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Abstract 

In the paper, non-linear transient torsional vibrations of the motor and rail vehicle drive 
systems are investigated. Considerations are performed using discrete-continuous models 
consisting of rigid bodies of constant and variable mass moments of inertia connected 
each other by means of cylindrical elastic elements with continuously distributed param­
eters as well as by means of massless, non-linear torsional springs. An application of the 
d'Alembert solutions of the wave motion equations leads to appropriate systems of lin­
ear and non-linear ordinary differential equations with a 'shifted' argument. The shifted 
argument enables to solvE: these systems of equations numerically in an appropriate se­
quence which, in comparison with coupled ordinary differential equations for analogous 
discrete models, essentially increases the numerical efficiency and accuracy of the proposed 
method, In the numerical examples, there are considered some non-linear effects due to 
backlashes in the geared drive systems of the motor vehicle and the electric locomotive 
bogie. 

Keywords: dynamics of machines, torsional vibrations 

1. Introduction 

Drive systems belong to the most heavily affected and responsible elements 
of the rail and motor vehicles. The drive systems usually consist of a driv­
ing motor, i. e. the internal combustion reciprocating engine in the case of 
a motor vehicle, or the electric motor in the case of a rail vehicle, elastic 
couplings, dry friction clutch, gear stages, joints and driven wheels. All 
these elements are connected by shaft segments. During the operation of 
the vehicle, the drive system elements rotate and they are usually affected 
by torsional, lateral, longitudinal and circumferential vibrations. These 
vibrations are a source of the most important dynamic loads of the in­
dividual drive system elements. A high-frequent alternation of dynamic 
torques of stresses transmitted by the individual drive system elements can 
cause dangerous fatigue cracks or can be a source of unnecessary noise gen­
eration. As it follows from [1 - 6], for dynamic investigations of the rail and 
motor vehicle drive systems, the torsional vibrations are predominant and 
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couplings with the remaining kinds of vibrations can often be neglected. 
Nevertheless, dynamic phenomena associated with vibrations of the drive 
systems, especially with torsional vibrations, are complicated in charac­
ter. Complex characteristics of the elastic couplings, dry friction effects in 
clutches and brakes, backlashes in the gear stages, variations of the gear 
mesh stiffnesses, additional kinematic excitations due to the Cardan uni­
versal joints, wear of contact surfaces and their manufacture errors as well 
as a complex character of damping have significant influence on vibrations 
of the whole drive system making them non-linear. 

In order to determine the drive system's maximum amplitudes and 
a time history of transient or steady-state forced vibrations, it is neces­
sary to perform numerical simulations based on an appropriate mechanical 
and mathematical model. Computer simulations of the vehicle drive sys­
tems to analyze torsional vibration effects are mostly based on a discrete 
mechanical model described by simultaneous, i. e. coupled, non-linear or­
dinary differential equations. In order to obtain system dynamic response, 
a direct numerical integration of these equations is required [1 - 6]. 

Although a number of numerical methods and algorithms have been 
developed so far, there are still essential problems with solving this kind 
of equations, particularly in the engineering routine aspect. As it follows 
from [1, 5, 7, 8J, a direct numerical integration of coupled ordinary dif­
ferential equations is usually time-consuming, even for computers of the 
'work-station' type which are commonly used in industrial research labo­
ratories and technological scientific centres. Moreover, the so far applied 
numerical methods of integration of the non-linear, coupled ordinary differ­
ential equations describing torsional vibrations of the vehicle drive systems 
can often bring about significant errors, particularly in the case of investi­
gations into gear tooth impacts due to backlashes [1, 4, 5J. 

In order to overcome the above mentioned difficulties connected with 
numerical simulations of torsional vibrations of the rail and motor vehicle 
drive systems by using the methods applied so far, in the paper an alterna­
tive approach is proposed. This approach is based on a discrete-continuous 
(hybrid) mechanical model of the drive system and on the wave interpre­
tation of torsional vibrations. Investigations into the vehicle drive systems 
will focus on dynamic phenomena in the gear stages. 

