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Abstract 

The software to be introduced aims to simulate the motion and loading processes of vehi­
cles by utilizing the information based on operation measurements, namely the transition 
probabilities of the tractive and braking effort control process, as well as the conditional 
probability distribution functions of the dwelling times on different control levels. The sim­
ulation procedure is based on statistical-dynamical principles. The evaluation of the time 
realizations generated can lead to the most important statistical characteristics concerning 
the future loading conditions of the vehicle in the period of design, so the dimensioning 
can be much more reliable. 

Keywords: stochastic simulation, vehicle dynamics. 

1. Introduction 

The software to be introduced is called STOPSIM. It is written in 
FORTRAN, and the name is abbreviated from the full title 'STochastic 
OPeration SImulator'. Though the present paper assigned its goal as the 
simulation of the operational motion and loading process of vehicles, it is 
to be emphasized that the applied principles determining the structure of 
the software are of more general character, i.e. the software can be used 
for the simulation of operation process of a very wide class of machinery. 

2. The Dynamical Model 

The dynamical model itself is a relatively simple one. It is a rigid body of 
single degree of freedom performing a translatory motion process of varying 
velocity under the influence of resistance, driving and braking forces. The 
action lines of the latter forces are identical, i.e. all the force vectors in 
question are fitting onto a common carrier straight line. The resistance 
force is described as a velocity and outer force dependent quantity: 
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F (V L F) = { (signv)[av
2 + bllvl + cl, 

R , (sign I: F) min{c, I I: FI}, 
if Ivl > 0, 

if v = 0, 
(1) 

where a, band c are non-negative constants, v stands for the magnitude of 
the velocity of the mass, while I: F is the resultant of the non-resistance 
forces acting on the mass. The driving force acting on the mass is consid­
ered as a bivariate function, namely it depends on control U and velocity v. 
So a function FD (u, v) is to be defined in a form appropriate for the numer­
ical treatment. Vvithout the considerable restriction of the practical appli­
cability of the computation procedure it can be assumed that the variable 
u, which is called the control parameter of the system, takes its values only 
from a finite set {uo, Ul ,U2, ... , U.\J } of non-negative integers. Value uo be­
longs to the case of exerting zero driving force (no tractive effort), while 
if U = UA[, the maximum driving force (tractive effort) is applied. Veloc­
ity v can take its values from the non-negative bounded interval [0, Vmax]. 
As for the treatment of function FD (u, v) in case of the mentioned restric­
tions concerning its variables, the set of performance curve visualized in 
Fig. 1 can always be used. The numerical representation of the perfor­
mance curves is made by linear interpolation method. The first step is 
the discretization of the velocity range, i.e. one should consider a sequence 
{vo = 0, VI, V2, . .. , Vn = Vmax}. In the real applications this sequence is usu­
ally (but not necessarily) an equidistant one. Let's consider an arbitrary 
control level Ui, then the tractive effort at velocity Vj is fij = FD(Ui,Vj). 

In accordance with the aforesaid, to control Ui two numerical sequences are 
joined, namely Vo = 0, Vl, V2, ... ,Vn = Vmax and fiD' fil , fi2, ... , fin. Using 
this train of thoughts for each possible control level, a set of numerical data 
is yielded for characterizing the tractive effort vs. velocity performance 
curves. The number of numerical data is obviously L = (M + 1)2(n + 1). 

The braking force acting on the mass is also a bivariate function, it 
depends on brake control u" and velocity v. So a function FB (u*, v) is to 
be defined. Without the considerable restriction of the wide applicability, 
it can be assumed that variable u* takes its values only from a finite set 
{uQ' ui, U2, ... ,uN} of non-negative integers. Value uC; belongs to the case 
of exerting zero braking force, while if u* = UN, the maximum braking force 
is applied. Velocity v can take its values from the non-negative bounded 
interval [0, vmaxl as introduced above. The treatment of function FE (u*, v) 
under the mentioned restrictive conditions concerning its variables is possi­
ble by defining the set of brake performance curves visualized in Fig. 2. The 
numerical representation of the brake performance curves is made by lin­
ear interpolation method. The discretization of the velocity range has been 
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carried out, i. e. considered again the sequence {vo = 0, VI, V2, ... ,Vn = 
n max }. Let's consider now an arbitrary brake control level ui, then the 
braking force at velocity Vj is gij FB(ui,vj). In accordance with the 
aforesaid, two numerical sequences are joined, to control ui namely Vo = 
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0, VI, V2, ... , Vn = Vrnax and giO, gil, gi2, ... , gin' Using this train of thoughts 
for each possible brake control level, a set of numerical data is yielded 
for characterizing the braking effort vs. velocity performance curves. The 
number of the latter numerical data is obviously K = (N + 1)2(n + 1). 

