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Abstract 

Authors have developed a nonlinear pipe element for ~vfMG Co. Ltd who is owner of 
several patents pending of flow meters in order to take into account the Coriolis forces 
produced by the flow of fluids in vibrating pipes. The aim of the development is to improve 
the construction of existing Coriforce flow mete!'s where the measuring method is based 
on the presence of Coriolis forces which are in linear relation with the mass flow in pipes. 
The paper discusses the modelling aspects and shows industrial example as well. 
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1. Introduction 

Direct flow meters based on Coriolis forces \vere developed dynamically 
during the last decade. These are direct means that we do not have to 
measure density and volume flow separately and compute the mass flow 
indirectly. As the mass flow induces Coriolis forces, measurement of these 
forces lets us know the mass flow in a direct way. The main advantage of 
Coriolis flow meters is that in a large measuring range (turn-dmvn ratio 
1/20) we can measure the mass flow with a 0.2% accuracy independently of 
the fluid consistency (physical state, viscosity, density). As we do not have 
moving parts we can achieve high reliability, stability and life expenditure. 
Therefore Coriolis flmv meters are going to replace indirect flow meters on 
more and more fields of use. 

Development of vibrating Coriolis flow meters has produced a big 
variety of pipe forms and vibrating methods. Most of solutions can be 
characterized by the following remarks: 

Every cross section of a pipe constrained at its extremities and excited 
with its eigenfrequency is moving on an arched path, therefore for every 
cross section there is a periodic angular velocity. 

Consequently, the Coriolis forces produced by mass flow in the pipe 
and the above mentioned angular velocity will be periodic of the same 
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frequency which will excite periodic vibration of the pipe. This vibration 
is due only to mass fiow and it will be superposed on excited vibration. 

One can always find two points along the length of the pipe where 
the phase shift of the vibrations shows only the effects of Coriolis forces, 
depending on mass fiow. The phase shift of the two sinusoidal signals is 
the output of the fiow meters. 

The design of optimal fiow meters is to determine the optimal values 
of numerous parameters Ivhich are function of the others. \Ye mention only 
the most important parameters here: 

geometry of vibrating pipe 

material of pipe 

vibrating mode 

position and mass of sensors mounted on pipe 

- measuring range 

- error rate of signal processing (error of signal processing divided by 
the total errors of the fiow measurement) 

- damping and effect of vibration loss (mechanical coupling with the 
environment. balancing) 

effect of outer mechanical noise 

- effect of static and dynamic mechanical loads (pressure dependency, 
fatigue) 

pressure loss 

\Ye have two solutions for the fim\' meter optimal design: 

1. Analysis of measurements of one or more prototypes. This process is 
highly interactive and requires sequent modification and measurement 
of prototypes. 

2. State a numerical model of the physical problem and find optimal 
·values of the model parameters. 

\1:\1G Co. Ltd has made Economic efficiency estimations for both 
methods. These estimations haw made \1::\IG Co. Ltd. purchase Systus 
finite element soft,vare as a tooi for the second method. Tv,'Q major argu
ments have infiuenced this decision: 

First: Construction of large prototypes is time consuming and 
expensive. 

Second: ,.i.s eyen largest finite element sofn\'ares do 'lOt include Cori
olis pipe elements authors have developed a ne·w elemellt IQ "le linked ":ith 
S~'stus shared librar:,. UUf paper Sh0'\'5 the most imponant steps of cie
,:l1ent derivation and compares Its beha\'iour \vith theoretical test and in
dustrial measurements. 
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Nomenclature 

A. cross section 
[B] damping matrix 
E Young modulus 
G shear modulus 
I area moment of inertia 
k Timoshenko shear coefficient 
[K] stiffness matrix 
L length of pipe 
[M] mass matrix 
N shape function vector 
q nodal variable vector 
S Hamilton functional 
t time 
T kinetic energy 
T integration time step 
6.t time shift of zero crossing 
U potential energy 
Vo mean velocity of fluid 
x distance along pipe axis 
ex shear strain 
e rotation due to flexural deformation 
w angular velocity 
cp circumferential angle 

Subscripts 
f fluid quantities 
p pipe quantities 
Superscripts 
(e) elemental quantities 
T transpose 

