
PERiODICA POLYTECHNICA SER. TRANSP. ENG. VOL. 22, NO. 2, PP. 83-99 (1994) 

IDENTIFICATION FOR ROBUST CONTROL 
OF VIBRATING STRUCTURES 

P. G . .\SPAR - J. BOKOR and L. GIANONE 

Computer and Automation Institute 
Hungarian Academy of Sciences 

H-1518 Budapest, POB 63 
Budapest, Hungary 

Received: Nov. 10, 1992 

Abstract 

This paper aims at introducing the reader to the various issues that arise in the develop­
ment of a coherent methodology for the development of robust control design on the basis 
of models identified from data. When a reduced compiexity model is identified with the 
purpose of designing a robust controller, the model is just a vehicle for the computation of 
controller. The design of the identification and of the controUer must be seen as two parts 
of a joint design problem. One of the control messages of this paper is to show that the 
global control performance criterion must determine the identification one. On the other 
hand, the paper summarizes the most important approaches of these iterative schemes of 
identification for robust control. Finally, an academic example is demonstrated for the 
applicability of the iterative method. 

Keywords: robust control, closed loop identification, iterative control design. 

1. Introduction 

The model based controller design is a very difficult and complicated pro­
cess which starts in each case with the idealization of the physical system, 
then it identifies the mathematical model of the idealized system, finally 
the controller design is performed on the basis of the mathematical model. 
The steps of the design are illustrated on the Fig. 1. 

The design arises some questions to answer but the most fundamental 
and important among them is to investigate the impact of the modelling 
errors to the designed controller. Since up till now sufficient qualitative 
features do not exist, i.e. it is not determinable in each case, which open 
loop modelling errors have significant infl.uence on the controller. 

Robust controller design methods take also into account those fea­
tures that are ignored during the modeling phase. It means that the de­
signed controllers based on the identified nominal model ensure the system 
stability and the prescribed performance level in spite of the system uncer­
tainties. 
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Fig. 1. 

The errors of the model identified in open loop and their regions 
should be taken into account during the controller design process.· Al­
though it is difficult to say that 'which of them are significant and which 
of them are ignorable from the viewpoint of closed loop design. The fol­
lowing section summarizes the most important modelling principles of the 
model based controller design and also illustrates them with simple exam­
ples (SKELTON, 1989). 

Principle 1. ATb'itrarily small modelling erTors can lead to bad closed­
loop performance. 
For the system described by the transfer function P(s) = ((1 + s)(l + e:s)) 
let e: > 0 be small. If the fast dynamics are ignored then the control design 
model becomes p(s) = (l+s)-l. In our example let e: = 0.01. First we have 
investigated the step response functions of the system and of the model and 
the difference between the two response functions. It can be seen on the 
left side of the Fig. 2.a that the ignoration is valid if the system operates 
in open loop. In the next step the stabilizing controller has to be designed 
on the basis of the actual system and of the nominal model. The right side 
of the Fig. 2. a illustrates the step response functions of the closed loop in 
case of negative feedback. The ignoration of the e: dynamics results error 
in steady state. 

Principle 2. Large open loop modelling errors do not necessarily lead 
to large closed-loop prediction errors. 
Consider a plant described by P(s) = (l+s)-l and an approximate model, 
p(s) = 8-

1
, which is very bad also from the viewpoint of the open loop iden­

tification. The a.ctual system is asymptotically stable, whereas its model is 
not. The controller designed for the nominal model ensures the stability. 
Fig. 2.b illustrates the step response error functions for the open loop and 
for the closed loop cases. While the modelling error goes to the infinity in 
open loop case, it is bounded in closed loop case. 
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The natural consequence of the above modelling principles is that 
open-loop modelling errors (and hence their bounds) do not generally con­
stitute enough information for successful control design. 

In traditional modelling the controller satisfying the prescribed per­
formance level, i.e. which ensures the stabilization in spite of the model 
uncertainties, is looked for on the basis of the given model set. For this pur­
pose it is necessary to give the control law independently from the model 
development. Its condition would be that the input signals of the model 
have to be totally independent from the output signals of the model. But 
this is impossible since the signals interact because of the feedback. It is 
therefore to be expected that the separate design of the identifier and of 
the controller without regard for the effect of the control law on the iden­
tified model, or of the identified model on the robustness of the control 
law, may not lead to a maximization of the global robustness of the iden-
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tifier / controller schema. This can only be solved by an iterative design 
procedure. 

