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Abstract

Authors have developed a nonlinear pipe element for MMG Co. Ltd who is owner of
several patents pending of flow meters in order to take into account the Coriolis forces
produced by the flow of fluids in vibrating pipes. The aim of the development is to improve
the construction of existing Coriforce flow meters where the measuring method is based
on the presence of Coriolis forces which are in linear relation with the mass flow in pipes.
The paper discusses the modelling aspects and shows industrial example as well.
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1. Introduction

Direct flow meters based on Coriolis forces were developed dynamically
during the last decade. These are direct means that we do not have to
measure density and volume flow separately and compute the mass flow
indirectly. As the mass flow induces Coriolis forces, measurement of these
forces lets us know the mass flow in a direct way. The main advantage of
Coriolis flow meters is that in a large measuring range (turn-down ratio
1/20) we can measure the mass flow with a 0.2% accuracy independently of
the fluid consistency (physical state, viscosity, density). As we do not have
moving parts we can achieve high reliability, stability and life expenditure.
Therefore Coriolis flow meters are going to replace indirect flow meters on
more and more fields of use.

Development of vibrating Coriolis flow meters has produced a big
variety of pipe forms and vibrating methods. Most of solutions can be
characterized by the following remarks:

Every cross section of a pipe constrained at its extremities and excited
with its eigenfrequency is moving on an arched path, therefore for every
cross section there is a periodic angular velocity.

Consequently, the Coriolis forces produced by mass flow in the pipe
and the above mentioned angular velocity will be periodic of the same
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frequency which will excite periodic vibration of the pipe. This vibration
is due only to mass flow and it will be superposed on excited vibration.

One can always find two points along the length of the pipe where
the phase shift of the vibrations shows only the effects of Coriolis forces,
depending on mass flow. The phase shift of the two sinusoidal signals is
the output of the flow meters.

The design of optimal flow meters is to determine the optimal values
of numerous parameters which are function of the others. We mention only
the most important parameters here:

~ geometry of vibrating pipe

—~ material of pipe

- vibrating mode

~ position and mass of sensors mounted on pipe

~ measuring range

- error rate of signal processing (error of signal processing divided by
the total errors of the flow measurement)

- damping and effect of vibration loss (mechanical coupling with the
environment, balancing)

- effect of outer mechanical noise

- effect of static and dynamic mechanical loads (pressure dependency,
fatigue)

— pressure 10ss

We have two solutions for the flow meter optimal design:

1. Analysis of measurements of one or more prototypes. This process is
highly interactive and requires sequent modification and measurement
of prototypes.

2. State a numerical model of the physical problem and find optimal

values of the model parameters.

MMG Co. Ltd has made cconomic efficiency estimations for both
methods. These estimations have made MMG Co. Ltd. purchase Svstus
finite element software as a tool for the second method. Two major argu-
ments have influenced this decision:

First:  Counstruction of large prototypes is time consuming and
expensive.

Second: As even larsest finite element softwares do not include Cori-
olis pipe elements authers have develeped a new element ro nHe linked with
Systus shared library. ur paper shows the most imporrant steps of cle-
ment derivation and compares 1ts behaviour with theorertical test and in-
dustrial measurements.
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Nomenclature

A cross section

[B] damping matrix

E Young modulus

G shear modulus

I area moment of inertia

k Timoshenko shear coefficient
(K] stiffness matrix

L length of pipe

[M] mass matrix

N shape function vector

q nodal variable vector

S Hamilton functional

t time

T kinetic energy

T integration time step

At time shift of zero crossing
U potential energy

Vo mean velocity of fluid

z distance along pipe axis
o shear strain

© rotation due to flexural deformation
w angular velocity

: circumferential angle
Subscripts

f fluid quantities

p pipe quantities

Superscripts

(e) elemental quantities

T  transpose

AS

2. Derivation of Coriolis Pipe Element

The Coriolis forces effect only the transverse vibration of the fluid-
-conveying pipe therefore we show only the derivation of finite element for-
mulation of these equations of motion by Hamilton’s principle. For Hamil-
ton’s principle we have the functional

t
S= [(T-U)dt.
/
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We introduce © as a rotation due to flexural deformations and o« as shear
strain. We assume that the slope of the pipe neutral axis Ju/Jz can be
written in the form

du

This is a usual form for Timoshenko beams. With the above assumptions
the potential energy of the pipe is the following