2. Assumptions and Formulation of the Problem 

In the paper, there is considered a motor or rail vehicle drive system which 
consists of a driving motor, i. e. a reciprocating engine or an electric motor, 
elastic coupling with a dry friction clutch, gear stages, Card an universal 
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joints and driven vehicle masses. Fig. 1 presents a discrete mechanical 
model of this drive system. This model is a combination of n + 2m + I + 2 
rigid bodies of constant and variable mass moments of inertia h i = 1, 2, 
... , n + m + I + 2, representing the masses of the engine auxiliary drive ele­
ments or those of the electric motor rotor, respectively, n crank assemblies, 
flywheel, coupling halves, gear wheels, joint elements and 1 + 1 driven vehi­
cle masses. These rigid bodies are connected by massless torsional springs 
of constant stiffnesses kj, j = 1, 2, ... , n + m + I + 1, representing shaft 
segments as well as by means of m massless torsional springs of variable 
stiffnesses hk' k = n+ 2, n+ 3, ... , n+m+ 1, representing torsional flexibil­
ities of the elastic coupling, gear stage meshings and the Cardan universal 
joints, Fig. 1. 

Y
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n+k·' 

In •. m+I+2 

In .. m+I+1 
-I (2) kn+m+1 

n+k+3 

M n+ m+1 (t) 

Fig. 1. Discrete model of the drive system 

) 

Internal and external dampings in the system are represented by a linear 
model of viscous type except the elastic coupling and the gear stages, for 
which non-linear damping terms are introduced [1, 4]. The considered 
system is excited to vibrations by active external torques Mj(t), j = 1, 
2, ... , n + 1, as well as by constant or variable passive external torques 
Mk(t), k = n + 2, n + 3, ... , n + m + I + 2. Motion of the discrete 
model is described by the above mentioned appropriate system of linear 
and non-linear simultaneous ordinary differential equations, which can be 
found in [1, 8]. 

In order to avoid the mentioned numerical difficulties connected with 
integration of these equations, for the considered drive system an alter­
native discrete-continuous (hybrid) mechanical model is introduced. This 
model consists of the same number of rigid bodies like the discrete one, 
but the shaft segments of constant torsional flexibilities are represented by 
torsionally deformable cylindrical elastic elements with continuously dis­
tributed parameters of lengths li and identical stiffness values kj, i = 1, 2, 
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... , n + m + l + 1, (Fig. 2.) Only torsional flexibilities of the elastic cou­
pling, gear stage meshings and the Cardan universal joints are represented 
by the massless springs of the same variable stiffnesses hj, j = n + 2, n + 3, 
... , n + m + 1. The constant components of mass moments of inertia of the 
hybrid model rigid bodies are determined by using the proper parameter 
identification procedure [9] in order to keep total mass moment of inertia 
of the system unchanged and to obtain possibly small differences of the 
corresponding first natural frequencies and mode shape functions in com­
parison with those of the discrete model. The external torques as well as 
the variable components of the mass moments of inertia are described by 
identical functions as in the case of discrete model. Moreover, in the hy­
brid model also external and internal dampings are assumed in the form of 
analogous concentrated linear and non-linear damping moments imposed 
on extreme cross-sections of the continuous elastic elements [7, 8, 10, 11J. 

i, 
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Fig. 2. Discrete-continuous model of the drive system 

Equations of motion for angular displacements of the elastic element cross­
sections of the hybrid model are classical wave equations 

a
2
8 i ,xx(x, t) - 8i,tt(X, t) = 0, i = 1, 2, ... , n + m + I + 1 , (1) 

where: a2 = Gip and x are spatial coordinates parallel to the system 
rotation axis, (Fig. 2.) These equations are solved with appropriate initial 
conditions and with following boundary conditions 

for x = 0, 
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Ii (8i) 8i,tt + [di + O. 58i,t Li (8 i)] 8i,t + Ci-l1j-l 8i-l,xt - ci1i8i,xt+ 