As it has been mentioned the mass performs a translatory motion, 
therefore the effect of the rotating components in the system having an 
angular velocity proportional to the velocity of the vehicle (i.e. wheels, 
components of the transmission system, etc.) should also be reckoned with. 
The rotating mass factor 'Y is defined as the ratio of the mass mr reduced 
on the periphery of the wheels and the mass m of the vehicle, in formula: 
'Y = mr/m. 

The control process of the system is composed of the controls u and 
u'" by accepting that at a given time t either u or u* can be effective 
only, i.e. either tractive effort exertion or braking force exertion can be 
realized. Only one exception exists, namely Uo = uo, this case identifies the 
state without exertion tractive and braking effect. Due to this remark, the 
resultant unified integer valued control process U has the following possible 
states: 

where 

U E {U1' U2, ... , UN, UN+l> UN+2,"" U:V+M+1} 
Number of states = D = N +]\1 + 1, 

-ui + N + 1 

2'1+1 

Ui + N + 1 

if i E {1, 2, ... , N} 

if i = N + 1 

if i E {N + 2, ... , D} 

(2) 

Control process U (t) having number D integer states is considered as a 
semi-Markovian stochastic process, its realizations are integer valued step­
functions, see Fig. 3. It is obvious that state Uo = Uo = ° identifying the 
state free from tractive effort and braking force exertion is corresponding 
to state UN + 1. Process U (t) spends a certain time T in each achieved state 
Uj , and T is a non-negative random variable being in stochastic dependence 
on the achieved new state Uj and on the previous state Ui left in the least 
state transition at the beginning of duration T. 

The state transitions of the control process U (t) are described by 
the so-called embedded Markovian chain. The latter is a homogeneous 
Markovian chain which can be represented by the transition probability 
matrix Pi, containing the conditional probabilities 

Pij = P{U(ta) = UjlU(tp ) = Ui}, (3) 
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where tp is the time just prior to the state transition and ta is that after 
the state transition, while Ui is the previous state and Uj is the following 
state of process U(t). For the sake of characterizing the duration in which 
process U(t) remains in a constant state, let us consider the random vari­
able T describing the duration mentioned. The conditional probability dis­
tribution function Fij(t) is defined as follows, by using the simpler desig­
nations (i.e. the indices i and j instead of Ui and Uj): 

Fij(t) = P{ T < tlU(tp ) = in U(ta) = j}. (4) 

It is obvious that for the possible combinations of indices i and j a matrix­
valued time function is obtained, on the basis of which the semi-Markovian 
process U (t) is fully characterized. 

The equation of motion of the dynamical system can be formulated 
by using Newton's second law: 

(5) 

Taking into consideration the definition of U (t), the equation of motion 
and the initial condition belonging to it can be formulated as the following 
initial-value problem: 

~~ = f(v, U(t)), 

v(to) = vo. (6) 
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This first-order non-linear differential equation will be solved numerically 
in the knowledge of the actual variation of the simulated control process 
realization U(t). The initial velocity of the motion can be zero, while 
after the state transitions the new initial velocities are equal to those of 
the vehicle prior to the transitions. In this way the numerical solution 
of the motion equation can be sequentially carried out with ease over the 
time intervals in which control U(t) takes its simulated constant values. 
The program STOPSIM uses the Eulerian integration method. Input step­
function U(t) and the speed-response function v(t) of the dynamical model 
is shown in Fig. 4. 

Input SYSTEM MODEL Output 

I 
v = j(v,U(t)) 

I 
Control process U(t) Speed response v(t) 

I r-, , 

~ 
, I r" , , In' U , \ '}' I .... : , 

-' L...A.J~ ~ 
Ilme 

Fig. 4. Input and output functions of the dynamical model 

3. Simulation Principles 

The basic information concerning control process U(t) is contained by the 
following D X D matrix and D x D matrix-valued time function 

Pi = [Pij] and F(t) = [Fij(t)]. (7) 

The actual state transition is simulated on the basis of generation of a 
sequence of uniformly distributed pseudo random numbers. Let "l be a 
uniformly distributed random number in interval [0, 1]. Let us assume that 
a transition should be simulated from the known state i to the temporary 
unknown state j. After generating "l the unknown index j assigning the 
new state after the state transition can be determined by checking relation 

j-I j 

LPik < "l::;; LPik, PiO = O. (8) 
k=O k=O 
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With the knowledge of the new state j, the duration 7", in which control 
U(t) takes value Uj after state transition i -+ j can be simulated based on 
the conditional distribution function Fij(t) defined in relation (4). Function 
Fij(t) is assumed to be approximated over its range by a piece-wise linear 
continuous function of strictly monotonic property for each index pair i, j. 

