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Abstract

The software to be introduced aims to simulate the motion and loading processes of vehi-
cles by utilizing the information based on operation measurements, namely the transition
probabilities of the tractive and braking effort control process, as well as the conditional
probability distribution functions of the dwelling times on different control levels. The sim-
ulation procedure is based on statistical-dynamical principles. The evaluation of the time
realizations generated can lead to the most important statistical characteristics concerning
the future loading conditions of the vehicle in the period of design, so the dimensioning
can be much more reliable.

Keywords: stochastic simulation, vehicle dynamics.

1. Introduction

The software to be introduced is called STOPSIM. It is written in
FORTRAN, and the name is abbreviated from the full title ‘STochastic
OPeration SImulator’. Though the present paper assigned its goal as the
simulation of the operational motion and loading process of vehicles, it is
to be emphasized that the applied principles determining the structure of
the software are of more general character, i.e. the software can be used
for the simulation of operation process of a very wide class of machinery.

2. The Dynamical Model

The dynamical model itself is a relatively simple one. It is a rigid body of
single degree of freedom performing a translatory motion process of varying
velocity under the influence of resistance, driving and braking forces. The
action lines of the latter forces are identical, i.e. all the force vectors in
question are fitting onto a common carrier straight line. The resistance
force is described as a velocity and outer force dependent quantity:
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where a, b and ¢ are non-negative constants, v stands for the magnitude of
the velocity of the mass, while 5 F is the resultant of the non-resistance
forces acting on the mass. The driving force acting on the mass is consid-
ered as a bivariate function, namely it depends on control u and velocity v.
So a function Fp(u,v) is to be defined in a form appropriate for the numer-
ical treatment. Without the considerable restriction of the practical appli-
cability of the computation procedure it can be assumed that the variable
u, which is called the control parameter of the system, takes its values only
from a finite set {ug, w1, us,...,uys + of non-negative integers. Value ug be-
longs to the case of exerting zero driving force (no tractive effort), while
if u = uyr, the maximum driving force (tractive effort) is applied. Veloc-
ity v can take its values from the non-negative bounded interval [0, vmax]-
As for the treatment of function Fp(u,v) in case of the mentioned restric-
tions concerning its variables, the set of performance curve visualized in
Fig. I can always be used. The numerical representation of the perfor-
mance curves is made by linear interpolation method. The first step is
the discretization of the velocity range, i.e. one should consider a sequence
{vo = 0,v1,v2,...,Un = Umax }. In the real applications this sequence is usu-
ally (but not necessarily) an equidistant one. Let’s consider an arbitrary
control level u;, then the tractive effort at velocity v; is fij = Fp(ui, vj).
In accordance with the aforesaid, to control u; two numerical sequences are
joined, namely vy = 0,v1,v2,...,%n = Ymex and fyo, i1, fi2, .-, fin. Using
this train of thoughts for each possible control level, a set of numerical data
is yielded for characterizing the tractive effort vs. velocity performance
curves. The number of numerical data is obviously L = (M + 1)2(n + 1).
The braking force acting on the mass is also a bivariate function, it
depends on brake control «™ and velocity v. So a function Fg(u®,v) is to
be defined. Without the considerable restriction of the wide applicability,
it can be assumed that variable ©* takes its values only from a finite set
{ug,ui,u3,...,u} of non-negative integers. Value uj belongs to the case
of exerting zero braking force, while if ™ = uy;, the maximum braking force
is applied. Velocity v can take its values from the non-negative bounded
interval [0, vmax] as introduced above. The treatment of function Fg(u”,v)
under the mentioned restrictive conditions concerning its variables is possi-
ble by defining the set of brake performance curves visualized in Fig. 2. The
numerical representation of the brake performance curves is made by lin-
ear interpolation method. The discretization of the velocity range has been
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Fig. 2. Brake performance curves
carried out, 1. e. considered again the sequence {vg = 0,v1,v2,...,9n =

Tmax}. Let’s consider now an arbitrary brake control level u], then the

braking force at velocity v; is g;; = Fp(u,v;). In accordance with the
aforesaid, two numerical sequences are joined, to control u; namely vy =
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0,v1,V2,...,Un = Umax and g;o, i1, gi2, - - - , gin. Using this train of thoughts
for each possible brake control level, a set of numerical data is yielded
for characterizing the braking effort vs. velocity performance curves. The
number of the latter numerical data is obviously K = (N + 1)2(n + 1).