+ki- 11i-18i-l,x - ki1j8i,x = Mi(t), 

i = 2, 3, ... , n + I, 
i-I 

for x = 2::lj, 
j=l 

Ik1)8k-l,tt + dk
1
)8k_l,t + Ck-l1k-18k-l,xt + Cikek (.6.8k(t)) 

[Ci k8 k-l,t ,Bk 8 k,d + kk-l 1k-l 8k-l,x + Cikhk (.6.8k(t)) 

[Cik8k-l - ,Bk 8 k] = Mk1)(t) 
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-kk1k8k,x - ,Bkhk (.6.8dt)) [Cik8k-l - ,Bk8kl = Mk2)(t), (2) 

.6.8k(t) Cik8k-l - ,Bk8k 

k-l 
for x = 2:: I j , 

;'=1 

k n + 2, n + 3, ... , n + m + 1, 

I j 8 j ,tt + dj8j.t + Cj-l l j- 18j-l,xt - cjlj8 j,xt + kj-l lj-18j-l,x­

-kjlj8 j ,x = Mj(t), 

j = n + m + 2, n + m + 3, ... , nmll, 
j-l 

for x = 2:: li , 
i=1 

Inml28 nml1,tt + dnml28nml1.t + cnmlllnmll 8 nml1,xt+ 

nmll 

for x = 2:: I j , 

j=1 

where: 
L' (8·(t)) = d1d 8 i(t)) 2 

l I cl (8i(t)) ' i = ,3, ... , n + 1, 

.6.8dt) = Cik8k1)(t) - ,Bk8f)(t), k = n + 2, n + 3, ... , n + m + I, 

and dj, Cl are constant external and internal damping coefficients, respec­
tively, i. e. j = I, 2, ... , n + m + I + 2, I = I, 2, ... , n + m + I + l. 
However, functions ek (.6.8k(t)) and hk (.6.8k(t)) denote non-linear damp­
ing and stiffness coefficients, respectively, for the elastic coupling, gear 
stages and joints. Coefficients Cik and ,Bk are radii of the driving and driven 
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gear wheels, respectively, for the case of gear stages. However, for the 
elastic coupling, friction clutch and the Cardan universal joints CXk and 
i3k are equal to unity. Superscripts (1) and (2) are assigned to respective 
quantities corresponding to the driving and driven elements in the system, 
nm12 = n + m + I + 2, nmll = n + m + 1 + 1, and the subscripts after 
commas denote partial differentiations. 

Solutions of equations (2) are sought in the form of d' Alembert wave 
solutions 

81 (x, t) = h (at - x + 11 ) + gl (at + x - 11) , 

( i-I) ( i-I ) 
8i(X, t) = 1; \ at - x + ~ Ij + gi at + x - L Ij , 

\ )=1 )=1 

i = 2, 3, ... , n + 1, (3) 

8k(X, t) = fk (at x + 'f lj) + gk (at + x - 'f lj - 2 I: Ij) , 
\ )=1 )=1 )=n 

k = n + 2, ... , n + m + 1 + 1. 

Functions 1; and gi in (3) represent torsional waves propagating in the 
elastic elements as a result of the external torque application. They are 
determined by the boundary and initial conditions [7, 8, 10, 11]. Thus, sub­
stituting (3) into the boundary conditions (2) leads to the following system 
of linear and non-linear ordinary differential equations with a 'shifted' ar­
gument z for functions 1; and gi, i = 1, 2, ... , n + m + 1 + 1, 