In this way, the inverse functions Fi}l(t) always exist. Random dura­
tion 7" in question is derived from a uniformly distributed random number 
71 as follows. It is obvious that the distribution function of random variable 

(9) 

is Fij(t), i.e. it is identical to the conditional distribution function which 
describes the duration in state j, after transition i -+ j. Since 71 can be 
generated by a standard subroutine, the appropriate 7" realization can be 
computed. 

The numerical treatment of the transition probability matrix TI is ob­
vious by using an appropriate two-dimensional array, while the non-zero 
elements of the matrix-valued time function F(t) are represented by se­
quences of co-ordinate pairs determining the break-points of the piece-wise 
linear conditional distribution functions Fij(t). It is to be noted that in 
case Pij = 0 also function Fij(t) is taken as an identically zero function. 
This property makes it possible to deal only with those index pairs for 
which Pij are non-zero. The derivation of duration 7" from the uniformly 
distributed random number 71 is visualized in Fig. 5. As it can be seen, 
functions Fij (.) and Fi} 1 (.) can identically be treated by linear interpola­
tion based on the number L break-point co-ordinate pairs representing the 
conditional distribution function in question. 

1 
11 : lTniformly distdbuted 

random number 

----<:>---

Fij(t) : Piece-wise linear 
conditional probability 
distribution function of 
duration r in state j, after 
state-transition i - j. 

Time 

Fig. 5. Derivation of the duration T 
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4. Structure of the Data System 

The data set consists of the following quantities: 
1. Coefficients of the specific traction resistance of the vehicle/train: 

N S2 
AF, in unit of measure: 

kN m 2 ' 

N s 
B F., in unit of measure: -­

kN m' 
N 

C F, in unit of measure: kN' 

Comment: In (1) we defined the resistance force. Coefficients a, band c 
belong to a resistance force having a unit of measure N. For the practical 
computations it is more advantageous to use the specific resistance fR with 
respect to the unit weight Fe of the vehicle. The unit of measure of fR is 
N/kN. The coefficients of fR(V, I I: FI) will be AF, BF and CF, instead 
of a, band c in (1). If the mass of the vehicle/train is m in unit kg, and the 
gravity acceleration is 9 in unit m/s2, then the following relationship holds: 

2. A small positive bound EPS, which is used as 'practical' zero, i.e. 
if -EPS S x S EPS then x is considered as zero. The order of magnitude 
of EPS is less than 10-5

. 

3. The mass of the vehicle/train: 
TO M, in unit of measure kg. 

4. The rotating mass factor: 
GAM, numerical ratio kg/kg. 

5. Time step length of the numerical integration: 
DT, in unit of measure s. 

6. Braking force function - F B (u*, v) and tractive effort function 
FD (u, v) are unified into function V F(U, v) after having introduced the 
unified control U defined in (2). 

Function V F(U, v) is given by its substitutional values at different 
integer values of U E {1, 2, ... , D} and in 11 fixed points of the speed axis. 
The first speed point is always the zero speed, while the last one is the top 
speed Vrnax. The number of points in which function V F(U, v) is determined 
is 11 x D. For the sake of clearer explanation consider the case U = 1, when 
the most intensive braking effect is set in. The data required are as follows: 
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- control U = 1 
- sequence of non-negative speeds (11 points) in m/s: 

VI,1 = 0, VI,2, VI,3,· .. ,VI,ll = Vrnax 

- sequence of braking forces with negative sign in kN: 

V Fl,1 < 0, V FI,2 < 0, V FI,3 < 0, ... , V H,ll < 0. 

