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Abstract

The field test revealed that the vertical rail deflection under various environments has a
random character. The quasi-static linear rail response under vertical wheel load P = 1 kN
— the rail deflection and the bending moments of the rail with constant spacing discrete
supports is presented. The stiffness of fasteners, sleepers and subgrade are included by a
set of discrete springs. The linear finite element procedure is applied, using the IDA com-
puter program. The parametric studies are carried out to examine the effect of randomly
variable stiffness of supports and modelled reduction in stiffness of some supports. The
deterministic response results and random ones are compared.
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1. Introduction

During the lifetime of the track its components operate under conditions of
repeated variable loading, variability of the foundation, irregularities of the
rail, etc., which introduce stochastic components in the problem and the
response of the track structure is of a random character. The quasi-static
response of the track for these conditions can be described in terms of the
deflection of the rail loaded by the concentrated force P, in the form of
equation

Liv(z)] = 6(z) - P, (1)

where v(x) is the vertical deflection of the rail at point @, L is a linear
differential operator, §(z) is the Dirac delta function.

The formulation of the problem and the boundary conditions of Fq. (1)
require the deflection, its slope, the bending moment and shear force at in-
finite distance to right as well as to the left of the force P to be zero, see
Fig. 1. Under these assumptions the beam is in a so-called quasi-stationary
state, i.e., its behaviour depends on the distance from the moving point of
application of the force, and the origin is moving together with the mov-
ing force P. In this paper the static case of the problem is analysed, i.e.,



154 M. MORAVCIK

THE CROSS - SLEEPER TRACK STRUCTURE

A
/RAIL [ET)

T A

C, STANDARD LINEAR ANALYSIS - ELASTIC BEAM ON CONTINUOUSLY ELASTIC
FOUNDATION { THE WINKLER TYPE)

P\H
L e
£
O AT RIS
‘——Vx clx)=c = CONST (Nm /m)
DEFLECTION CURVE vlx) X
O'i"“—"f
SN -
pix)=c.vix)
BENDING MOMENTS M (x) x

TN

A4 »

I3/ STOCHASTIC LINEAR ANALYS!S

P\-‘l
RAIL (EI)

T T T T TR

ELASTIC FOUNDATION OF RANDOM STIFFNESS Tix)

DEFLECTION COURVE vix) <

:E%:) = ¢lx). vix)

Fig. 1. Linear track models: o) Beam on deterministic Winkler foundation; b) Beam on
a randomly variable Winkler foundation

without the dynamic effect. For more than one load, a solution may be
obtained by superposition of the various wheel loads P. In a standard lin-
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Fig. 2. Linear track model of a finite long beam on discrete elastic supports

ear analysis, the deterministic quasi-static response was tackled by several
authors [2], while the stochastic character was investigated in a few cases
only.

In order to develop a rational method taking into account the vari-
ability of the input parameters, it is necessary to formulate the problem in
a stochastic framework. Such stochastic formulation consists of two main
elements:

(a) Characterisation of the uncertainty of the input parameters;
(b) Development of the relationship between the statistical characteristics
of the output.

The aim of the paper is to present the quasi-static rail response for
various support stiffness conditions. The rail response analysis is concerned
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REPLACED LINEAR SPRING CHARACTERISTICS
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Fig. 3. Idealised linear spring characteristic k, of discrete rail supports

with the determination of the vertical displacement v(z), bending moments
M(z) and support reactions R;. Stiffness of the foundation is a random
variable and other input parameters of the problem are considered as de-
terministic data. In this analysis, the track components such as fasteners,
sleepers, ballast and subgrade are modelled by a set of vertical springs.
The finite element method is used to find the response. Using the IDA
computer program [3], the analysis has been conducted to investigate the
effect of the variability of the support stiffness on the response. Practically,
we could take into account other random factors of the problem, such as
irregularities of the rail or the load of the rail. We suppose these sets are
stochastically independent and we can investigate their effect in detail.

2. Linear Track Model

In a standard linear analysis the railway track structure consisting of rails,
pads, sleepers, and subgrade is modelled as an infinitely long beam resting
on a deterministic continuous Winkler foundation (Fig. Ia). The model
just mentioned has been widely accepted for the calculation of the rail
response and it may be generally extended to a stochastic case, see Fig. 1b.

For a static case of the Bernoulli-Euler beam on elastic foundation,
the operator L takes a form

d*v(z)

L[U(I)} = d$4

+c(z) - v(z), (2)
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Fig. 4. Nonstationary modelled reduction in stiffness of some supports

and the model in Fig. 1b is described by the stochastic differential equation

4y x .
EIddbx(f; ) +2(z)-v(z) = P, (3)
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where v{z) is the vertical deflection of point z on the rail axis, ET is the
constant bending stiffness of the rail, P is vertical wheel loads and &(z)
is the stiffness of the foundation that varies randomly along its length
coordinate z.
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Fig. 5. Stationary randomly variable stiffness of the discrete supports

In Eq. (3) the coefficient is of a random character and the equation
belongs to the class of differential equations with random coeflicients. The
solution of Eg. (3) is cumbersome, and one of possible approximation tech-
niques is the perturbation approach. FRYBA in [5] has applied this method
to a similar dynamic problem. Because of difficulties connected with the
solution of the stochastic differential equation (3) a finite element model
of the rail, a finite beam resting on discrete elastic supports with constant
spacing (Fig. £). was introduced and solved. The spring stiffness of dis-
crete rail supports include the stiffnesses of fasteners, sleepers and of the
subgrade. The spring supports are attached to the rail at the sleepers. see
Frg. 2.