':'2.nmI2g~ml1 (z) + r1,nmI2g~mI1 (z) = 
= MnmI2(Z) + S2.nmI2/~mll (z - 21 nmll) + SI,nmI2/~rnI1 (z - 21nmld , 

g;(z) = - If (z - 21;) + II+1 (z 1;) + g;+1 (z - li) , i = 2, 3, ... , n, 

gj(z) = - li (z - 21j) + li+l (z 21j) + gj+l (z - 21j) , 

j = n + m + 1, n + m + 2, ... , n + m + 1 , 

T22(Z)/~(z) + rI2(z)/~(z) M2(Z) + S22(Z)g~(z)+ 
+S12(Z)g~(z) + t22/~' (z) + t12/~ (z), 

1'2i(Z)/:' (z) + rli(z)/;(z) = M;(z) + S2i(Z)g? (z)+ 

i = 3, 4, ... , n+ 1. 
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[ P2,~-1 o ) [9k-1 (ZII+ 21k- 1)] + 
T2,k ik(Z) 

[ 
P1,k-1 (Z) 

-akf3kek (.D.k(Z)) 
-akf3kek (.D.k(Z))] [9~-1 (Z + 21k-d] + 

T1,k(Z) I~(z) 

[ 
a~hk (.D.k(Z)) 

+ -lY.kf3khk (.D.k(Z)) 
-a~khk (.D.k(Z))] [9k-1 (Z + 21k- 1)] = 

f3khk (.D.k{Z)) fk{z) 

_ [Mk1)(z) + U2,k-l/f-1(Z) + U1,k-1(Z)/Ll(Z)+ 

- Mk2)(Z) + S2,kg~(Z) + Sl,k(Z)gk(Z)+ 

+lY.kf3kek (.D.k(Z) gk(Z) + lY.khk (.6.k(Z)) [f3k9k(Z) - O:klk-1 (z)] 1 
+akf3kek (.D.k(Z)) ILl (z) - f3k hk (.D.k(Z)) [f31,,9k(Z) - lY.kfk-1 (z)] , 

.D.k(Z) = 0:1" [Jk-1(Z) + 9k-1 (z + 2Ik-1)]- f3k [Jk(z) - 9k(Z)] , 

k = n + 2, n + 3, ... , n + m + 1, 

T2j Ii' (z) + T1j/j(Z) = Mj(z) + S2j9} (z) + Slj9j(Z) + t2j 1;'-1 (Z) + tlj Ij-l (Z) , 

j = n + m + 2, n + m + 3, ... , n + m + I + 1 , 

g~ (z) = - I~ (z) + I~ (z) + I~ (z) , (4) 

where: 

a 

Is (kIll - adl) 
SII = , 

a 

Is (knmlllnml1 + adnml2) 
T, nml2 = , 

"' a 
T2,nm12 = Cnml1 lnml1 + alnml2 , 

S2,nm12 = cnmlllnmll - alnml2 , 

T2i(Z) = ciIi + Ci-1Ii-1 + a1i(z), 

() 
Is [ki1i + ki-11i-1 + a (di + ni(z)Li(Z))] 

T1i Z = , 
a 

S2i(Z) = ci1i - Ci-1Ii-1 - a1i(z), 

() 
Is [kili - ki-1Ii-l - a (di + ni(z)Li(Z))] 

Sli Z = , 
a 

i = 2, 3, ... , n + 1, n + m + 2, n + m + 3, ... , n + m + I + 1, 
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ls [kk-l1k-l + a (d~l) + a::tek (6.k(Z)))] 
PI ,k-I (Z) = -----''---------.:'---------'--'­

a 

ls rkk1k + a (42
) + f3fek (6k(Z)))] 

