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Abstract 

The paper deals with the effect of the length on the type and stability of the inplane 
attitude motion of a dumbbell satellite moving on circular and elliptic equatorial Low 
Earth Orbits (LEO) by which the air drag also has a weak influence. For a circular LEO, 
a saddle-node bifurcation is found at some critical value of the length. This investigation 
can be performed analytically using imperfect bifurcation theory. When the orbit is elliptic 
using the results from the circular case, numerical simulation is used to approach the phase 
trajectories for sub- and supercritical values of the length. Depending on the order of the 
orbit eccentricity, three kinds of behaviour seem to be possible. 

Keywords: dumbbelL satellite, imperfect bifurcation, chaos. 

1. Introduction 

The usage of space shuttles is a challenging possibility for the application 
of large space structures. One of the first of them is the Tethered Satellite 
System (TSS) consisting of two subsatellites connected by a very long thin 
rope or cable called the tether [15]. Its length could even be up to 200 km. 
The dynamics of such a mechanical system is an exciting new field for 
researchers and engineers [14, 16]. 

The motion ofa satellite with finite size can be divided into an orbiting 
motion of the centre of mass and the rotations about it commonly referred 
to as librations. Librations can occur in and out of the plane of the orbit 
called inplane and out-of-plane motions, respectively. The field dealing 
with librational dynamics and stability of Earth orbiting systems is called 
attitude dynamics. 

The simplest model of a TSS is the well-known dumbbell satellite. 
Instead of the elastic cable it assumes a massless rigid connection of the 
subsatellites. In some cases of the literature [1, 2, 5] the usage of that 
simplification can be justified. 

This paper deals with the non-linear and possibly chaotic oscillations 
of the satellite system. In the literature of the deterministic chaos, one 
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of the most widely mentioned examples is the excitation of a conservative 
system having a double well potential. It is shown by using the theory 
of Smale's horseshoe that a chaotic motion appears at the saddle-type 
equilibrium point of such systems [17]. 

When the effect of the air drag can be omitted and the dumbbell 
satellite has a perfect circular equatorial orbit, its inplane attitude dynam­
ics has a double well potential, too. The question under consideration in 
this paper is, what happens if both air drag and the excitation of the orbit 
eccentricity are present. Will the chaotic behaviour of the undamped case 
survive? Another question arisen from the previous one is, how the excited 
system behaves around this critical length. 

There are two possible principal ways to give the answers. One of 
them is an analytical approach, that is, to do all the possible simplifi­
cations in the equation of motion to find an analytical solution to some 
equation possessing the same qualitative behaviour as the original one. It 
is performed in the case of a circular orbit. The mathematical tool of it is 
called the bifurcation theory [3, 11, 19J. 

Unfortunately, the same analytical investigation would be very com­
plicated for the eccentric case being the main subject of our interest. To 
an eccentric orbit, the second possible approach, the numerical simulation 
will be applied, and the results of the circular orbiting motion will show for 
which values of the parameters it would be interesting to do the simulation. 

2. The Equation of Motion 

The position of the centre of mass of a satellite can be given by vector Rc 
according to the centre of the Earth. 

By using the so-called true anomaly J being the angle between the 
recent position of the centre of mass Rc and the position vector P of the 
perigee for a Keplerian orbit, the derivative of it is [13] 

. y'GMe 2 
J = -----,,-3 (1 + e cos f) , 

(a(l - e2))2 
(1) 

where a is the semimajor axis of the ellipse of the orbit, e is the eccentricity, 
Me is the mass of the Earth, and G is the gravitational coefficient. The 
radial and tangential components of the orbital velocity are 

Vr = 
y'GMe . 

Ja(1_e 2 )esmJ, t't = 
JGMe 

• I ,(l+ecosf). 
ya,1-e 2 ) 

(2) 
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To determine the orientation of the orbit, three more constants are also 
required [18]: the longitude ascending node n, the inclination J and the 
argument of the perigee w. 