For control levels U = 2,3, ... ,N the structure of the data is quite similar, 
the V F values are of negative sign. In case of control level U = N + 1 no 
braking and no tractive effort is applied. The special data required are the 
following: 

- control U = N + 1 
- sequence of non-negative speeds (11 points) in m/s: 

VN+I,1 = 0, VN+I,2, VN+I,3," . ,vN+I,l1 = Vrnax 

- sequence of vanished braking and tractive efforts (zero sequence): 

V F N + 1,l = 0, V F N + l ,2 = 0, V F N + l ,3 = 0, ... , V FN+I,ll = 0. 

For control levels U = N + 2, N + 3, ... , N + M + 1 the exertion of non­
negative tractive effort is set. The structure of the data is similar again. 
The V F values are of positive sign. For visualization in the c'ase of U = 
N + M + 1 = D, i.e. for the maximum tractive effort exertion the data 
required are the following: 

- control U = D 
- sequence of non-negative speeds (11 points) in m/s: 

VD,l = 0, vD,2, vD,3,"" vD,ll = Vrnax 

- sequence of positive tractive efforts in kN: 

V F D ,l > 0, V FD,2 > 0, V FD,3 > 0, ... , V FD,ll > 0. 

7. Transition probability matrix IT is a stochastic matrix, i.e. the sum 
of the elements in an arbitrary row of IT is equal to 1. The elements Pij are 
read in due to the data format as follows: 

P1,l P1.2 P1.D 

P2,1 P2.2 P2.D 

PD.l PD.2 Pn.D 
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8. Matrix valued time function of the dwelling time (d uration-) condi­
tional distribution functions. The functions Fij(t) are given by the ordinate 
sequence increasing strictly monotonously and belonging to a time-point 
sequence of L = 10 points increasing strictly monotonicly as well. The data 
structure is like the following: 

time points: tij,b tij,2, ... , tij,lO 

tij,l = 0 and tij,. > 0 for all iJ pairs, 

Fij values: 

Fij.l, Fij.2, . .. , Fij.lO 

Fij.i = 0 and Fij,lO = 1 for all ij pairs. 

Based on the two sequences linear interpolation is used, and in this way the 
conditional distribution functions are approximated by piece-wise linear 
functions. It is to be mentioned that for those index pairs, for which 
Pij = 0, the time-point and Fij sequences can be arbitrary, but they should 
obey the requirement of monotonic change and should satisfy the boundary 
conditions tij,1 = 0, Fij,l = 0 and Fij,lO = 1. 

5. Numerical Example 

Program STOPSIM was applied to analyze the motion and loading condi­
tions of a Diesel locomotive hauling a passenger train. The data used were 
the following: 

1. Coefficients of the specific traction resistance vs. speed function of 
the train: 

2/ 2 / AF = 0.007 Ns kNm, BF = 0.0 Ns/kNm, CF = 2.5 N kN. 

2. A small positive bound: E P S = 10-5 . 

3. The mass of the train consisting of 1 locomotive and 5 passenger 
carriages: TO M = 260000.0 kg. 

4. The rotating mass factor: G AM = 0.08. 
5. Time step length of the numerical integration: DT = 0.5 s. 
6. Braking force and tractive effort functions vs. speed v and control 

U can be seen in Fig. 6. The number of states of the unified control variable 
U : D = N + M + 1 = 2 + 12 + 1 = 15. 

7. Transition probability matrix IT is specified in Table 1. The nu­
merical values of the matrix-elements were evaluated from an operational 
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measurement carried on between Budapest and Esztergom on a Diesel lo­
comotive M41 which hauled a train consisting of 5 carriages. 
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~ Speed response process v(t) 
,:r; 
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Fig. 8. Simulated speed response process 
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8. The matrix valued time function of the dwelling time (duration) 
conditional distribution functions will be specified only for those index 
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pairs, for which the transition probabilities don't vanish. The strictly 
monotonic time-point and conditional probability sequences of length L = 
10 are specified in Tables 2a and 2b.The numerical values of the sequences 
were evaluated from the operational measurement results mentioned above. 

The simulated realization functions of the unified control process U (t) 
and speed response process vet) of the dynamical system can be seen in 
Figs. '7 and 8. Both diagrams are defined over a time interval of 1000 s. 
A number of test computations shows that the stability of the relative 
frequencies reflecting the on-level and inter-level dwelling duration resp. the 
realization functions appears in a satisfactory measure, if the time domain 
of the simulation exceeds the limit of 70000 s, i.e. it reflects about 20 hours 
operation time. This requirement can be satisfied by software STOPSIM at 
a computer-duration about 20 minutes on an AT386 configuration having 
arithmetical co-processor. 