The stochastic finite element method [7], the direct Monte Carlo simu-
lation or direct finite element method (FEM) simulation are suitable meth-
ods of solving the problem. Because of the cost of the Monte Carlo simu-
lation, the simple direct FEM was applied to estimate the track response.
In the FEM, the structure is approximated by a set of discrete elements in-
terconnected at nodal points, see Fig. 2. By using the virtual displacement
theorem. the equilibrium equation of the set has the form

K-v=PFP,. (4)

where K is the stiffness matrix, P is the force vector, v is the vector of
nodal displacements.

The elements of K are given in terms of the geometry variables L.
elasticity variables E and spring stiffness k. Nodal displacements v are
solved from Ejgq. (4) directly

v=K'.P. (5)
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supports corresponding to Fig. fe

The set of load effects S = f(L, E, P, k) is correspondingly related to the
nodal displacements v by

S=D-v. (6)
where the elements of D are given in terms of L and E as well.
Inserting Eq. (5) in Eq. (6) vields
S=D.-K'-P=C-P, (7)

where C = P - K™! is a matrix binding the load effects and external loads.
This linear finite element procedure was applied using the IDA com-
puter program [3].
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3. Modelling of the Input Parameters
The track stiffness, £ (Nm™?) , is defined as

where P is the concentrated wheel force applied to the rail, v is the rail
deflection under the force.

The track foundation modulus, ¢ (Nm_2), is a widely used parameter
to represent the vertical stiffness of the rail foundation, and it is defined as
a force per length squared

c::%, (9)
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Fig. 9. Response analysis for stationary randomly

variable stiffness of supports

where p is the vertical rail foundation supporting force per unit length, and
v is the vertical rail deflection. The relationship between the track modulus

¢ and the track stiffness k is as follows

k4/3
(64ET)I/3°

(10)
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The spring stiffness of discrete rail supports k, should include the stiffness of
fasteners, sleepers and of the subgrade. The conditions of the track stiffness
are modelled by the four characteristic levels of the spring stiffness of the

discrete supports with the mean k( O = ,u( ), i=1=+4, see Table 1.

Table 1
Characteristic stiffness levels of rail supports

Level of  Spring Spring Modulus
stiffness  const. charact.  compressibility
of subgrade of subgrade
AL 3% K
(Nm™!] [Nm™!] [Nm ™3]
1 0.9-107  1.2-107 5-107
2 1.5- 10‘ 2.4-10° 10 -10°
3 25107 6.7-10" 30-10°
4 3.2-107 16.0 - 10° 70 - 10°

Idealised linear spring characteristics k,@ of discrete rail supports are
expressed by the spring constant of the elastic joint ky, and the spring

constant of the subgrade l:_gi). Fag. 3.

I kt- ’(i) .

The spring constant k; was taken as the mean value ky = 4- 10" Nm

Four characteristic levels for the mean value of kgi) were chosen to model
the foundation of the track, see Table 1.

Two basic models in the stiffness reduction of support were investi-
gated :

(a) Nonstationary reduction stiffness of some supports, see Fig. 4.
(b) Stationary random stiffness of the discrete supports, see Fig. 5.

4. Parametric Study

Using the computer program IDA [3], the parametric studies were con-
ducted to investigate the effect of reduction of the support stiffness. Two-
dimensional finite element model with 57 beam elements supported by
springs was used to represent the rail. The rail of type R65 was used
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for the studies, with the flexural stiffness £ = 7.875 - 10° Nm?, and spac-
ing of the sleepers { = 0.6 m. The rail response analysis consists in the
determination of the vertical displacements v(z), bending moments M (x),
and support reaction R;.

a) Results of the standard linear analysis for constant stiffneses of sup-
ports, kj(i) = const., for the four characteristic deterministic stiffness
levels of the rail supportsi = 14 (Table 1) are shown in Fig. 6. The
vertical force P = 1 kN is applied to the support.