As it has been mentioned the mass performs a translatory motion,
therefore the effect of the rotating components in the system having an
angular velocity proportional to the velocity of the vehicle (i.e. wheels,
components of the transmission system, etc.) should also be reckoned with.
The rotating mass factor v is defined as the ratio of the mass m, reduced
on the periphery of the wheels and the mass m of the vehicle, in formula:
v = my/m.

The control process of the system is composed of the controls v and
u* by accepting that at a given time ¢ either u or v can be effective
only, i.e. either tractive effort exertion or braking force exertion can be
realized. Only one exception exists, namely ug = ug, this case identifies the
state without exertion tractive and braking effect. Due to this remark, the
resultant unified integer valued control process U has the following possible
states:

Uc {Ula U’Z» ceey Uj\«", Uf\r"—{—l: Ui\"—i—z’ ey UN+;\[-:—1}
Number of states = D =N + M + 1, (2)

where
—ui+N+1 ifie{l,2,...,N}
Ui={ N+1 ifi=N+1
w+N+1  ifie{N+2,...,D}

Control process U(t) having number D integer states is considered as a
semi-Markovian stochastic process, its realizations are integer valued step-
functions, see Fig. 3. It is obvious that state uy = ug = 0 identifying the
state free from tractive effort and braking force exertion is corresponding
to state Uyny;. Process U(¢) spends a certain time 7 in each achieved state
U;, and 7 is a non-negative random variable being in stochastic dependence
on the achieved new state U; and on the previous state U; left in the least
state transition at the beginning of duration 7.

The state transitions of the control process U(t) are described by
the so-called embedded Markovian chain. The latter is a homogeneous
Markovian chain which can be represented by the transition probability
matrix Pz, containing the conditional probabilities

pij = P{U(ta) = U;|U(tp) = Ui}, (3)
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Fig. 3. A realisation of the control process

where ¢, is the time just prior to the state transition and ¢, is that after
the state transition, while U; is the previous state and U; is the following
state of process U(t). For the sake of characterizing the duration in which
process U (¢) remains in a constant state, let us consider the random vari-
able 7 describing the duration mentioned. The conditional probability dis-
tribution function Fj;(t) is defined as follows, by using the simpler desig-
nations (i.e. the indices ¢ and j instead of U; and U;):

Fi(t) = P{r < tlU(t) = iU (ta) = j}. (4)

It is obvious that for the possible combinations of indices ¢ and 7 a matrix-
valued time function is cbtained, on the basis of which the semi-Markovian
process U (¢) is fully characterized.

The equation of motion of the dynamical system can be formulated
by using Newton’s second law:

Fo(u,v) = Fa(u",v) = Fa(v, 3) = (1 +7)m . (5)

Taking into consideration the definition of U(¢), the equation of motion
and the initial condition belonging to it can be formulated as the following
nitial-value problem:

dv -
—d_t = f(’U, U (t))a

v(to) = vp. (6)
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This first-order non-linear differential equation will be solved numerically
in the knowledge of the actual variation of the simulated control process
realization U(t). The initial velocity of the motion can be zero, while
after the state transitions the new initial velocities are equal to those of
the vehicle prior to the transitions. In this way the numerical solution
of the motion equation can be sequentially carried out with ease over the
time intervals in which control U (t) takes its simulated constant values.
The program STOPSIM uses the Eulerian integration method. Input step-
function U (t) and the speed-response function v(¢) of the dynamical model
is shown in Fig. 4.

Ioput | SYSTEM MODEL Output
Y ¥ = fe,U0) ~
Control process U(t) Speed response v(t)
]
— 4~ U
: T
- L.___JIJL....\{! Ix._;:__l, 4

Fig. 4. Input and output functions of the dynamical model

3. Simulation Principles

The basic information concerning control process U(t) is contained by the
following D x D matrix and D X D matrix-valued time function

Pi=[p;] and F(t) = [Fj;(2)]- (7)

The actual state transition is simulated on the basis of generation of a
sequence of uniformly distributed pseudo random numbers. Let n be a
uniformly distributed random number in interval [0, 1]. Let us assume that
a transition should be simulated from the known state 7 to the temporary
unknown state j. After generating 7 the unknown index j assigning the
new state after the state transition can be determined by checking relation

Jj-1 J
Y pik <1< Y pik, pio =0. (8)
k=0 k=0
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With the knowledge of the new state j, the duration 7, in which control
U(t) takes value u; after state transition i — j can be simulated based on
the conditional distribution function Fj;(t) defined in relation (4). Function
F;;(t) is assumed to be approximated over its range by a piece-wise linear
continuous function of strictly monotonic property for each index pair ¢, 7.