2. Derivation of CorioUs Pipe Element 

209 

The Coriolis forces effect only the transverse vibration of the fluid
-conveying pipe therefore we show only the derivation of finite element for
mulation of these equations of motion by Hamilton's principle. For Hamil
ton's principle we have the functional 

t 

S = J (T - U)dt . 
o 



210 F. TAK.4CS and GY. TOTH 

VVe introduce 8 as a rotation due to flexural deformations and a as shear 
strain. VVe assume that the slope of the pipe neutral axis oulox can be 
written in the form 

OU 
-=8+0'. ox 

This is a usual form for Timoshenko beams. VVith the above assumptions 
the potential energy of the pipe is the following 

- 1 ;L [ (08) 2 ?] Up = "2 Elp ox + kGA_pO'- dx. 
o 

Similarly the kinetic energy can be expressed in terms of transitional and 
rotational inertia 

The energy contribution of the fluid ,,,as formulated from Timoshenko per
spective. VVe neglected the effect of internal pressure on potential energy 
and assume that the fluid contributes only kinetic energy. This contribu
tion was formulated as follows 

Transverse fluid velocity OU f lot is related to the transverse velocity of 
the pipe oulot, through the- material derivative. The material derivative 
relates the Eulerian description of the fluid to the Lagrangian description 
of the pipe by the follmving: 

OUj ou ou 
--= vo-+-ot ox at 

The axial fluid velocity Vo was assumed to be independent of x and to be 
constant across the cross section of the pipe. In fact the fluid is handled as a 
solid travelling through the pipe at constant velocity. Similar assumptions 
,vere made by other researchers [1 J. If \ye use the finite element technics 
for the formulation of the \veak from of the equations of motion derivated 
from the above assumptions with proper shape functions [2J we can ,Hite 
the displacement as follows 
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as functions of time dependent nodal q values. The integral expressions 
for the element matrices are as fo11O\vs 

Taking the variation of S equal to zero we shall have the expression 

t ( , d2 d \ 
8S = 8qT J [M] dti + [B] d~ + [K]q) dt = 0 ' 

o ' 

As 8q can be arbitrary \ve get the matrix equation 

_ d2 q dq I _ 

[M] dt2 + [B]di T [K]q - 0 . 

In the absence of structural of material damping, the damping matrix con
tains only gyroscopic coupling terms produced by Coriolis effects. The 
stiffness matrix includes terms originating from the bending and shear en
ergy, and the centripetal acceleration of the fluid. The mass matrix is com
posed of terms arising from the transverse and rotary inertia of both the 
fluid and pipe. The final matrix equation has the general form of a com
plex eigenvalue problem or complex differential equation, in this case there 
is an external excitation. The contribution of Coriolis damping is an anti
symmetric matrix. Inclusion of the Coriolis terms in the damping matrix 
differentiates this ,vork from that of previous researchers [3]. The solution 
of the above equations cannot be done \vith the standard Systus algorithms. 
\Ve have to use the nonsymmetrical Gauss algorithm for solving this prob
lem. As the presence of velocity dependent Coriolis damping makes our 
problem nonlinear \ve had to deyelop a subroutine for our user defined pipe 
element. This FORTRA:'-i subroutine v,'as linked \vith Systus shared ele
ment library and we have got a new element [4]. \Vithout Coriolis coupling 
(zero fluid velocity) this element behaves exactly like a standard type Sys
tus beam element. In case \ye define cross section area, area moment of in
ertia, density and mean velocity of the fluid in ~lATERIAL PROPERTIES 
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and use the DAMPING label in transient nonlinear, our element will take 
into account the [B] matrix programmed in the above mentioned subrou
tine and modify [M] and [K] matrices with Vo dependent terms. 

This new element was tested in several ways. In the foHo·wing we 
present a simple test and an industrial example as well. 

3. Test Example 

For testing the reliability of our new element ,ye have defined a simple but 
demonstrative example where we can theoretically compute the effect of 
the Coriolis coupling. 

This example was a ring of pipe elements in x - y plane. All the el
ements were connected by rigid massless beams with the center point of 
the ring. We have allowed the rotation of the ring around an axis perpen
dicular to its plane and fixed against; displacement and other rotations in 
the center of the ring. \Ve have applied a constant 1 Nmm z torque on 
the axis which accelerated the model with a constant angular acceleration. 
The data of the model are the following: 

Ring diameter = 1000 mm, 
PI = 10-6 kgmm-3

, 

AI = 12.57 mm2
, 

Internal pipe diameter = 4 mm, 
External pipe diameter = 5 mm. 