r J.k (z) = ----C-'---__ -..O...-______ -'-_=_ 

a 

k = n + 2, n + 3, ... , n + m + 1 

and Is is an arbitrary value. Using the Newmark method to solve (4) to­
gether with (3), one obtains system transient or steady-state dynamic re­
sponse in the form of tangential stresses, torques, angular velocities, accel­
erations and displacements of arbitrary cross-sections of the hybrid model 
elastic elements. The 'shifted' argument in Eqs. (4), which is a consequence 
of the wave interpretation of torsional vibrations, makes their right hand 
sides always known in each step of computation. Thus, in contrary to the 
coupled ordinary differential equations for the discrete model, it is possi­
ble to solve Eqs. (4) sequentiaIly, one after another, in presented order. 
This feature very essentially simplifies the numerical procedure. Results 
obtained by using the proposed wave approach for the crank mechanisms 
of the internal combustion reciprocating engines were compared in [7, 8, 
10] with the analogous results yielded by the so far applied methods based 
on the discrete model. From these comparisons, it follows that using the 
wave method one obtains better numerical stability and accuracy of results, 
but first of all - much higher numerical efficiency, where the computation 
time ,vas reduced from 2.5 to 10 times down and more. 

3. Numerical Results 

In the presented paper, numerical calculations were performed for two ex­
emplary geared drive systems of the rail cmd motor vehicles. 
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Fig. 3. Discrete-continuous model of the electric locomotive bogie drive system 

a) Run- Up Simulation of the Rail Vehicle Drive System 

45 

In this example, there was performed a run-up of the electric locomotive. 
The drive system of it consists of the electric motor, elastic: coupling with 
progressive characteristic, two gear stages, bogie wheelset with two brake 
disks and the locomotive mass. The discrete-continuous model of this sys­
tem is shown in Fig. 3. In this model, a numerical value of the 'vehicle 
mass' is a fraction of the total locomotive mass divided by the number of 
wheelsets, because identical reaction forces between the locomotive wheels 
and rails are assumed. Moreover, a rolling contact between the driven 
wheels and rails is assumed. Thus, the rigid bodies of mass moments of 
inertia I6 and I8 representing wheels as well as the rigid body of mass 
moment of inertia I9 representing the 'vehicle mass' are regarded as one 
rigid body of the total mass moment of inertia I6 + Is + Ig • According to 
Eqs. (2), this drive system model is characterized by the following param­
eters: n = 0, m = 3 and 1 = 2. There are assumed backlashes in the gear 
stages and a harmonic variation of the mesh stiffnesses due to a variable 
number of teeth in contact r11. 
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Fig. 4. Dynamic torque in the motor output shaft (1) 

There is performed a simulation of a locomotive acceleration from its 
standstill lasting for lO seconds. Fig. 4 shows plots of the dynamic torque 
transmitted by the elastic element (1) corresponding to the motor output 
shaft for two cases: with 'no backlash' assumed and with 'backlash' in both 
gear stages, respectively. As one can notice, backlashes in the gear stages 
cause a very essential increase in dynamic torque pulsating component. 
However, Fig. 5 shows plots of the dynamic torque transmitted by the 
second gear stage (4). The response obtained for 'no backlash' in the gear 
stage is a superposition of the 'quasi-harmonic' pulsating component and 
the quasi-static component generated by the electric motor. But the torque 
history for the 'backlash' case is a series of successive peaks due to impacts 
of teeth according to the assumed gear mesh characteristics. It should be 
noted that the maximum peak values are always positive ones, and they 
are much smaller in a comparison with the extreme values of the torque 
history for the 'no backlash' case (Fig. 5.) However, for a change, the 
successive impacts of teeth mentioned above induce incomparably greater 
instantaneous angular accelerations of the driven gear wheel in comparison 
with the 'no backlash' case (Fig. 6.) Thus, due to a superposition of the 
elastic and inertia forces in the gear stage, the resultant dynamic torque 
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transmitted by the output side shaft (6) for the 'backlash' case is char­
acterized by greater extreme values than the dynamic torque for the 'no 
backlash' case (Fig. 1.) Analogous results were obtained for the first gear 
stage (3). 