L
2
0

Similarly the kinetic energy can be expressed in terms of transitional and

rotational inertia
L -
1 2 90\ ?
5“ < —"”’I"’(at”dl
0

The energy contribution of the fluid was formulated from Timoshenko per-
spective. We neglected the effect of internal pressure on potential energy
and assume that the fluid contributes only kinetic energy. This contribu-
tion was formulated as follows

L
T 1 Ly 2 o0 2]
_zof{pjéf< > +ppls (aIL)Ji:L“

Transverse fluid velocity Ouf/0t is related to the transverse velocity of
the pipe du/d¢, through the material derivative. The material derivative
relates the Eulerian description of the fluid to the Lagrangian description
of the pipe by the following:

uy _ j0u 00

ot "5z
The axial fluid velocity vy was assumed to be independent of z and to be
constant across the cross section of the pipe. In fact the fluid is handled as a
solid travelling through the pipe at constant velocity. Similar assumptions
were made by other researchers [1]. If we use the finite element technics
for the formulation of the weak from of the equations of motion derivated
from the above assumptions with proper shape functions [2] we can write
the displacement as follows

W =Nlg, 09 =Niq. o =nNlqg
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as functions of time dependent nodal q values. The integral expressions
for the element matrices are as follows

L
[N1=/[(pp4 T2 ADNUNu + (sl + ppl;) NoNold
F N, dNT
{B}:/pfAfvo {NZ T I Nu} de
T aNg »dNL dN,
O/LF _d__. —2 4 KGANING — pdpof— dm}dl

Taking the variation of 5 equal to zero we shall have the expression

t ,) \
65 =éq’ <[‘ s 5 + (B2 4 [Kjq | dt=0.
[ ey

As §g can be arbitrary we get the matrix equation

In the absence of structural of material damping, the damping matrix con-
tains only gyroscopic coupling terms produced by Coriolis effects. The
stiffness matrix includes terms originating from the bending and shear en-
ergy, and the centripetal acceleration of the fluid. The mass matrix is com-
posed of terms arising from the transverse and rotary inertia of both the
fluid and pipe. The final matrix equation has the general form of a com-
plex eigenvalue problem or complex differential equation, in this case there
is an external excitation. The contribution of Coriolis damping is an anti-
symmetric matrix. Inclusion of the Coriolis terms in the damping matrix
differentiates this work from that of previous researchers [3]. The sclution
of the above equations cannot be done with the standard Systus algorithms.
We have to use the nonsymmetrical Gauss algorithm for solving this prob-
lem. As the presence of velocity dependent Coriolis damping makes our
problem nonlinear we had to develop a subroutine for our user defined pipe
element. This FORTRAN subroutine was linked with Systus shared ele-
ment library and we have got a new element [4]. Without Coriolis coupling
(zero fluid velocity) this element behaves exactly like a standard type Sys-
tus beam element. In case we define cross section area, area moment of in-

ertia, density and mean velocity of the fluid in MATERIAL PROPERTIES
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and use the DAMPING label in transient nonlinear, our element will take
into account the [B] matrix programmed in the above mentioned subrou-
tine and modify [M] and [K] matrices with vo dependent terms.

This new element was tested in several ways. In the following we
present a simple test and an industrial example as well.

3. Test Example

For testing the reliability of our new element we have defined a simple but
demonstrative example where we can theoretically compute the effect of
the Coriolis coupling.

