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Abstract

The study is devoted to the analysis of the influence of angular velocity of the railway wheel
on the velocity of the elastic wave propagation. The wheel is modelled as an elastic curved
Thimoshenko beam lying on continuous, inertial elastic foundation, which creates a wheel
plate. Radial and circumferential vibrations are also taken into account (two-dimensional
model). The mathematical description of the model consists of the system of two partial,
conjugated, differential equations. The solution of the system of equations is determined
by the Fourier method. The solutions in wave form are obtained taking advantage of the
dependencies resulting from the characteristic determinant. Bach monochromatic wave
has four angular phase velocities. Two of them have a sense consistent with a vector of
angular velocity of a rotating wheel, while the two other ones have opposite sense.

Keywords: wave propagation, Timoshenko beam, railway wheel.

i. Introduction

The increase of rail vehicles speed in passenger traffic as well as carrying
capacity of freight traffic, observed now, is connected with the increase in
dynamic load of the wheel-rail system. A tendency is observed to use the
optimum parameters of this system. Resonance states and critical ones are
connected with great probability of overloadings. A phenomenon of this
kind is, among others, the self-excited escalation of disturbances, which is
connected with the problem of instability of rolling motion of the wheelsets.
Such phenomena should be eliminated in railway traffic.

The propagation of the elastic waves in railway rails, modelled as a
beam on elastic foundation, is a relatively well-known problem and broadly
discussed in papers [1, 2, 3]. However, the typical analysis of the dynamic
properties of railway wheels resolves itself into the analysis of its free vibra-
tions or forced ones. This consists of searching functions and eigenvalues
of boundary problem, or determining amplitude-frequency characteristics,
which then are used to examine such phenomena like noise emission by
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railway wheels, stability of rolling motion, variability of contact force and
so on. An exception is paper [4], in which an attempt was made to explain
the phenomenon of wheel corrugation on the basis of ultrasonic surface
waves. The papers dealing with elastic waves, the propagation of which is
connected with the shifts of the whole cross-section of wheel tyre, are not
known to the author.

This paper is devoted to the analysis of the effect of rotational speed of
the railway wheel as taken on the phase velocities of harmonic waves. The
considerations were restricted only to transversal (bending) waves which are
propagating in the plane of wheel and longitudinal {circumferential) waves.
The excitation of waves was assumed as the initial condition resulting from
the wheel deformation by radial force. To solve the equation of a wheel
motion in the form of travelling waves, the Fourier method was used. This
method is usually applied to continuous systems analysis with solutions in
the form of standing waves. In the paper, using the relationships resulting
from the characteristic determinant, the solutions in the form of travelling
waves are estimated.

2. Physical and Mathematical Model of Wheel

The railway wheel tyre is modelled as an elastic curved Timoshenko beam
connected with the axle by inertial continuous elastic foundation of Winkler
type. The elastic foundation forms the wheel disc. The use of the theory of
curved beams in the model construction causes that the cross-section of tyre
can preserve its real shape. The detailed description of the two-dimensional
model of a wheel and derivation of motion equations are presented in [5,
6]. In Fig. 1, only the systems of coordinates used for the mathematical
description of the model are presented:

— polar system of coordinates p, R, the pole being in the wheel centre,
stiffly connected with rotating wheel. In this system, the geometrical
axis of wheel tyre is described,

— polar system of coordinates ¢1, R, the pole lying in the wheel centre,
used to the description of the wheel rotational motion,

~ rectangular system £, n, the beginning of which O; lying on the ge-
ometrical axis of tyre and being determined by spatial gap ¢ or @i
axes £, m, are locally tangent and normal to tyre axis. This system
is used to describe displacements, internal forces and cross-section of
tyre.

The geometrical axis of a tyre is meant to be the geometric locus
of centres of gravity of cross-sections of not deformed wheel-tyres. If 1he




ELASTIC WAVES [N ROTATING RAILWAY WHEEL 67

angular velocity of wheel ¢g = const, thus between the coordinates in the
polar system ¢, R and ¢1, R, the following relationship is met:

©1 = ¢ + pot. (1)
The system of homogeneous conjugated differential equations describing,

in the coordinate system ¢, R, free vibrations of the tyre of railway wheel
rotating with an angular velocity @g, has the following shape:
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where:
U, v —— are the displacements of point O; along axis &, 7,
m; —— are the reduced masses of wheel tyre and disc,
ky, ky, — are the coefficients of the elastic foundation stiffness in the
circumferential and radial directions, respectively,
E — is the modulus of elasticity of the tyre material,
¢, R — are the radii of wheel disc and geometrical axis of tyre,
A -— is the area of the tyre cross-section.