Table 2
Comparison of the rail response for modelled reduction of the support stiffness on
Fig. 4e. g, b

Charact. Support Rail response for P, = 1 kN

level stiffness constant stiffness Modeiled reduction

of supports of the support stiffness
. Fig. Je
(1) Y we=0) M(e=0) Riz=0) v(ct=0) M(z=0) R(z=0)

(Nm™'  [mm] [kNm] [kN] [mm] [kNm] [kN]

1 0.9-107 0.0284  0.285 0.251  0.0396  0.338 0.174
(139%)  (118%)  (69%)
2 1.5-107 0.0193 0.249 0.284 — — —
3 25107 0.0129  0.212 0.325  0.0185  0.257 0.232
(143%) (121%)  (71%)
4 3.2-107 0.0108 0.198 0.345 — — —

Charact. Support Rail response for Py, = 1 kN
level stiffness Modelled reduction of the support stiffness
_ Fig. 4g Fig. 4b
() a0 viz=0) M(z=0) Rlz=0) v(2=0) M(z=0) R(z=0)
[Nm™!]  [mm] [kNm)] [kN] [mm] [kNm] [kN]
1 0.9-10" 0.0345 0.321 0.213 0.03 0.278 0.265
(121%)  {112%) {84%)  (105%) (97%) (105%)
2 1.5-107 — — — — — —
3 2.5-107  0.163 0.241 0.286 0.013 0.208 0.334

(126%)  (113%)  (88%)  (100%)  (98%)  (102%)
4 32.107 00138 0226  0.304 — — —
(127%)  (114%) (88

b) Nonstationary reduction in the stiffness of some supports. Such mod-
elling provides the basis for predicting the track performance with
relatively poor ballast, or dipped rail joints. Typical result of the



QUASL-STATIC STOCHASTIC MODELLING 165

response analysis for the cases from Figs. 4e and 4g are shown in
Figs. 7 and 8.

The elastic deflection curves illustrated in Figs. 6, 7 and 8 are, at the
same time, the influence lines for deflection of the rail, because the
unit force P = 1 kN was applied. For the wheel force having a specific
magnitude P acting on the rail at the point z = 0 the deflection
v(z = 0) can be found by multiplying the influence line ordinate by
the magnitude of the force P. A comparison is made between the
results of nonstationary response and the deterministic response for
the characteristic levels of the support stiffness in Table 2.

¢) Linear analysis of the stationary random stiffness of supports. For
a chosen mean value ,u‘}:) and coefficient of variation V3.(V), = 0.1 +

0.3), the random variables stiffness k§z) was generated by means of
the random number generator having a rectangular density function.
Typical results of the response analysis for randomly variable stiffness
of supports are shown in Figs. § and 10, and for the characteristic
stiffness levels ¢ = 2 and 4 are displayed in Table 3.

The rail with a stationary randomly variable stiffness of discrete supports
was successively static loaded by the force P = 1kN in positions j = 1+ 19
and corresponding amplitudes v;, A; in positions j were computed. As an
example two elastic deflection curves of the rail for the input parameters
PE = 1.5-:10"Nm™! and Vi = 0.1+0.3, are shown in Fig. 11. They represent
the static rail deformation that is successively loaded by the force P = 1 kN
in position j = 1+ 19.

5. Conclusions

In the presented parametric studies of the quasi-static rail response, the ef-
fect of the reduction of rail support stiffness is examined. The rail response
analysis is concerned with the determination of the vertical displacement
v(x) bending moments M (x) and discrete support reactions R;. The stiff-
ness of discrete supports is a variable quantity and other input parameters
of the problem are considered as deterministic ones. The reduction in stiff-
ness of supports models some important practice cases. The finite element
method was used to find the response. Two types of reduction of the sup-
port stifiness modelled: the nonstationary reduction in the stiffness of some
supports and the stationary random reduction in stiffness of supports. The



Table 3

The results of parametric study of the rail response for random stiffness of supports

charact. imput parameters Response for P, = 1 kN
level deflection vz = 0) bending moment M {a:)
support  coefl. of mean standard max.v(e =0) mean standard max .M (x = 0)
stiffness  variation value deviat value deviat
(7) oy Vi Ho ou far Trs
[Nm™1] [mm] [mm] [mm] [kNm]  {kNm] [kNm]}
2 L5-1077 00 1961077 0.22-107" 0.0205 0.248 2.66- 107" 0.256
(106%) (103%)
(0.2 0.45- 1073 0.0204 4.19-107% 0.255
(105%) (103%)
0.3 0.65- 1073 0.0205 6.83-107° 0.258
(v .H)(i%) ( 10400)
4 3.2-1077 0.1 L1072 0031073 0.0113 0.199 2.51-1p7° 0.203
(J.O]“/l'?) (lo‘l”u)
0.2 0.27-107% 0.0114 3.62-107° 0.207
(105%) (104%)
0.3 0.42-107° 0.0118 5011073 0.209

(109%) (103%)
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Fig. 10. Response analysis for stationary randomly variable stiffness of supports

first type enables the qualitative predicting rail performance with relatively
poor ballast or dipped rail joints while the second type of reduction enables
to assess the effect of random variation in sleeper stiffness. Numeric studies
showed that the simulation is adequate method for response analysis of the
track structure. The response results for the stationary random reduction
in stiffness of support, show that the response is not so unfavourable as
for a nonstationary reduction in support stiffness. Thus, the stiffness of
vertical springs can considerable influence the response of the track. The
knowledge of the rail variable response isimportant both for determination
of the force transfer from the rail to the sleepers and for assessing the
serviceability of the railway track.
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