This example was a ring of pipe elements in z — y plane. All the el-
ements were connected by rigid massless beams with the center point of
the ring. We have allowed the rotation of the ring around an axis perpen-
dicular to its plane and fixed against displacement and other rotations in
the center of the ring. We have applied a constant 1 Nmm =z torque on
the axis which accelerated the model with a constant angular acceleration.
The data of the model are the following:

Ring diameter = 1000 mm,
pr= 107% kgmm 3,

Ap =12.57 mm?,

Internal pipe diameter = 4 mm,
External pipe diameter = 5 mm.

As we could compute the inertial and mass quantities related to the
model it was easy to compute w in the 10th time step of integration when
assuming a rigid body like motion around the rotational axis. This value
was 1.0488 1073 s7!. Regarding the construction of the model we could
assume that the model is dynamically balanced so we had not any reaction
on the axis due to unbalance of inertia and mass. Therefore, if we regard the
reactions on the axis we shall get exactly the sum of Coriolis forces acting
on pipe elements. We have defined the flow direction of the fluid different
on both halves of the model by inverting element axis y. Therefore, the
sum of the Coriolis force has to be a —z direction vector. This vector can
be computed by the following integral

Fr=—4psAsRwuy [ cose dyp .

2

[ \MM

If we take a vg = 1000 mm/s value this force will be F; = 1.13 mN. We have
computed Fy for fluid velocity 0,1,...,10 m/s. The results are presented
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in Fig. 1 and Fig. 2. We have used a 7 = 1 ms time step in the transient
nonlinear method. The computed errors were found minor than 2 % when
comparing the results to theoretical values.

4. Industrial Example

The so-called B tvpe Coriforce flow meter is a standard product of MMG
Co. Ltd. We have selected one geometry configuration from the exist-
ing product scale in order to compare its behaviour to model results. The
model was simplified comparing to the real structure because we have ne-
glected the flexibility of parts where Coriolis forces were not foreseen. The
geometry is presented in Fig. 3. At the nodes marked by 13, 14, 15 and 16
we have modelled sensors like lumped masses. The model was fixed in four
points. The flow direction is equal in the lower and upper parts. All the
elements are of the new type. In the reality for the measurement — by ex-
citing forces — the structure is maintained in a mode shape which is charac-
terized by Fig. 4 and is called butterfly mode. Practically, during the mea-
surement it is enough to compare the z direction displacement functions
of node pairs 13-15 or 14-16. The time shift between the zero crossings
of these functions is a linear function of the fluid flow. The tube external
and internal diameters were 31.75 and 29.67 mm, respectively. The ma-
terial of the pipe and the eigenfrequency of the butterfly mode were steel
and 96.02 Hz. In order to simulate the measuring situation without intro-
ducing the real controlling system into Systus we had to produce an ini-
tial state where the model shape and reactions were equal to the normal-
ized butterfly mode. These initial conditions were computed by an equiv-
alent model constructed from standard type pipe elements. From these
initial conditions with transient nonlinear method we have computed time
shift of first zero crossings between the above mentioned node pairs z di-
rectional displacement functions. The selected fluid velocity values were
0,1,2,... .10 m/s. We have used several integration time steps. The val-
ues computed with 57107 s are to compared to measured ones in Table 1.

The errors of the computed values are the function of the selected
time step. Fig. 5 illustrates the effect of 7 value selected. For vg = 10 m/s
Fig. 6 shows a 1/4 period of computed displacements at 13, 14, 15 and 16
nodes. Fig. 7is the appropriate zoom of Fig. 6 for time shift measurement.
Though the butterfly mode frequency of our model was exactly equal to
the measured one we did not own measured values concerning the mode
shape. Therefore we regard the computed errors very small. We made
several geometrical simplifications in the model which might effect mainly
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Fig. 1. Reaction forces for 0 and 1 m/s fluid velocities
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deform ampl
878