The evaluated probability distribution of the control process can be 
seen in Fig. 9, whilst the probability density function of the speed response 
of the train-defined dynamical system is visualized in Fig. 10. 
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0.0 0.2 0.)) 0.0 0.0 0.0 0.0 0.0 0.0 

o.~ 0.0 0.2 0.0 0.0 O.D 0.0 0.0 0.0 

0.0 O.1i 0.0 0.0 0.0 O.02:1:1 0.0/]G5 O.OG!17 (l.! :1!Hl 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.9 0.1000 0.0 0.0 0.0 0.0 0.0 
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0.0 0.0 ll.il2iW 0.0 O.:tl:!:! 0.();l76 0.0 0.0 0.0 
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Table 2/a 

t 12 0.0 6.0 12.0 18.0 24.0 36.0 42.0 48.0 54.0 60.0 
F12 0.0 0.03 0.08 0.18 0.38 0.62 0.82 0.92 0.97 1.0 
t 13 0.0 6.0 12.0 18.0 24.0 36.0 42.0 48.0 54.0 '·60.0 
F13 0.0 0.03 0.08 0.18 0.38 0.62 0.82 0.92 0.97 1.0 

t 21 0.0 6.0 12.0 18.0 24.0 36.0 42.0 48.0 54.0 60.0 
F21 0.0 0.03 0.08 0.18 0.38 0.62 0.82 0.92 0.97 1.0 
t 23 0.0 6.0 12.0 18.0 24.0 36.0 42.0 48.0 54.0 60.0 
F23 0.0 0.03 0.08 0.18 0.38 0.62 0.82 0.92 0.97 1.0 

t 32 0.0 6.0 12.0 18.0 24.0 36.0 42.0 48.0 54.0 60.0 
F32 0.0 0.03 0.08 0.18 0.38 0.62 0.82 0.92 0.97 1.0 
t 36 0.0 0.8 1.2 1.6 2.0 20.0 38.0 56.0 74.0 92.0 
F36 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 37 0.0 8.8 12.0 14.0 16.0 21.2 26.4 46.6 81.8 117.0 
F37 0.0 0.2 0.3 0.4 0.5 0.6 1).7 0.8 0.9 1.0 
t 38 0.0 10.0 16.0 19.6 22.0 24.0 28.0 46.0 202.0 427.0 
F38 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 39 0.0 18.9 29.4 36.0 38.9 67.6 79.6 82.6 135.8 165.0 
F39 0.0 0.2 0.3 0..1 0.5 0.6 0.7 0.8 0.9 1.0 
t 310 0.0 36.2 42.2 43.0 57.0 62.4 68.4 70.0 100.0 161.0 
F310 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 311 0.0 2.0 3.5 5.0 8.0 11.0 38.0 65.0 68.0 71.0 
F3ll 0.0 0.2 0.3 0..1 0.5 0.6 0.7 0.8 0.9 1.0 

t 43 0.0 1.5 2.25 52.0 126.2 200.5 256.3 275.2 294.1 313.0 
F43 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 53 0.0 8.9 47.5 69.4 82.0 123.0 174.0 186.2 224.0 416.0 
F53 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 54 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
F54 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 62 0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
F62 0.0 0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9998 1.0 
t 63 0.0 27.7 39.0 61.2 91.0 115.0 131.4 157.8 181.8 210.0 
F63 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 64 0.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
F64 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 67 0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
F67 0.0 0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9998 1.0 
t 68 0.0 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 2l.0 
F68 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 73 0.0 12.0 23.8 32.2 36.5 54.8 108.8 180A 244.8 702.0 
F73 0.0 0.2 0.3 0.4- 0.5 0.6 0.7 0.8 0.9 1.0 
t 75 0.0 1.7 2.1 2.2 2.3 2.4 2.5 2.6 3.9 60.0 
F75 0.0 0.2 0.3 0.-1 0.5 0.6 0.7 0.8 0.9 1.0 
t 76 0.0 2./ 4.05 5.4 6.75 S.l 9,45 10.S 12.15 13.5 
F76 0.0 0.2 0.3 0..1 0.5 0.6 0.7 0.8 0.9 1.0 
t 711 0.0 lS.4 24.4 27.2 30.0 32.S 35.6 41.6 50.8 60.0 
F/ll 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 83 0.0 106.6 140.2 173.6 192.0 206.4 234.9 280.9 353.6 468.0 
FS3 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 85 0.0 0.04 0.06 0.08 0.1 0.38 0.66 0.94 1.22 1.5 
F85 0.0 0.2 0.3 0.4 0.1> 0.6 0.7 0.8 0.9 1.0 
t 86 0.0 2.0 2.1 2.3 2.4- 3.6 6,4 10.6 89.4 183.0 
F86 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 87 0.0 0.9 1.35 1.42 1.5 1.65 2.25 4.5 6.75 9.0 
F87 0.0 0.2 0.3 0,4 0.5 0.6 0./ 0.8 0.9 1.0 
t 810 0.0 12.6 18.9 29.2 41.5 53.8 65,4 75.6 85.8 96.0 
F810 0.0 0.2 0.3 0.4 0.5 0.6 0./ 0.8 0.9 1.0 
t 811 0.0 12.8 19.2 25.6 32.0 38.4 H.S 51.2 57.6 64.0 
FS11 0.0 0.2 0.3 0.4 0.5 0.6 0./ 0.8 0.9 1.0 
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Table 2/b 