In obtaining the equations of motion of the satellite system, two types 
of coordinate systems will be introduced. The first one is a fixed global 
system Xo, Yo, Zo considered to be an inertial one [4]. The second one is 
a local frame x, y, z moving together with the orbiting centre of mass of 
the satellite system. To transform a vector from the frame Xo, Yo, Zo into 
x, y, z, rotation around Zo with angle -J, then rotation around y' with 
angle (w + 1) is necessary. The variation of the inplane position of the 
dumbbell satellite, that is, the attitude dynamics will be described in the 
local frame by the angle (). 

The equation of motion of the dumbbell satellite will be obtained in 
the form of a Lagrange equation using the pitch angle () as a generalized 
coordinate. 

Fig. 1. 

In Fig. 1, the subsatellites denoted by m1, m2 are considered as point 
masses, the distance of masses m1, m2 is l. By omitting the mass of the 
tether and the effect of the air drag on the orbit of the centre of mass C of 
the system, it moves on an elliptic orbit described by the position vector 
Rc in the inertial geocentric frame Xo, Yo, Zo with velocity Rc. By using 
the position vectors rI, r2 of masses m1, m2 in the local coordinate system 
x, y, z. 

(3) 

By introducing the generalized coordinate e 

Xl = I sin e + X2 , Z1 = I cos e + Z2 . (4) 
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From equations (3) and (4) with notation 

the coordinates of the point masses will be: 

:q = (1 - ft)l sin e, Zl = (1- ft)lcose, 

X2 = - ftl sin e , Z2 = -ILl cose. (5) 

By introducing m = ml + m2 the kinetic energy of the dumbbell satellite 
will be: 

(6) 

For obtaining the kinetic energy as a function of the generalized coordinate, 
one should express the velocities of the point masses. If - j denotes the 
angular velocity of the local frame according to Xo, Yo, Zo, 

i = 1, 2. (7) 

From (2) 

. 2 GMe (2 ) Rc = ( ?) 1 + e + 2e cos f . a 1 - e-

By substituting it into (6), after some simplifications: 

1 ( G Me (? ) 2 (. .) 2) T = 2m a (1 _ e2 ) 1 + e- + 2e cos f -7]l1]2l f - e , 

where T)1 = 1-ft, r/2 = - ft· Then the first part of the equation of motion has 
the form: 

d aT aT 2 (" GMe 3. ) -d -. - ae = -r/1 rl2 l m e + 2e 3 (1 + e cos 1) SIll f tae a3 (1-e 2 ) 

The gravitational potential of the system is 



ATTITUDE DYNAMICS OF A SATELLITE 23 

To obtain the gravitational force.s, one should express Rc in the coordinate 
system x, y, z 

(8) 

By using (5) and (8) 

IJilsg 1 
a(1-e2~ I ".,.zeD ' 

l+ecj T'{1 u 

i = 1, 2, (9) 

where c = cos, s = sin. The absolute values of the radii are 

i = 1, 2. 

(10) 
By using (10), the effect of the gravitational potential V can be taken into 
the Lagrange equation as 

The effect of the air drag is usually taken into consideration by aerody-
namical force F 

where 

F 

Cd is the coefficient of air resistance, 
.6..A is the projected area of the satellites on the flow velocity, 
P is the density of the atmosphere, 
Vi are the velocities of the satellites relative to the rotating 

atmosphere of the Earth. 

P decreases exponentially with the increasing height h [7, 12], P = 
h 

poe - hQ, where Po, ho are constants for a given portion of the atmosphere. 
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'When denoting the radius of the Earth by R, the atmosphnic forces at 
the su bsatellites are 

1 ') .1., .... ( 11) 

Velocities Vj are the differences of the velocities of the subsatellites Rc+h, 
(i = 1, 2) and the velocity of the rotating atmosphere, 

Vj= +:h - Vatmi, i = 1, 2. 