Fig. 4. Butterfly mode of 96.02 Hz eigenirequency

Table 1
Measured and computed time shifts

Velocity of fluid  Time shift*10™°%  Time shift™107°

(m/s] measured seconds computed seconds
1 6.73 6.75
2 13.5 13.1
3 20.2 18.9
4 26.9 25.9
5 33.6 324
6 40.4 39.5
7 47.1 45.4
8 53.8 51.9
9 60.5 59.5

10 67.3 66.5

the error magnitude. Probably with the use of a butterfly mode shape
tuned with measured one we could achieve even higher accuracy.
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5. Conclusions

Flow meter design is a difficult process. We do not have the knowledge
how structural modifications of the flow meter will effect the resolution
and sensitivity characteristics and how they influence the accuracy of our
measurements. In order to reduce the number of expensive prototypes a
reliable computer model has to be used. Generally structural optimization
is made by finite element softwares. Unfortunately even the world leader
softwares cannot handle Coriolis forces. The fact that SYSTUS has a
shared element library has made possible that the authors could develop
a new type element for MMG Co. Ltd whose behaviour was proved by
measurements and theoretical test. There is a reason for standardize this
new element in Systus because the presence of Coriolis forces is important
for other fluid-conveying problems as well.
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Appendix

Shape Functions and Elemental Matriz Formulations

We assume the transversal displacement of our beam element has a cubic
distribution over the element length,

2
u(z) = ap + a1z + agx” + a3z’

For the expression for the rotation due to flexural deformation over the
element length we had the following distribution which assures constant
shear strain,

O(z) = a1 + 2asz + a3(3z* + 6g) .
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Here g is a constant determined from the material and geometry of the pipe

_ _El
9= %64,

The coeflicients ag to as can be determined from transversal displacement
and rotation at theendsx =0 and z = L.

The lower triangles of elemental mass, stiffness and damping matrices
are the following:

m _(ppip + pfAf)L(1680g2 +9294gL% + 13LY)
v 35(12g + L2)?
L (pply + prf)6L3
5(12g + L2)
o= Lop Ay 4 pp ApL*(1260g” + 231917 + 11LY)
i 210(12g + L2)?
_ (poIp + ppIs)L(60g — L?)
10(12g + L2)? ~
(ppAp + psAf)L*(126¢” + 21gL% + L*) |
105(12g + L2)?
L (ol + ps1;)2L(360g” + 15gL° + L)
15(12g + L2)2 -
_(ppAp + prA;)3L(560g° +84gL° + 3L%)
- 70(12g + L?)?
(ool + psIf)BL°
5(12g+ gL?)?
(ppAp + ppAs)L7(25204° + 378gL* +13L%)
420(12g + L2)2
_ (pply + psIy)L?(60g — L?)
10(12g + L2)2 ’
t 3 - 2 : 2 4
_ (ppAp +ppdf)L7(158g" + 28gL° + L )+
140(12g + L2)2
4 lolp £ prI;)L(120g% — 60gL% — L*)
30(12g + L2)2 :

i

moo =

ms31

mag = —

mys =

maz = myy ., My} = M3z,

12EL 6o Asug 2 2, 4
- (12 209L" +L7) ,
I3+ 12Lg  BL(LZ+ 1292 1209 +209 ),

kv =
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6ET, prApgL?

koy = - .
T L2412g  10(L? + 129)2

AEL(L*+3g)  2LpfApd 9 . 9 4
L — p . i 15¢gL° L .
2= "T3iTolg  15(17 41297 009 1L LY.

2EI (L%~ 6g) | LpsAsvg
[3+12Lg  30(L? +12g)?

2

(360g° + 60gL% + L*) |

kao =

_ pjAsuoL(10g + L%

b -
21 5(12g + L?)

byt = —psAyvo .
baz = ba1 ,
by = —bo1 ,

biy — pf./~lfzfol,4
7 360g +30L%°

baz = ba1 .