t 96 0.0 1.2 1.51 1.52 1.53 1.54 1.55 1.6 1.8 2.0 
F96 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 97 0.0 1.8 2 .. 01 2.02 2.03 2.04 2.05 2.5 8.45 32.0 
F97 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 98 0.0 0.8 1.4 2.2 3.0 4.4 5.8 9.0 14.0 19.0 
F98 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 910 0.0 6.8 10.2 13.6 17.0 20.4 23.8 27.2 30.6 34.0 
F910 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 911 0.0 1.0 23.0 45.0 59.5 74.0 9l.5 109.0 121.5 134.0 
F911 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 914 0.0 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 
F914 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 107 0.0 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 
F107 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 108 0.0 2.0 2.1 2.2 2.25 3.2 4.9 5.0 10.0 70.0 
F10S 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 109 0.0 0.6 0.9 6.7 15.25 23.8 31.95 39.3 46.65 54.0 
F109 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 118 0.0 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 
F118 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 119 0.0 l.i 2.0 2.4 3.0 4.0 19.6 41.8 87.4 123.0 
Fl19 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1110 0.0 29.6 59.2 88.S 118.4 148.0 177.6 236.8 266.4 296.0 
F1110 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1112 0.0 7.8 11.7 15.6 19.5 26.4 33.3 40.2 47.1 54.0 
F1112 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1113 0.0 8.2 12.3 16.4 20.5 24.6 28.7 32.S 36.9 41.0 
Fl113 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 1210 0.0 1.6 2.4 3.2 4.0 18.2 32.4 46.6 60.8 75.0 
F1210 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1213 0.0 9.0 13.5 18.0 22.5 27.0 31.5 36.0 40.5 45.0 
F1213 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1214 0.0 19.0 28.5 38.0 47.5 57.0 66.5 76.0 85.5 95.0 
F1214 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 1311 0.0 22.4 33.6 44.S 56.0 66.2 76.4 86.6 96.9 106.0 
F1311 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1312 0.0 11.8 17.7 23.6 29.5 35.4 41.3 -17.2 53.1 59.0 
F1312 0.0 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 1.0 
t 1314 0.0 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 1.0 
F1314 0.0 0.2 0.3 0..1 0.5 0.6 0.7 0.8 0.9 1.0 

t 1412 0.0 14.2 21.3 28.1 35.5 42.6 49.7 56.8 63.9 71.0 
F1412 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
t 1415 0.0 22.8 34.2 45.6 57.0 64.8 72.6 80.'! 88.2 96.0 
F1415 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 1513 U.O 2.4 3.6 4.8 6.0 16.6 27.2 37.8 48.-1 59.0 
F1513 0.0 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 1.0 
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6. Concluding Remarks 

The stochastic simulation procedure realised by software STOPSIM gives 
a powerful tool to the vehicle designers for predicting the operational con­
ditions of the vehicles to be designed. The information required to create 
the transition probability matrix and the matrix of the conditional prob­
ability distribution functions can be achieved either by the evaluation of 
operational measurements made on similar systems working under similar 
service conditions or by appropriate deterministic computer procedures, 
which can simulate the real-time operation of the vehicle from the com­
puter keyboard. Authors are intensively working on the creation of the 
deterministic real-time simulation procedure mentioned, which will be apt 
to generate input data for STOPSIM. The software realizing the real-time 
simulation will be described in a subsequent publication. 
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