In this way, the inverse functions E;l(t) always exist. Random dura-
tion T in question is derived from a uniformly distributed random number
n as follows. It is obvious that the distribution function of random variable

T = F;l(n) (9)

is F;;(t), i.e. it is identical to the conditional distribution function which
describes the duration in state j, after transition ¢ — j. Since n can be
generated by a standard subroutine, the appropriate = realization can be
computed.

The numerical treatment of the transition probability matrix IT is ob-
vious by using an appropriate two-dimensional array, while the non-zero
elements of the matrix-valued time function F(t) are represented by se-
quences of co-ordinate pairs determining the break-points of the piece-wise
linear conditional distribution functions Fj;(¢t). It is to be noted that in
case p;; = 0 also function Fj;(t) is taken as an identically zero function.
This property makes it possible to deal only with those index pairs for
which p;; are non-zero. The derivation of duration 7 from the uniformly
distributed random number 7 is visualized in Fig. 5. As it can be seen,
functions Fj;(.) and Figl(.) can identically be treated by linear interpola-
tion based on the number L break-point co-ordinate pairs representing the
conditional distribution function in question.

T : Uniformly distributed
random number

F;(t) : Piece-wise linear
Mp———=—— conditional probability
distribution function of

!
Q‘\.\\‘\ I duration 7 in state j, after
E state-transition i-—j.
0 s L ¥ I L 1 L I
tij.l tij..’. T = Fi{l( ) Time tij.lO

Fig. 5. Derivation of the duration 7
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4. Structure of the Data System

The data set consists of the following quantities:
1. Coefficients of the specific traction resistance of the vehicle/train:
N s2
kN m?’
Ns
kN m’
N
kN’

AF, in unit of measure:

BPF, in unit of measure:

CF, in unit of measure:

Comment: In (1) we defined the resistance force. Coefficients ¢, b and ¢
belong to a resistance force having a unit of measure N. For the practical
computations it is more advantageous to use the specific resistance fp with
respect to the unit weight Fz of the vehicle. The unit of measure of fp is
N/kN. The coeficients of fp(v,|3 F|) will be AF, BF and CF, instead
of a, b and cin (1). If the mass of the vehicle/train is m in unit kg, and the
gravity acceleration is g in unit m/sg, then the following relationship holds:

Fr(v,| Y FI) = {505 fr(0,1 3 FI).

2. A small positive bound EPS, which is used as ‘practical’ zero, i.e.
if —EPS <z < EPS then z is considered as zero. The order of magnitude
of EPS is less than 107°.

3. The mass of the vehicle/train:

TOM, in unit of measure kg.

4. The rotating mass factor:
GAM, numerical ratio kg/kg.
5. Time step length of the numerical integration:
DT, in unit of measure s.

6. Braking force function —Fp(u®,v) and tractive effort function
Fp(u,v) are unified into function V F(U,v) after having introduced the
unified control U defined in (2).

Function VF(U,v) is given by its substitutional values at different
integer values of U € {1,2,..., D} and in 11 fixed points of the speed axis.
The first speed point is always the zero speed, while the last one is the top
speed vmax. The number of pointsin which function VF(U,v) is determined
is 11 x D. For the sake of clearer explanation consider the case U = 1, when
the most intensive braking effect is set in. The data required are as follows:
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-~ control U =1
— sequence of non-negative speeds (11 points) in m/s:

v1,1 = 0,v1,2,v1,3, ..., ¥1,11 = Vmax
— sequence of braking forces with negative sign in kN:
VFi1 <0, VFi2<0, VF3<0,...,VFi11 <0.

For control levels U = 2,3,..., N the structure of the data is quite similar,
the V F values are of negative sign. In case of control level U = N +-1 no
braking and no tractive effort is applied. The special data required are the
following:
—control U = N + 1
— sequence of non-negative speeds (11 points) in m/s:

UN+11 = 0,08 419, UNL1,35 -+ - s UN+1,11 = Vmax
— sequence of vanished braking and tractive efforts (zero sequence):
VFENi11=0, VFyi12=0, VFNy13=0,...,VFy4111 =0.