Principle 3. The modelling and controller design problem cannot be 
separable and therefore it is iterative. 

On the basis of the above discussion the paper is organized as fol­
lows. First, the interaction of identification and control will be described. 
Then one of the most important iterative schema, the Zang schema will 
be introduced. The latest results of the iterative design methods will be 
also summarized. Finally, an academic example illustrates the iterative 
methodology. 

2. The Id.eIlct]jjc:atllOll/ l.;OI:lt,'oi Interplay 

On the basis of the 3rd modelling principle, this chapter aims to investigate 
the interaction of identification and robust control. Let Yt be the actual 
plant output signal, Ut the control signal, Vi the unmeasurable disturbance 
and let rt be the given reference signal as it can be seen on Fig. 3. Let 
P(z) mean the transfer matrix of the actual system and C(z) the transfer 
function of the controller. 

~~~ C(z) ~~ P(z) 

-/ 

Fig. 3. 

The discrete, identified model of the true plant is assumed to be repre­
sentable as follows 

Yi = P(Z)Ui + Vi, (1) 

where P(z) is a scalar strictly proper rational transfer function of the true 
system. We shall make the following assumptions for the design procedure. 

- Prior knowledge about the system may have helped the designer to 
select a parametric model structure or may have given him insight about 
the achievable bandwidth, but the information about the dynamics of the 
process is assumed to be derived from data collected on the process. 

- The exact model structure is assumed to be unknown, but the de­
signer has a certain parametrized model set, 
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M = {P(z, 6), 6 E De CC iRd
} , (2) 

where P(z, 6) is a strictly proper transfer function. 
The design of the controller C (z) is performed on the basis of a control 

law and of the P(z, G) nominal model and perhaps of the knowledge of the 
model uncertainties. Let L(P, P) mean the estimable, but often assumable 
uncertainty. Then the control law can be described as follows: 

C = C(P,L(P,P)), (3) 

where P means the P(z, G) model and P means the P(z) system. 
Let the global control performance criterion of the actual system be 

as follows: 

Jglob = J(P, C). (4) 

It has to be minimized over the class of admissible controllers. In practice 
C(z) is designed as a function of P(z,G) and L(P,P), where P(z,G) is 
assumed to be in the _"tI.1 model set. In case of Linear Quadratic Gaussian 
(LQG) design, Jglob could take the form: 

N 

hQG = Jglob = !J~cc ~ .L [(Yt 
1=1 

(5) 

where A is a positive weighting factor that reflects the tracking error, 
(ANDERSON, MOORE, 1989). 

Assuming that the true system is known and P(z, G) = P(z), what is 
meant by the Popt, optimal transfer function, the minimization of J(P, C) 

. over the class of controllers C for stabilizing the system P leads to the 
optimal controller Copt , and cost function Jopt (z). This is illustrated in 
Fig. 4. 

Fig. 4. 
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Fig. 5. 

Fig. 6. 

Jopt = minqp)J(Popt , C) = J(Popt , Copt ) (6) 

Of course, this value cannot be reachable, only approximatable since the 
correct Popt (z) system model is not known. In the actual situation, the 
controller C has to be designed on the basis of the identified model F( z, e). 
Here e means an estimated parameter of the parameter set. This method, 
applied often in practice, applies also the estimation of disturbance Vt. The 
designed system containing the identified model and the designed controller 
is illustrated on Fig. 5. 

In the actual situation P(z) is uncertain, so the design is performed 
regarding the uncertainties. In this way the minimization of J (p, C) leads 

to the C(P, L(P, F)) controller and to the designed cost function: 

Jdes = .. min. J(F, C) = J(F, C). (7) 
C(P,L(P.P)) 

In this case (1) takes the following form: 

c ~( ~ c I 
Yt = P z, 8)ut +Vt. (8) 

If the C controller is applied for the actual system in closed loop then it 
leads to the achieved cost function: 

Jach = J(P, C). (9) 

The illustration of the achieved system containing the designed controller 
can be seen on Fig. 6. 



IDESTIFICATJOX FOR ROBUST CONTROL OF VIBRATIXG STRUCTURES 89 

At evaluation of the design procedure the achieved cost function has 
to be taken into account. The error of robust performance criterion in LQG 
case is as follows: 

,y 

J 1 ~ [. c· 2 , ( C)2] pr = N ~ (Yt - yt) + A Ut - Ut . 

t=l 

(10) 

Ideally, one would like the identification and control design to be such that 
the performance achieved by the designed controller on the actual system 
is as close as possible to that achieved by the optimal controller. Since Copt 