From (2) 

J G 1vf£ r 1 + e cos f 1 
-----;.='=;::====;:;'7' 0 -la (1 - e2 ) l . r -e sm J 

then 

r J,j7:'!}:f; (1 + eCf) - 1);lCB (J - if) 1 
a( l-e 2 ) I 

= l -/GM; -;. -) I -e ~S! + 1)jLse (1 - e 
'\ a(l-f-) ., 

i = 1,2. 

On the other hand, 
Vatmi = I7xvz X (I1c +I'd , 

where I7xyz is the angular velocity of the rotating Earth in the coordinate 
system x, y, z, 

r SIC~+! 1 
I7xyz = 17 l -Cl J 

-sls",+f 

Having done the necessary substitutions 

Vi = 

r -Cg U - 0) 1 

l 0 I 
se (i - 0) J 

(12) 

To introduce the aerodynamical forces in11) ih!' La.grzlne;r e(:\l~d.i()n, i.ll<' 
generillized force QI! IS necessary 

,-: i 
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By using (5) and (12) 

GMe ) 
( 2) (Ce+ecf-e a 1 - e 

Thus the equation of the single degree-of-freedom inplane motion in an 
inertial system using generalized coordinate e will be: 

(13) 

where function f is the solution of the differential Eq. (1). The inplane 
motion of the dumbbell satellite can be described as a function of time by 
Eqs. (1) and (13). The first one concerns the orbiting motion of the centre 
of mass and can be solved independently. When having obtained function 
f, Eq. (13) characterizes the inplane attitude dynamics of the system. 

From (11) and (12), it can be seen that the aerodynamical forces 
remain in the plane of the orbit, if inclination I is zero. Then the satellite 
is in a so-called equatorial orbit. By assuming 1=0, the inplane attitude 
dynamics will be considered as the first simplification of the problem. 

For such an equatorial orbit, the equation of motion of the dumbbell 
satellite is a rather complicated second order non-linear one, moreover also 
the solution of (1) is needed. There is no hope to find an analvtical solution. 
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By applying a simplificaticn used Generally in literature [5], we introduce 
the ratio c = ~ of the length of the dumbhpll satellite and the semimajor 
axis of the orbit as a kind of dimensionless length. The maximal tether 
length is about 200 km, whjlr-:~he semimajor axis should be greater than 
the radius of the Earth, e~'l."; . r. C ,/,.' 1. By expanding into a power series 
in c, the higher order term::; car, be neglected. As a simplified form of (13), 
its truncated second order 'faylor expansion 

(
.. ..) . ? 3se ( 2/1 - 1 1 + ec f ( 2)) c f - e - r c Co - -,- - . 1 - Sce c -

l+ecf 2 l-e2 

0: l-e . 2'2 eSf -
( ( 2)2( 22 )~ 

-- 4 f-a +' 
2 -- l+ecf ( ) J (l+ecf)2 

.(O-a)ce+eiSfse)+Bcl-e (i-af+i2 e Sf \2 -2(( 22)~ 
'. l+ec{ (l+ecf) 

. ( (e - i + a ) + f3 Ce 11; ee
c

2

f 
(( i-a) Co + e i Sf S 6 ) ) + 

+ (e - i + a) ( (i - a) Co + i So 1 :S:C f ) ((i - eT) CB + e is f se) . 

. U; e':J ((i -u)' +i' (1 :':!d t)) = 0 (14) 

is obtained as equation of motion, where 

A = Cd] (1 - /1) - K/1Cd2 , 

fL(1 - /1) 

0:= 

B = Cd1 (1 - /1)2 + K/12Cd2 , 

/1(1 - /1) 

f3 - Rc - , 
m. Zo 

There are two possibilities at this point. Firstly, an analytic calculation 
for the circular orbit can be performed based on the imperfect bifurcation 
theory. By using some analytical methods of the qualitative theory of 
differential equations, there could be a possibility to find results on the 
stability of the motions [19, 21]. 

