to E on 
Fig. :1 therefore symbolizes two stable asymmetric oscillations. For a given 
V the amplitude for positive y of one oscillation lies on the upper curve 
(see Fig. 4) and the amplitude for positive y of the other oscillation lies 
on the lower curve. The two asymmetric oscillation modes are reflexions 
of one another in the track centre line. The asymmetry in this case is 
less than one millimeter. The hunting motion, however, is so violent that 
the usual disturbances will have no influence on the behaviour. If the 
asymmetric oscillation lasts long enough or occurs repeatedly over the same 
piece of the line, then the wheelset will wear unevenly. Above point E 
(V = 203.3 m/s) in Fig. 3 a chaotic attractor exists, and the oscillations 
become chaotic. The asymmetry is preserved as shown on Fig. 5. Fig. 6 
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Fzg. 5. Phase plane projection of the chaotic attractor at 204 m/s 
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Fig. 6. Chaotic oscillations at 204 

shows Xl versus time, and the erratic behaviour is hardly visible, but on 
Fig. 5 the broad band structure of the attractor reveals its true nature. 
\Ve have computed the maxima! Liapunov exponent for a sequence of steps 
in time, and Fig. 7 shows that che Liapunov exponent decreases fast to 
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Fig. 7. The approximation to the maximal Liapunov exponent versus number of time 
steps at 204 m/s 
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Fig. 8. Chaotic motion at 111.8 m / s 

a value around 1 and then remaIllS III that neighbourhood. A positive 
Liapunov exponent indicates chaos. 
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Fig. 9. Phase plane projection of chaos at 111.8 m/s 
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Fig. 10. Poincare section of the Cflaotic attractor at If = 111.8 m/s 
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The complicated structure of solutions between V = 109 m/s and 
114 m/s may also give rise to the development of chaos. It is often a 
consequence of 'competing attractors'. We have indeed found chaos in this 
speed range. As an example we show on Fig. 8 Xl versus time (the time 
sequence starts at t = 10 min). On Fig. 9 which shows X5 versus Xl, 

the broad band structure much more clearly reveals the aperiodic nature 
of the oscillations. Carsten Nordstrpm Jensen produced the interesting 
Fig. 10. It shows a Poincare section of the chaotic attractor, and the points 
seem to be distributed on a Rossler band. The Rossler band is a chaotic 
attractor, and we thus conclude that the motion we found is also chaotic. 

Bifurcation Diagram for the Cooperrider Bogie) Realistic Wheel 
and Rail Profiles 

On Fig. 11 the amplitude of the front axle versus the speed is shown. Again 
the steady motion is asymptotically stable only up to A (V = 50.2 m/s). 
The bifurcation point A is at a lower speed here than in Fig. 3. 
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Fig. 11. Bifurcation diagram for realistic wheel and rail profiles 
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The unstable periodic oscillation on Fig. 11 exists all the way down to 
B (V = 41.1 m/s), which is at a much slower speed than B on Fig. 3. 
The change is typical of the influence of the added nonlinearities from the 
kinematic contact relations. From B the symmetric periodic oscillations 
grow in amplitude with speed, and the oscillations are asymptotically stable 
up to D (V = 46.2 m/s). In D symmetry breaking bifurcation occurs, and 
two stable asymmetric periodic oscillations develop. They only exist up to 
E (V = 46.7 m/s), where the motion turns chaotic. 
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Fig. 12. Chaotic oscillations at 46.7 m/s with realistic wheel and rail profiles 

This chaotic motion is so violent, see Fig. 12 that the assumption for the 
validity of the model no longer holds, and a more complicated model will 
be needed to simulate the dynamics numerically. The oscillations will, 
however, certainly be very violent, and it is remarkable, that they may 
occur at a lower speed than the linear critical speed at 50.2 m/so 