The system of Egs. (2) constitutes the mathematical two-dimensional
model of the railway wheel rotating with angular velocity ¢g. The first of
Egs. (2) describes the motion of a wheel tyre in the circumferential direc-
tion, whereas the second one — in the radial direction. If the displacements
of point O1 are u(p,t) and v(p,t), thus the displacements of an arbitrary
point B, lying on the transversal cross-section of the wheel tyre may be
calculated from relationship:

] ov
s = R(u+(9cp>’ (3)

Vg = V.

Egs. (2) describe the vibrations of wheel tyre in its plane. In fact, these
vibrations are conjugated by inertia forces with the vibrations from the
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wheel plane. In the present paper, this conjugation is neglected, as an

assumption was made that vibrations in the plane and out of the plane of
the wheel are mutually independent. In reality, this conjugation is small.

3. Solution to the Boundary Problem

As it was formerly mentioned the solution of system of Egs. (2) is searched
by using the Fourier method in the area of complex variable in the form:

) (4)
v(p,t) = V(p)e"
When substituting (4) into (2), the following is obtained:
EARU" — (rzRng + kuri‘) U+ (T‘?RQTnl + kyhry — EAR) V4
+2r R’ gomaV =0,
BIvlY - (#R‘”’m —2EJ + kuh%tR) V't (5)

+ (EJ + EAR® + k(R + r2R3m6> V — 2rR3pomiV' +
+R (rzRQ-m,s + kyhr? — EAR) U' + 2r R2pgmsl = 0.

Solution of equation system (5), which meets the boundary condition, being
in the case of wheel the continuity conditions, will be the solution to the
boundary problem of the system. The solution of Egs. (5) is searched in
the form of the following trigonometric series:

Ulp) = % + Z (A cosny + B, sinnyp) ,
a=1 ,
V(SD) = ;;’)(T) Z (Cn cosny + Dn sin TI,(,O) s

n=1

where: A,,, By, Cn, D,, — are the Fourler’s coeflicients, whereas each term
of series (6) is required to fulfil simultancously Egs. {5) and the boundary
conditions. Thus each term of series (6) will be the cigenfunction of the
boundary problem.

The integration of Egs. (5) within the limits 0+ 27 leads to the system

of algebraic equations:
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<T§R2m2 + ku’l‘?> Ay — 27”04,'00R2m300 =0,

. 3 9 3 9 .3 (7)
2ropoR mado + (EJ + EAR® + kyri R® + 1§ R*me) Co = 0,
where: » = r¢o — is the eigenvalue of ‘zero’ mode of vibrations; it is the
mode the mode characterized by null number of nodal

diameters.

Condition for the existence of a non-trivial solution of Egs. (7) is
that the characteristic determinant should be equal to zero. From this
condition, a biquadratic characteristic egnation is obtained, the roots of
which are imaginary values:

To1,2 = £jwoi,

(8)

T03.4 = E£jwo2,

where: wg — are frequencies of ‘zero’ mode of wheel vibrations.
It results from (7) that for angular velocity of wheel, g =0 modes of
vibration have the following shape:

Uni(p) = Ao and Vor(p) =0 for  wor,
Upa(p) =0 and Vo2 () = Co2 for w2 -
For g 5% O, the following relationship is fulfilled:
Coi = HoiAoi, 1=1,2,3,4 (10)
and taking into account (8):

Hyy = —Hge = jHn,

_ " (11)
Hyy = —Hoy = jHoo,
where: , ) \
1 >¢. s - kz[ u
Hyp = B2k = Rari g gy g (12)
2 Rniagowg
which corresponds to the following modes of vibration:
Uni (@) = Aqy and Voi(p) = Ho1 Any for woy (13)

U()‘z(‘f?) = Anz and Vug(g.o) = HnyAn-) for Wi .
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It follows from the previous considerations hitherto, that for ¢ =0 and
g = const, the ‘zero’ mode of vibrations is characterized by two frequen-
cies. There is, however, a principal difference between these two cases.
For ¢¢ =0, the circumferential vibrations occur independently from radial
vibrations, whereas for ¢ = const, the conjugation of motion in circumfer-
ential direction with the motion in radial direction exists. The source of
conjugation is inertia forces resulting from Coriolis acceleration.