Secondly, the eccentric case can be investigated by using numerical 
simulation and solve the equations of motion approximately by a computer. 
These result could be problematic [10], but probably they can have an 
infl1lence on the behaviour of the motion. In this paper, both possibiliti{'s 
are treated. 
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3. The Circula::r Orbit 

In case of a circular orbit, e == 0, a = Rc, i = 0 = constant and the equation 
of motion from (14) is 

As a starting point, the possible states of equilibria are needed. By substi­
tuting 0=8=0 for the equilibrium solutions of (15) 

First, one should truncate (16) up to the linear terms in £ 

3£02 sin e cose + ~(O - IJ)2 coseA = o. 

Eg. (17) has two kinds of physically important solutions 

and 

In the second case 

cos 8 = 0 : 
7i 

82 = --, 
2 

D = 16;2£(0 - IJ)2 A \ 

( 17) 

determines the possible number of the solutions. For D > 1 0, for D = 1 
1, and for D < 1 2 solutions exist. The number of the elements in the set 
of solutions changes at D = 1, that is, there exists a critical dimensionless 
length 
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By using numerical values for the parameters from literature [20] m1 = 
200 kg, m2 = 1000 kg, Rc = 6578 km, Cd1 = Cd2 = 1, 
D = 1.18.10-3 s-l, fL=0.167, ,6 =32.89, 0- = 7 ·lO-5 s-1, 0:= 1.24.10-2. Let 
K=3, then A=2.39, B=5.60. 

The critical value is cc=4.65 .10-3
, that means a 'c=30.7km critical 

length at which the three equilibria are at the same position 

The result of the first approach can be summarized in the existence of a 
critical length at which the set of equilibria undergoes a static bifurcation 
in the sense of [6J. The following question is v{hat change in the stability 
properties of the various solutions occurs at the critical length of the dumb­
bell satellite. This investigation requires a truncated equation of motion. 

..? o:? 
e + 3n- sin e cos e + - (n - 0- t cos eA = 0 . 

2c 
(IS) 

By introducing e1 = e, e2 (:) as new variables into (18), a system of two 
first order differential equations 

(:)2 = -3D2 sin e1 cos e1 - A~ (n - 0-)2 cos e1 

is obtained. By linearizing them at -I' I the eigenvalues of the matrices 
of coefficients are 

and 

A-f = ±J3D2 - A~(D - 0-)2 , 

A-f = ±iJ-3D2 + A~(n - 0-)2, c < cc. 

Thus in case c > cc, both of the equilibria - ~ and ~ are unstable saddle­
points. If c = Cc or less, then the equilibrium':" I bec~mes a centre. U nfor­
tunately, a centre is structurally unstable, that is, Eq. (18) is not suitable 
for a stability investigation [3J. To make it correct, all the terms of (15) 
are necessary. The additional terms will cause technical difficulties and one 
should apply imperfect bifurcation theory to overcome them. 
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Now the static bifurcation theory (in the sense of [6]) is applied to 
the equilibrium solutions of Eq. (15). The problematic part of that treat­
ment is that the exact equilibria are impossible to find in an analytical 
form because of the complexity of (15). However, an approximate solu­
tion is known and localizing at this approximate solution, the method for 
imperfect bifurcations [9, 11] can be applied. 