is unknown, it is usually impossible to use the closeness of the optimal and 
the actual loops as a design criterion. Instead, one compares the designed 
and the actual loops. 

The estimated plant model, P, and the controller, C both influence 
the two terms Jdes and J pr . Thus, ideally, one should minimize the two 
terms jointly over the class of admissible plant models and the class of 
admissible controllers. An obvious suboptimal strategy is to make Jdes 

small by controller design for a given plant model, and to keep Jpr small 
by identification design for a given controller. Since Jdes depends on the 
estimated plant model, and Jpr depends on the designed controller, this 
strategy can only be applied in an iterative manner, using a succession of 
local controller designs and local identification designs: 

mJnJ(Pi, C) -+ 0;+1, 

min Jpr(P(G),Oi) -+ Pi+1 • 
P(8)E!vl 

(11) 

(12) 

This idea is the heart of the iterative identification/controller design meth­
ods, (GEvERS. 1993). 

3. Iterative Identification and Control Design by Zangscherna 

The contribution of the Zang method is the development of an iterative 
identification/robust control design schema (ZANG, BITMEAD and GEVERS, 

1991). This is accomplished by the combination of two novel features: 
- The Least Squares (LS) identification of a new model is performed 

on closed loop data obtained on the actual plant controlled by the pre­
viously computed controller, and with a data filter that improves model 
accuracy at those frequencies where stability and performance dictate that 
a better model is needed. This allows for performance enhancement at the 
next controller design stage. 



90 P. G.4SP.4R et ai. 

- The control design uses a frequency weighted LQG criterion, where 
the frequency weightings in the control design stage account for the imper­
fection of the estimated model. These weightings are derived from spectral 
estimates of measured closed loop signals. They have the effect of render­
ing the controller cautious in frequency bands where the data reflects a 
plant/model mismatch. 

The LQG global criterion (5) necessarily leads to a two-degree-of­
freedom (TDF) system which is illustrated in Fig. 7, (ANDERSON, MOORE, 

1989). 

Fig. 7. 

In the controller design iteration step the optimal LQ controller is based 
on the minimization of the designed cost function 

v 

J 1· 1 ~ r( c )2 (C)2-J 
des = .lm NI, I Yt - Tt + A Ut , 

.V-x ~ L 

(13) 

where ul is the designed control signal and yf is the output of an identified 
model. The closed loop system is depicted in Fig. 7 with the controller, 
denoted by Cl and C2, resulting from the optimization of (13). An LQ 
optimal control design leads to a TD F controller, Ut = Cl nt C2Yt. Instead 
of the traditional route of minimizing (13) it applies the following frequency 
weighted local 1Q tracking criterion: 

(14) 

where FI(Z) and Fdz) are linear filters to be chosen, A' is a constant to be 
decided. FI (z) and F2 (z) are selected as 

F ") (" 1>'I-r ) 1/2 
1\)(;.) = -~-'-

<P y"_" 
(15) 
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Here 4>y-r, 4>yC_r and 4>11c are the spectra of the corresponding y-r, yC -r, u 
and U

C signals. 
The selection of H{jw) and F2{jW) is supported by the following 

observations. If at some frequency, 4>y-r is larger than 4> yc -r, it means 
this at that frequency the model fit is poor with the consequence that the 
achieved tracking performance is worse than expected from the designed 
system. Hence more emphasis should be put on the tracking penalty at 
that frequency at the next control design stage, which is reflected by the 
weighting being larger than 1. If at some frequencies 4>y-r is smaller than 
4>yc_r, it also means that at that frequency the model fit is poor but the 
presently active controller actually achieves a better tracking performance 
on the true plant than on the model. 

The emphasis on the tracking penalty at that frequency should there­
fore be decreased at the next control design stage. For the selection of the 
weighting functions they made the following suggestions: 

IP(C1 RC2) - RI2 + IHI2 
11 + PC212 

(16) 

In the system identification iteration step the true system operates in closed 
loop with the controller obtained from the previous iteration step by LQG 
design. In order to recognize the operation of the closed loop system and 
to take into account the effect of the modified controller a new data set has 
to be collected. With this data set a new model must be identified on the 
basis of the following criterion. 

(17) 

where the filter D(z) should be chosen to reflect our 'modelling for closed 
loop control' objective. 