From the above example it follows that a consideration of backlashes 
in the gear stages very essentially influences the results of the vibration 
process in the drive system both quantitatively and qualitatively. But for 
the parameters assumed in calculations, an influence of the gear mesh stiff­
ness variation due to variable number of teeth in contact is of a secondary 
importance. 

b) Run- Up Simulation of the Motor Vehicle Drive System 

The considered drive system of the motor vehicle consists of the crank 
mechanism of the 6 cylinder in-line carburettor engine, flywheel, elastic 
coupling, three gear stages, rear driven wheels and the vehicle mass which 
are mutually connected by means of shaft segments and flexible elements. 
In comparison with the previous example, the discrete-continuous model 
of this system presented in Fig. 8 is characterized by n = 6, m = 4 and 
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Fig. 6. Angular acceleration of the second gear stage driven gear wheel 
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l = 3. In this figure, the elastic elements (13) and (15) represent equiva­
lent torsional flexibilities of tyres. The system is excited to vibrations by 
the active torques due to engine gas and inertia forces as well as by the 
passive torque due to drag force. The characteristic of the elastic coupling 
is assumed linear with dry friction [1]. However, for gear stage I:1eshings, 
classical linear elastic characteristics with backlashes are assumed [1, 2]. 

The system was accelerated from the crankshaft average rotation 
speed 1000 [rpm] to 6000 [rpm] due to the constant mean gas torque value 
equal to 120 [Nm]. Fig. 9 shows the history of the dynamic torque trans­
mitted by the final 7th crankshaft journal within the time and frequency 
domains. From the presented plot it follows, that the system passes through 
a severe resonance corresponding to the 'first crankshaft' natural frequency 
386.2 [Hz] with a node near the flywheel. However, Fig. 10 presents plots 
of the dynamic torque transmitted by the elastic coupling, i. e. at the en­
gine output. The obtained time domain plot of the attenuated sinusoidal 
shape is characterized by relatively small extreme values in comparison 
with those in Fig. 9 and by the small 'fundamental' frequency correspond­
ing to the first system natural frequency 2.1 [Hz]. Fig. 11 shows a plot of 
the dynamic torque transmitted by the first gear stage (9) for the assumed 
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Fig. S. Discrete-continuous model of the motor vehicle drive system 
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relatively small meshing stiffness value in cont.act, i. e. comparable with 
the torsional stiffness of the gearbox input shaft (8). A shape of the curve 
in Pig. 11 is similar to that in Fig. 10, which indicates that the influence 
of backlash in this gear stage is very weak. But Fig. 12 presents a history 
of the dynamic torque in the time and frequency domains transmitted by 
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the second gear stage (10). The meshing stiffness in contact for this stage 
is assumed ten times greater than that for the first gear stage (9). In this 
case, the system response is of a completely different character, where the 
obtained plot in the time domain is a series of sharp peaks corresponding 
to successive gear tooth impacts according to the gear mesh characteristic 
with backlash. This response in the frequency domain is characterized by 
high frequency components. Due to the superposition of dynamic torques 
of the elastic and inertia forces mentioned in the previous example, a curve 
of the dynamic torque transmitted in the side shafts (12) and (14) has 
a smooth attenuated sinusoidal form oscillating around the static drive 
torque value (Fig. 13.) 

4. Final Remarks 

In the paper, there is presented an alternative technique for the numerical 
simulation of non-linear torsional vibrations in the motor and rail vehicle 
drive systems. This technique is on a discrete-continuous (hybrid) me­
chanical model and on the one-dimensional wave description of vibration 
process. In the mathematical model, aB non-linear effects are contained in 
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Fig. 11. Dynamic torque in the first gear stage (9) 
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Fig. 13. Dynamic torque in the side shafts (12) and (14) 

the equations of boundary conditions. The proposed numerical procedure 
is much more efficient and accurate in comparison with the so far existing 
procedures based on analogous discrete mechanical models. 

In the numerical examples, there were performed run-up simulations 
of the electric locomotive and motor vehicle drive systems. Attention was 
paid to the influence of the gear mesh parameters on the system dynamic 
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response, in particular, how sensitive the responses were to these parame­
ters. The importance of the appropriately assumed gear mesh characteris­
tics was proved for histories of dynamic torques transmitted by such drive 
system elements like the gear stages and shaft segments. 
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