The only damping effect done by air drag is in the second order terms 
of the C power series expansion, and it is necessary to get strict stability 
properties. We have also seen the necessity of these terms in the inves­
tigation of the way of the change in the number of equilibria, because 
structural instability means that even a small change in the equation (like 
a weak damping effect of the atmosphere) can cause radical changes of the 
bifurcation diagram. So all terms of equilibrium equation (16) are neces­
sary, but then the equation cannot be solved analytically. The only thing 
we know from the previous part is that some bifurcation should happen in 
the vicinity of Cc to some equilibrium existing in the vicinity of e = - I' 

The basis of the bifurcation methods is a localization of the equations 
having a distinguished parameter at a solution being singular at a critical 
parameter value. First, one should find an appropriate parameter. Let us 
define X=~. Its critical value is Xc =~. When substituting the numerical 
values, Xc 2.8. By introducing X and e = -I + ql, the power series 
expansion of (16) is 

where Cij are constants which can be calculated by using the data of the 
TSS experiment. In our case, the numerical values are COl = -3.45 . 10-6

, 

c02 = 1.39.10-6
, Cll = 1.47.10-6

, Cl2 = -4.18.10-6
, C22 = -7.65.10- 6

, 

C3l = -0.25 . 10-6
, C32 = 2.78 . 10-6

. By using the bifurcation parameter 

c and X can be expressed as functions of it 

c = ccA + Cc = (A + l)cc, 

X = ~ = ..::. _1_ = ..::. (1 _ A + A2 _ ... ) 
c Cc 1 + A Cc 

Now one can use the bifurcation parameter A and Cc in (19). Considering 
only the terms up to first order in them and truncating (19) at the third 
order terms in ql, an imperfect pitchfork bifurcation [8] 

=0 (20) 
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can be recognized. Substituting numerical values after a multiplication by 
10-6

, we obtain 

3 ( 2)-3 O.50ql - Aql - 9.35 + 8.51ql . 10 = O. 

Fig. 2 shows the bifurcation diagram (21) in coordinates qI, A. 

\ 
\ ; 
~~) 

"-
0,5 

( 
Fig. 2. 

(21 ) 

Solid line means a stable, dashed line an unstable equilibrium. These sta­
bility properties are dealt with in the next part of the paper. 

For stability investigations, the use of the whole equation of motion 
is necessary, the equilibrium equation, that is, the e = e = 0 simplification 
is unsuitable. This fact complicates the treatment, for example duplicates 
the number of the differential equations, because the second order equation 
of motion should be transformed into a system of first order equations [19]. 

By introducing new variables ql = - ~ + e, q2 = e and having done the same 
kind of localization as in the previo~s part, 

.) 3 
(12 = -E: (COIX + C02) - ql (CllX + C12) + qiC22E: - ql (C31 X + C32) + qdq2 

is obtained, where d=3.85· 10-5
. By using similarly parameters A, E: c , the 

equations become 
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or with numerical data 
(h = q2, 

(12 = 4.1S)"ql - 0.51q2 - 2.07qt + (3.92 + 3.56qi) .10-2
. 

For investigating the stability of the bifurcated solutions, one should calcu­
late the derivatives -88 '-88 of the left hand side of (22). By writing them 

q! q2 
into matrix D 

its eigenvalues Al ,2 show the Lyapunov stability of the solutions. Generally, 
these are 

( 
C12d cc) 2 

2cl1 

for the pairs )." ql satisfying Eg. (20). 
Bifurcation parameter)" appears only under the square-root (23), thus 

the loss of stability is a saddle-focus bifurcation. The sign of the eigenvalues 
depends only on the second term of the expression under the square-root. 
If it is negative, both of the two eioO"envalues have the sign of c2

p d cc. For 
Cll 

the data of [20], it is negative, thus the equilibrium is a stable focus point. 
If the second term of the expression under the square-root is positive, one 
of the eigenvalues will be positive, while the other one is negative, thus the 
equilibrium is an unstable saddle point. 