Actually the chaotic motion may develop at any speed above 46.7 m/s 
if the disturbance in the track is of the 'right size', i.e. if it is in the domain 
of attraction for the chaotic motion. The domain of attraction is of a finite 
size, and it grows with speed. Above V = 50.2 m/s, it is the only possible 
attractor we know. 
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Conclusions 

In both vehicle models we found speed ranges with chaotic motion and with 
asymmetric periodic oscillations. In the Cooperrider model with linear 
constraints the chaos appears as a pair of asymmetric attractors. The 
amplitudes of the chaotic motion are not larger than the amplitudes of the 
periodic oscillations in neighbouring speed ranges. It merely adds an erratic 
component to an otherwise regular oscillation. The large speed range of 
asymmetric oscillations is more noteworthy. Indeed asymmetric motion is 
the only form of a stable mode above V = 114.6 m/so Notice also that 
chaos exists only is speed ranges, where asymmetric attractors exist. 

The asymmetric motion occurs in speed ranges where the amplitude of 
the lateral oscillation is so large larger than 9.1 mm - that impact with 
the stiff spring, which simulates the restoring force of the wheel flange, takes 
place. The modelling is somewhat unrealistic, but other discontinuities 
in the force function may have the same effect. We therefore conjecture 
that discontinuities in the forcing in vehicle dynamics may give rise to the 
development of asymmetric motion and chaos. 

The bifurcation at V = 65.4 m/s is subcritical, but the nonlinear 
critical speed is only a little smaller Vcrit = 63.6 m/so In reality a jump 
from a calm ride to a large amplitude hunting motion will occur at a speed 
between 63.6 and 65.4 m/so The hunting will be stable with an amplitude 
growing with speed. If the vehicle slows down, the hunting will abruptly 
cease at V~rit = 63.6 m/so This happens at a 'safe distance' from the speed 
V = 109.7 m/s, where the chaotic motion may develop. It is another matter 
that the large amplitudes seen in the speed range above say 95 m/s in 
reality would correspond to derailment, a situation our dynamical system 
does not model correctly. 

The Cooperrider bogie with nonlinear constraints shows a different 
behaviour in dependence on the speed of the vehicle. The linear critical 
V = 50.2 m/s is lmver than in the previous case, and the nonlinear critical 
speed Vcrit = 41.1 m/s is significantly lower than Vcrit = 63.6 m/s in the 
previous example. Again we find that the amplitude of the oscillation 
increases with the speed. The oscillation is time periodic and symmetric 
around the track center line up to V = 46.2 m/so Notice that there exist 
two stable solutions in the speed range 41.1 m/s ::; V ::; 50.2 m/s - one 
oscillating and another steady solution. At V = 46.2 m/s the ideal point 
of contact between wheel and rail jumps to the flange at the amplitudes 
of the oscillation. This causes the normal force in that point to jump 
discontinuously in magnitude and direction, and the symmetric oscillation 
becomes unstable. In the short speed range 46.2 m/s < V < 46.7 m/s two 
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stable, asymmetric oscillations coexist with the 'stable steady motion, but at 
V = 46.7 m/s the asymmetric oscillations lose stability and chaos develops. 

The chaotic motion has such large amplitudes that our theoretical 
model ceases to be valid. It is therefore meaningless to continue the inte­
grations in time in order to find out whether the phase space trajectories 
eventually will approach an attractor. We thus only claim to have found 
transient chaos with large amplitudes. 

The interesting feature in the development of chaos in the Cooper­
rider bogie with realistic rail and wheel profiles is that large amplitude 
transient chaos coexists with the steady motion at speeds BELOW the lin­
ear critical speed, which still is the only stability limit most manufacturers 
determine. Since the transient chaos leads to large amplitude oscillations, 
and since it is more and more likely to happen the closer the speed gets to 
the linear critical speed, this example illustrates how inadequate the linear 
critical speed is for the description of the stability of the vehicle. A truly 
nonlinear analysis of the stability should therefore always be performed by 
the manufacturers of railway vehicles. 
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