As we could compute the inertial and mass quantities related to the 
model it was easy to compute w in the 10th time step of integration when 
assuming a rigid body like motion around the rotational axis. This value 
was 1.0488 10-3 5-1 . Regarding the construction of the model we could 
assume that the model is dynamically balanced so we had not any reaction 
on the axis due to unbalance of inertia and mass. Therefore, if we regard the 
reactions on the axis we shall get exactly the sum of Coriolis forces acting 
on pipe elements. We have defined the flow direction of the fluid different 
on both halves of the model by inverting element axis y. Therefore, the 
sum of the Coriolis force has to be a -x direction vector. This vector can 
be computed by the following integral 

F. ~ -4pj AjRwvu J cO'<P d<p . 

-"2 

If we take a Vo = 1000 mm/ s value thisforce will be Fx = 1.13 mN. We have 
computed Fx for fluid velocity 0,1, ... ,10 m/so The results are presented 
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in Fig. 1 and Fig. 2. vVe have used a T = 1 ms time step in the transient 
nonlinear method. The computed errors were found minor than 2 % when 
comparing the results to theoretical values. 

4. Industrial Example 

The so-called B type Coriforce flow meter is a standard product of MMG 
Co. Ltd. \Ve have selected one geometry configuration from the exist
ing product scale in order to compare its behaviour to model results. The 
model was simplified <":omparing to the real structure because we have ne
glected the flexibility of parts ,,,here Coriolis forces ,,,ere not foreseen. The 
geometry is presented in Fig. 3. At the nodes marked by 13, 14, 15 and 16 
we have modelled sensors like lumped masses. The model was fixed in four 
points. The flow direction is equal in the lmver and upper parts. All the 
elements are of the new type. In the reality for the measurement - by ex
citing forces the structure is maintained in a mode shape which is charac
terized by Fig. 4 and is called butterfly mode. Practically, during the mea
surement it is enough to compare the z direction displacement functions 
of node pairs 13-15 or 14-16. The time shift between the zero crossings 
of these functions is a linear function of the fluid flow. The tube external 
and internal diameters were 31.75 and 29.67 mm. respectively. The ma
terial of the pipe and the eigenfrequency of the butterfly mode ·were steel 
and 96.02 Hz. In order to simulate the measuring situation ,vithout intro
ducing the real controlling system into Systus we had to produce an ini
tial state where the model shape and reactions were equal to the normal
ized butterfly mode. These initial conditions ,vere computed by all equiv
alent model constructed from standard type pipe elements. From these 
initial conditions v:;ith transient nonlinear method we have computed time 
shift of first zero crossings between the above mentioned node pairs z di
rectional displacement functions. The selected fluid velocity yalues were 
0,1,2, ... ,10 m/so vVe have used several integration time steps. The val
ues computed with 5*10- 5 s are to compared to measured ones in Table 1. 

The errors of the computed values are the function of the selected 
time step. Fig. 5 illustrates the effect of T value selected. For Vo = 10 m/s 
Fig. 6 shmvs a 1/4 period of computed displ~cements at 13, 14, 15 and 16 
nodes. Fig. 7 is the appropriat€ zoom of Fig. 6 for time shift measurement. 
Though the butterfly mode frequency of our model was exactly equal to 
the measured one we did not own measured values concerning the mode 
shape. Therefore we regard the computed errors very small. \Ve made 
several geometrical simplifications in the model which might effect mainly 
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CORIFORCE TEST C=O MIS 

CZ=1 NMM MOMENT 

CORIFORCE TEST C=1 MiS 

CZ=1 NMM MOMENT 

CAND_T 
DATA_AUTOMATION 

REAC 123 
CARD 10 
1< .887E-07 
ft< .176E-06 
m < .264E-06 
B < .352E-06 

< .440E-06 
! < .533E-06 

I T_AND_T 
DATA_AUTOMATION 

REAC 123 
CARD 10 
1< .185 
B < .370 
g< .555 
B < .740 

< .925 
s< 1.12 

Fig. 1. Reaction forces for 0 and 1 m/s fluid velocities 
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COAIFOACE TEST C=2 M/S 

CZ=I NMM MOMENT 

COAIFORCE TEST C=3 M/S 

CZ.I NMM MOMENT 
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T_AND_T 
DATA_AUTOMATION 

AEAC 123 
CARD 10 
g< .372 
1< .743 
Q,1.I2 
B < 1.49 

< 1.66 
0< 2.25 

T_AND_T 
DATA_AUTOMATION 

AEAC 123 
CAAD 10 
1< .561 
D< 1.12 
D < 1.68 
m < 2.25 

< 2.61 
B < 3.40 

Fig. 2. Reaction forces for 2 and 3 m/s fluid velocities 
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Fig . . f. Butterfly mode of 96.02 Ez eigenfrequency 