The aim of identification for control is to achieve a good closed loop 
control performance objective. This can be obtained by demanding that 
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the closed loop sensitivity functions of the actual plant, P, and that of 
the plant model, F, in feedback with the same controller, be as close as 
possible one to another. Since the aim is that the identification design be 
based on signal information only. This requirement has to be translated 
into the following local identification criterion 

,y 

J id 1 ~ [( ,c)2 \( 'C)2] 
N = N L Yt - Yt + /\ U - Ut . 

1=1 

(18) 

Here the signalsyf and ul are estimates of the signals yf and uI with the 
closed loop driven by the same reference source nt as the actual system, but 
with no noise added in the loop. The criterion (18) should be compared to 
the classical closed loop prediction error minimization of (17). The above 
leads to 

c (P-F)C1 1 
Yt - Yt = , nt + C Vt, 

(1+PC2)(I+PC2) l+P 2 

(P - F)CIC2 C2 
, nt - Vi· 

(1 + PC2)(1 + PC2) 1 + PC2 
c 

Ut - Ut = (19) 

Assuming that nt and Vi are mutually uncorrelated then we have the 
follmving frequency domain expression 

A comparison between (20) and (17) immediately suggests that to achieve 
a minimization of (18), identification should be performed in closed loop 
with signals filtered through 

(21) 

where G (z) is defined as a stable filter obtained from the following factor­
ization problem 

(22) 

Since the identified plant model F(z, 8) appears in this frequency weight­
ing, it would normally only be feasible to adjust this filter using an earlier 
estimate of F(z, 8). 
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4. State of the Art of the Iterative Design Schemes 

The iterative system identification and control design is a dynamically im­
proving research field. It is indicated by the fact that in the two most 
important control conferences in 1993 two whole sections have been orga­
nized for investigation of the present situation of this research field. (32nd 
Conf. on Decision and Control, San Antonio, 2nd European Control Con­
ference, Groningen). 

SCHRAMA and VAN DEN ROF (1992), have done a thorough analysis of 
the iterative design scheme. Both the control and the identification design 
are performed using coprime factor representations of the plant model and 
the controller. This representation guarantees that the designed controller 
is optimally robust against perturbations ofthe coprime factors. The closed 
loop identification step is based on the open loop scheme with the help of 
Hansen representation. 

The windsurfer approach improves the performance requirements as 
the closed loop model becomes closer to the actual closed loop system, 
(LEE, et al., 1992). It is formulated as the minimization of the Ha norm of 
the difference between the achieved closed loop transfer function and that 
of the reference model. The emphasis is put on how to update the reference 
model as the model and the controller improve. 

In Lw and SKELTON (1990), the q-Markov Cover theory is used in the 
identification step to identify a model of the closed loop system with the 
previously designed controller operating in the loop. A minimum energy 
controller with output variance constraint is used in the control design step. 

Remarks on iterative approaches: 
- The methods are predicted on the ability to perform experiments 

on the closed loop system resulting from a control design. 
- They each utilize closed-loop identification methods and couple the 

identification and control objectives. 
- In each approach is also implicit a global control objective associated 

with the achieved loop. 
- These iterative schemes decompose the global criterion to local de­

sign criterion in the ith iteration, the Ci controller from the set of C con­
trollers is designed starting from the Pi actual model by the minimization 
of the J(Fi' C). They perform again an identification step but on the basis 
of the minimization of J(P, Ci). 

The unsolved problems in the different iterative schemes point out 
the most important direction of this research: 

- The stopping criteria of these iterative schemes are not enough 
effective therefore they cannot be automatizable. 
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- Till the end of 1993 there were no publications about the iterative 
schemes of the multi input, multi output (MIMO) systems. 

5. Example 

The present example illustrates the execution of the software implemented 
in Matlab for model based estimation of the controller of a MIMO system 
and for closed loop design. The simulation of the input/output time series 
is based on the airplane design example in SAFONOV, et al. (1981), where 