To calculate the analytical solution)., = ).,(qt) and to substitute it 
into (23) would require a long mathematical investigation. To avoid it, 
the numerical values of [20] will be used again. The second term of the 
expression under the square-root in (23) is 

2 
4.1S)" - 6.12q1 + 0.0712q1 . (24) 

By expressing)., from the bifurcation equation (21) and substituting into 
(24), the sign of the important term is the same as that of 

o 1 
-qj + 0.0851q1 - 0.0395-. 

q1 
(25) 

After calculating the values of (25), the stability properties in Fig. 2 are 
obtained. 
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4. The Case of an Eccentric Orbit 

The results of the analytical investigations show that the number of the 
equilibria of the inplane attitude motion of the dumbbell satellite flying on 
a low orbit where a weak atmospheric drag can be taken into consideration 
changes if the length of the dumbbell satellite is varied. For a very large 
length the number of the possible equilibria is four. There exists a critical 
length at which the number is three and for shorter ones only two equilibria 
exist. Near to the critical length on quasi-static retrieving of the tether, 
two equilibria are coming together. One of them is an asymptotically sta­
ble focus while the other one is an unstable saddle. After a saddle-focus 
bifurcation both of them disappear, meanwhile a third asymptotically sta­
ble equilibrium enters the vicinity of the bifurcation point. This third one 
does not have any bifurcation, remains asymptotically stable and persists. 

x10--4 

o.se /' 

or 
-05'r 

-It 

,\ = 0.1 e = 0.01 I 

(0) 
/ 

~~/ 
-L5L1 __ ~_~ __ ~_~ ____ ~ __ ~_-.J 

o 0,05 0.1 O. i 5 0.2 0.25 0.3 0.35 0.4 

Pig. 3. 

From the investigation into a circular orbit, the following question arises. 
What happens if the satellite has some excitation being obviously present 
for an eccentric orbit. Generally, one may hope in getting some local os­
cillatory motion around the stable equilibria of the unperturbed (circular 
orbit) system. The problem is the appearance of the saddle-focus bifur­
cation of one of them. In the following, some phase plots are showed as 
results of numerical simulations of Eq. (15) for various values of eccentricity, 
and the normalized dimensionless length previously called the bifurcation 
parameter A. 



Cl 

11 
--< 

L 

- OF A SATELLITE ATTITUDE Dl'NA.'IIC~ 

~ -----,----,----.,.-.,.--,----,-----,. 0 

~~ 
~~ 

1-
o 

I 
~l , :\~ ~ . 

N 10 0 I 

;:; 
)( to to ~ C\! 0 

- ci 0 0 0 

33 



34 P.B.BEDA 

For the simulations, a fixed step Runge-Kutta differential equation 
solver routine of the MATLAB package was applied. In the following few 
figures, these phase plots are presented. The calculations are performed 
for both circular and eccentric orbits. Some figures show cases when, for 
circular orbit, the number ofthe equilibria is three (supercritical cases) and 
some lJthers concern the one equilibrium (subcritical) situations. 

5. Summary 

The results of the investigation into a dumbbell satellite moving on circular 
and eccentric LEO show that both eccentricity and the distance of the two 
parts of the system has important effect on the motion of it. The quasi­
static variation of the length can change the number of the equilibria of the 
attitude motion for a circular orbit. The way to do it is called in applied 
mathematics a saddle-focus bifurcation at a critical length. 

The effect of the orbit eccentricity causes an excitation because of the 
presence of aerodynamical forces on a LEO. As the numerical simulations 
show for cases when e = 0.01, the qualitative picture of the phase plane is 
very similar to the picture of a circular orbit at the same length. 

If the eccentricity is about 0.1 or larger, the excitation plays the main 
role in the motion. However, for some values of the length, the phase 
plot has some similarity with the well-known chaotic motion of an excited 
double-well potential system [17]. 

In the case of an intermediate eccentricity e 0.05, the similarity is 
more obvious. For such an eccentricity, some simulations were performed 
at various values of the length. The regular case (when the length is far 
enough from the critical one) gives a chaotic motion on a strange attractor 
mentioned previously [17]. When the length is a little bit less than its 
critical value, the phase plot also gives the impression of being some kind 
of strange attractor, but obviously not of the same type. 
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