Table 1 
.Measured and computed time shifts 

Velocity of fluid Time shift*10-6 Time shift"1O-6 

defo:-m1ltTlpi 

87$ 

[m/s] measured seconds computed seconds 

6.73 6.75 
2 13.5 13.1 
3 20.2 18.9 
4 26.9 25.9 
5 33.6 32.4 
6 40.4 39.5 
7 47.1 45.4 
8 53.8 51.9 
9 60.5 59 .. 5 

10 67.3 66.5 
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the error magnitude. Probably with the use of a butterfly mode shape 
tuned with measured one we could achieve even higher accuracy. 
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5. Conclusions 

Flow meter design is a difficult process. \Ve do not have the knowledge 
how structural modifications of the flow meter will effect the resolution 
and sensitivity characteristics and how they influence the accuracy of our 
measurements. In order to reduce the number of expensive prototypes a 
reliable computer model has to be used. Generally structural optimization 
is made by finite element softwares. Unfortunately even the world leader 
softwares cannot handle CorioEs forces. The fact that SYSTUS has a 
shared element library has made possible that the authors could develop 
a ne'w type element for MMG Co. Ltd whose behaviour was proved by 
measurements and theoretical test. There is a reason for standardize this 
new element in Systus because the presence of Coriolis forces is important 
for other fluid-conveying problems as well. 
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Appendix 

Shape Functions and Elemental Matrix Formulations 

\'Ye assume the transversal displacement of our beam element has a cubic 
distribution over the element length, 

For the expression for the rotation due to flexural deformation over the 
element length we had the following distribution which assures constant 
shear strain, 
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Here 9 is a constant determined from the material and geometry of the pipe 

Elp 
g=--. 

kGAp 

The coefficients ao to a3 can be determined from transversal displacement 
and rotation at the ends x = 0 and x = L. 

The lower triangles of elemental mass, stiffness and damping matrices 
are the following: 

(ppA.p + P f A. f )L(1680g2 + 294gL 2 + 13L 4) I 

m11 I 

35(12g + V)2 

I ((JpIp +pf l f )6L3 

T 5(12g + V) 

(ppA.p + PfA.f)L2(1260l + 231gL 2 + llL4) 
m21 = - 210(12g + V)2 

(ppIp + PfIf)L2 (60g - L2) 

10(12g + V)2 

(ppAp + PfAf)L 3 (126g 2 + 21gL2 + L4) 
7n.·'2 = + 

~ 105(12g + V)2 

I (pplp + p flf )2L(360g2 + 15gL2 + L4) 
T 15(12g + V)2 

(ppA.p + PfAf)3L(560g 2 + 84gL 2 + 3["!) 
m31 

70(12g + V)2 

(pplp + pf I f )6L3 

5(12g + gV)2 

_ (ppAp + PfA.f)L2(2520g 2 + 378gL2 + 13L4) 
m31 -- ~~--~~--------~~~--------

- 420(12g + V)2 

(pplp + PfIf )L2(60g - L2) 

10(12g + V)2 

(ppAp + PfAf)L 3(158g2 + 28gL2 + L4) 
m.J') = - ..L 

.- 140(12g + V)2 I 

? 2 J 
(pplp + Pflf )L(120g- - 60gL - L') 

+ 30(12g + V)2 

771 33 = 77111, m·n = 7n.32 , 

k - 12Elp _ 6pfAf v5 (120 2+20gL2..LL4). 
11 - V + 12Lg 5L(V + 12g)2 9 I. 
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2 4 
6Elp PfA.fvoL 

k21 = £2 + 12g - 10(£2 + 12g)2 

4Elp(L2 + 3g) _ 2LpfA.fv5 (gOl + 15gL2 + L4) , 
k22 = £3 + 12Lg 15(£2 + 12g)2 

k31 = -k11 , 

k32 = -k21 , 

k33 = k11 . 

k41 = k21 , 

k43 = -7;:21 . 

k44 = k22 . 

PfA.fl'oL(10g + L2) 
b21 = .S(12g + £2) 

b31 = -PfA.fl'O , 

b32 = b21 . 

b41 = -b21 , 

P fA. f voL
4 

b42 = 360g + 30£2 ' 

b43 = b21 . 
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