For control levels U = N + 2, N +3,...,N + M + 1 the exertion of non-
negative tractive effort is set. The structure of the data is similar again.
The V F values are of positive sign. For visualization in the case of U =
N+ M+ 1= D, ie for the maximum tractive effort exertion the data
required are the following:

— control U = D

— sequence of non-negative speeds (11 points) in m/s:

Up1 = 07 UD,2, VD3y-+-3UD11 = VUmax
— sequence of positive tractive efforts in kN:
VFp1 >0, VFpy, >0, VFp3 >0,...,VFp11 > 0.

7. Transition probability matrix II is a stochastic matrix, i.e. the sum
of the elements in an arbitrary row of Il is equal to 1. The elements p;; are
read in due to the data format as follows:

P11 P12 ... Pi.D
P21 p22 ... P2D

Ppyr PD2 .-- PDD
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8. Matrix valued time function of the dwelling time (duration-) condi-
tional distribution functions. The functions Fj;(t) are given by the ordinate
sequence increasing strictly monotonously and belonging to a time-point
sequence of L = 10 points increasing strictly monotonicly as well. The data
structure is like the following:

time points: 5,1, 15,2, - -+, tij 10
ti;1 = 0 and t;;,. > 0 for all 75 pairs,

F; values:

Fij1, Fija,. ooy Fijao
Fi;1 =0 and Fj;10 = 1 for all 5 pairs.

Based on the two sequences linear interpolation is used, and in this way the
conditional distribution functions are approximated by piece-wise linear
functions. It is to be mentioned that for those index pairs, for which
pi; = 0, the time-point and F}; sequences can be arbitrary, but they should
obey the requirement of monotonic change and should satisfy the boundary
conditions ¢;;1 = 0, Fi;1 =0 and Fjj50 = 1.

5. Numerical Example

Program STOPSIM was applied to analyze the motion and loading condi-
tions of a Diesel locomotive hauling a passenger train. The data used were
the following:

1. Coeflicients of the specific traction resistance vs. speed function of
the train:

AF = 0.007 Ns*/kNm?, BF = 0.0 Ns/kNm, CF = 2.5 N/kN.

2. A small positive bound: EPS = 107°.

3. The mass of the train consisting of 1 locomotive and 5 passenger
carriages: TOM = 260000.0 kg.

4. The rotating mass factor: GAM = 0.08.

5. Time step length of the numerical integration: DT = 0.5 s.

6. Braking force and tractive effort functions vs. speed v and control
U can be seenin Fig. 6. The number of states of the unified control variable
U:D=N+M+1=2+12+4+1=15.

7. Transition probability matrix II is specified in Table I. The nu-
merical values of the matrix-elements were evaluated from an operational
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measurement carried on between Budapest and Esztergom on a Diesel lo-
comotive M41 which hauled a train consisting of 5 carriages.
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Speed response process v(f)
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8. The matrix valued time function of the dwelling time (duration)
conditional distribution functions will be specified only for those index
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Fig. 10. Probability density function of the speed response

pairs, for which the transition probabilities don’t vanish. The strictly
monotonic time-point and conditional probability sequences of length L =
10 are specified in Tables 2a and 2b.The numerical values of the sequences
were evaluated from the operational measurement results mentioned above.

The simulated realization functions of the unified control process U ()
and speed response process v(t) of the dynamical system can be seen in
Figs. 7and 8. Both diagrams are defined over a time interval of 1000 s.
A number of test computations shows that the stability of the relative
frequencies reflecting the on-level and inter-level dwelling duration resp. the
realization functions appears in a satisfactory measure, if the time domain
of the simulation exceeds the limit of 70000 s, i.e. it reflects about 20 hours
operation time. This requirement can be satisfied by software STOPSIM at
a computer-duration about 20 minutes on an AT386 configuration having
arithmetical co-processor.

The evaluated probability distribution of the control process can be
seen in Fig. 9, whilst the probability density function of the speed response
of the train-defined dynamical system is visualized in Fig. 10.
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6. Concluding Remarks

The stochastic simulation procedure realised by software STOPSIM gives
a powerful tool to the vehicle designers for predicting the operational con-
ditions of the vehicles to be designed. The information required to create
the transition probability matrix and the matrix of the conditional prob-
ability distribution functions can be achieved either by the evaluation of
operational measurements made on similar systems working under similar
service conditions or by appropriate deterministic computer procedures,
which can simulate the real-time operation of the vehicle from the com-
puter keyboard. Authors are intensively working on the creation of the
deterministic real-time simulation procedure mentioned, which will be apt
to generate input data for STOPSIM. The software realizing the real-time
simulation will be described in a subsequent publication.
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