the continuous state space representation of the 2 input, 2 output system 
is as follows: 

-0.0226 -36.6170 -18.8970 -32.0900 3.2509 -0.7626 1 
0.0001 -1.8997 0.9831 -0.0007 -0.1708 -0.0050 

4- 0.0123 -11.7200 -2.6316 0.0009 -31.6040 22.3960 
0 0 1.0000 0 0 0 
0 0 0 0 -30.0000 0 
0 0 0 0 0 -30.0000 

0 0 
0 0 

B= 0 0 
0 0 

30.0000 0 
0 30.0000 

C _ [0 1.0000 0 0 0 0 
- 0 0 0 1.0000 0 0 

D = [~ ~] 
The input-output time series of the actual sampled system, which is 

the start point of the identification for robust control design, can be seen 
on Fig. B. 

On the basis of the time series the identification of the open loop 
system has been executed. The structure of the transfer matrix has been 
determined by estimation on each equation on the basis of Akaike Infor­
mation Criteria (AIC). As a result of the structure estimation the order of 
the autoregressive operator and the order of the input variables have been 
also selected as equal to 2. 
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lnput variables 

Time,s 

Output variables 
4or-------------------------------------~ 

-400L-------2iOO~----~40~O~----~6~O~O------~80~O~----~1000 

AR(l) = [-6.2945 4.2693] 
-5.7430 3.4354 

Fig. 8. 

AR(2) = [4.5810 -4.2652 ] 
4.8169 -4,4317 

INP'l) = [-0.0846 
l -0.0791 

INP(2) = [-0.0790 
-0.0877 

Time,s 

0.0525] 
0.0567 

0.0969] 
0.1086 

The controller has been designed in two steps on the basis of the identified 
model in accordance with the separation theory of the LQG method. In the 
first step the control law has been designed assuming he knowledge of the x 
states. In the second step the observer has been designed which estimates 
the state vector on the basis of the measured or observed input/output 
signals. 
The control law connect the system states and the system input on the 
basis of the Kc state feedback constant matrix. The optimal state feedback 
Kalman filter in Linear Quadratic (LQ) sense is as follows. 

KT = [0.0343 
c 0.1385 

-0.1974 0.0510 0.0271] 
-0.2622 0.1367 0.0339 
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The observer Kalman filter has modified the singular value function and the 
sensitivity function of the optimal controller, which is illustrated on Fig. 9. 
The solid line means the actual while the dashed the optimal frequency 
functions. 

K = [-1.2970 
f 0.8456 

-16.1719 2.3684 
10.8289 -1.3444 

-288.0535] 
195.3601 

The aim of the Loop Transfer Recovery (LTR) is that the estimated singu­
lar value frequency functions, obtained by the modified observer Kalman 
filter, have to approach the optimal singular functions as close as possible, 
STEIN, Athans, 1987. Applying the weighting factor it has resulted, that 
the 0 btained singular functions have approached well the optimal singular 
functions. The observer Kalman gain selected on the basis of the LTR can 
be described by the following parameters. 

-0.0025 
0.0016 

-0.0704 
0.0513 

0.0111 
0.0140 

-2.0572] 
1.4462 

The estimated singular value and characteristic functions obtained by the 
LTR with the optimal functions can be seen on Fig. 10. 

Applying the designed controller in the real circumstances the simu­
lation of the time series of the input/output signals have been repeated. At 
the next steps of the simulation the system model has to be identified again 
on the basis of the input/output signals simulated in closed loop, then the 
LQG controller has to be designed again on the basis of the nominal model 
estimated in the previous step. In Matlab it is possible to repeat automati­
cally the identification and control design with the previous parameters. In 
practice it means that the estimation of the model parameters is performed 
applying the knowledge of the previous structure, and that the value of the 
weighting factor is known in the LTR of the control design. 

Summary 

This paper aimed to investigate the novel, iterative approach of robust 
control design based on identified dynamic models of multi input, multi 
output systems applying the present results published in the international 
research literature. The motivation of this research is that the identifi­
cation and control of a closed loop system have to be performed in their 
interaction instead of independently in order that the designed closed loop 
system can perform the robust stability and performance criterions, which 
has been summarized in the first two chapter. The Zang method has been 
investigated in more detail among the iterative schemes. Finally the exe-
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Fig. 9. 

cution of the software implemented in Matlab for model based controller 
design has been showed. 
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