The remaining eigenvalues and eigenfunctions are determined as a
result of finite sin- and cosin-transformation of system (5), which results in
a system of four algebraic equations:

m3Dn - D:

ma2

2 23 4 2 .
(Tn -+ (—‘)pn) By — (aln"’n + a‘2n> Ch — 27’n9’30

2 2 . mg3 / 2
(Tn -+ wpn> A-n - QTnQOOm—Cn -+ \aln'f'n + a?.n) Dn - 07
-2

2 msg my
(aanrn + am) An + 2rnpo—5 Bn + 2nrap)——— Cn+
nemqy -+ mg n<mq + Mg (14)
2 2
+ (Tn+wgn) D, =0,
. ms 2 2 2
2rnpo—5————An — (GSnTn -+ Guin) Bn + (Tn + w(m) Cn—
n mq4 + mg . g
. ms
—2nrppg———Dr =0,
n“mq + mg
where
T=7Tn — eigenvalue of the n'* mode of

vibrations,

Wpn = — the square of the n'"* frequency
that is not conjugated with the
defection of longitudinal

vibrations of the tyre,
2 (n®~1) EJ+EAREr R(n®k,h>+k, R?)
gan

Jrl the square of the nth frequency
that is not conjugated with the
tangential displacement of

transverse vibrations of the tyre,

.y n (BAR - kuhr?)
Aln = — s = ; —
1 s a2n R2m2 )
s n (EAR - kyhr})

A3p = — g Qan = —= .
nims + mg " R2Z (n?my + mg)
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In the area of the stable rotating motion of a wheel, the roots of charac-
teristic equation of system (14) are imaginary values:

Tn1,2 = £Jwnl, Th34 = TJWn2, (15)
Tn5.6 = T jwn3, Tn7,8 = Tjwng,
where: w, — frequency of n'™ mode of free vibrations.

If ©g =0, thus wni = wn2 and wp3 = wna. It follows from those above
that the rotating motion of a wheel causes a reduplication of frequency of
free vibrations for each mode of vibrations, except the ‘zero’ mode. This is
the so-called bifurcation of vibration frequency. It should be also mentioned
that the domain of unstable rotating motion of wheel is situated within the
range of very high velocities [7], not in testing from practical point of view.

The conjugation of circumferential vibrations with radial ones causes,
that the constant multipliers of the given mode of vibrations are mutually
dependent. These relationships are obtained from (14)

Bni = m—niAni s
Cni = FniAni y (16)
Dni:H171i-'471i7 'L:l, 2, 3,.8

By taking into account (15), it is obtained:

where:

Ani = 2gown; X

2 2y, 2N, 2 2
nmsmy (""pn_wni)_'_ TiaMMg (agn—alnwm-)ng (n 7714—{-7715) (a4n—a3nwm-)

T
- 242 w2 — w2 — w2 ’ 2 23] -4 52,52
mo (n m4~.-ms) Won—wWh; “’gn—”ni)_(ai’n—aln""ni .a4n—a3nwni)J— M3mgYgws

9

2
wpn — Wny

Hm' =

hoyi (a'?.n - amw%i) - 2‘1'90wm":%z' ‘
As the modes of vibrations are determined with an accuracy to the constant
multiplier, it is possible to take assumption that for n=1, 2, 3, ..., the

system of eigenfunctions has the shape:

F:J"”;((p) = A, (COS ny +m71i sin 72,(,0> ’
Voi(e) = I, A, (COS ne + H1,;sin Tl‘?) )

for:=1,2,3,..., 8

I
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4. Solution to Initial Problem in Vibrational Form

The general solution of equation system (2) may be written in the form of
infinite sum of linearly independent particular solutions:

4 > 8
u(p, t) = Z Ag; exp(roit) + Z Z An; (cos ne + H1,;sin ng.o) exp(rnit),
n=1 i=1

=1
4 —_
v(p,t) = > HoiAgi exp(roit)+
i=1

o 8
+ Z Zbﬁ:m‘ﬂné (COS ne + Hl,sin n(,o) exp(rn;t) .

n=1i=1 :
(19)
Solution (19) may be written in real form by using (8), (11), (15), (17) as
well as when introducing new constants with the help of relationships:

1 , 1 .
Agpio1 = 3 (Koi — jLos) , Ao = % (Koi +7Lo:)
for 1=1,2, v
1 1 (20)
An.?z‘—-l = 5 (Kni - jLni) y Arz.‘Z:‘ _ 5 (Kni +jL'rLi)
for 1=1,2,3,4.
Substituting (20) into (19), it is obtained:
2
u(p, t) = Z (Koi coswy;t + Lo; sin wy;t) +
=1
o 4
+ Z Z [( K pi coswnit + Ly sin wp;t) cos ne+
n=11=1
+hni (Lnicoswnit — Kpisinw,t)sinneg) | (21)
(2

9
v(p,t) = Z Hy; (Ko coswgit — Lo; sin wy;t) +

=1

oo 4
+ Z Z Hoi [(Lni coswp;it — Kpisin wy;t) cosng—
n=1i=1

—hpi (K i cos wpit — Ly sinwyit) sin ny) .
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The integration constants occurring in relationships (21) are determined
from the following initial conditions:

_ Su(ep,t) .
u’(‘on) = up, 5t \t:(] = 1ug, (22)
”U( 0 — av(gp,t) :
> )"“UOS 5t \ = Yg,
t=0

When substituting (22) into (21) and using the orthogonality of the system
of eigenfunctions, constants Ky; and Lg; are calculated from relationship:

2 1 2r 9 1 2
Z_:Km*’i;/uod% ;Hoioz‘:%/vod%
‘ X (23)

) -
1 .
ZH()lelKﬂz = —“/vod% > woiLo: = Z_—/uod%

i=1 i=1 0

whereas constants K,,; and L,; are obtained from system of equations:

27

Z Kni= /‘LL() cosnpdyp ,
=1 0
4 27
Z hniln; = /uo sin npdyp |
=1 0
4 1 27
Z hniHpiKns = —;/vo sin npdy,
=1 ! 0
4 1 27
ZHm-L ;== /’Ug cosnpdy ,
£ s
=1 0
27
Z wmhnzl‘ ni = — /’IL(] sin n(pdg,o R
=1 0

2

4
Z 1 7.

wniLni = ; /U() cos n(pd(,{),
1= p

0
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27

4
1

z WniHniKni = —— /i}o cosnpdy,

=1 71' 0

4 1 2w
> wnihniHniLni = = [ o sinnipdp (24)

s

=1 0

By using the relationships:

AUy = /K2 + L2,

sinn; = Kni cosn; = Lini
' AU’ m AU,
(25)
AV = \/(Hm'Lni)2 + (HniLni)?,
i g = HypiKp; cospni = HpiLni
AVni ’ ™ AVni ’

the free vibrations of wheel tyre rotating with constant velocity and ex-
pressed by formulae (21) may be written in the following form:

2
u(p,t) = Z AUp; sin (woit + oi) +

AUp; [cosny sin (wnit+ni) + hni sin np cos (wnit +¥ni)]

+
M
M*‘

3
1l
—
-
Il
A

Voi cos (woit + woi) +

Vii [cos np cos (wnit+@ni) = hni sin n sin (wpit+@n:)] -

(26)
Formulae (26) constitute a vibrational form of solution of equation system
(2) and describe free vibrations of railway wheel tyre at ¢y =const, which
are excited by arbitrary initial conditions (22).

n[\/]8 TIMN:
HM»

5. Solution in Wave Form

By taking into account the fact that the values of frequency w,,; are deter-
mined from the condition that the characteristic determinant of the system
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of Egs. (14) is equal to zero, it may be proved that the dimensionless coef-
ficient hn; may have only two values: +1, or —1. If additionally the values
are ordered wn] < wn2 < Wn3 < Wny, then:

hni = hns = —1,
1 n4 (27)
hno = hng =1 for n=123,....

As h,; does not depend on the excitation manner, then relationships (27)
are valid for arbitrary initial conditions. When substituting (27) into (26),
the solution of Eq. (2) is obtained in the form of waves:

2
u(cp, f) = z AUp; sin (wgit -+ 't/)g,') +

i=1

o
+2
n=1

z AU, sin (wpit — np + i) +

1=1,4

+ Z AUp;sin (wnit +np + 'l:l’nf)
i=2,3

b

(28)
2
v(p,t) = Z AV, cos (woit + woi) +

1=1

oo
+ Z [ z AV, cos (wnit — np + i) +
n=1 |i=14

)

+ z AV, cos (wm't + nep + (Pni)
i=2,3

where:

AUpi, AVy; — amplitudes of harmonic waves: both longitudinal and
transversal ones,
Yni, Pni — initial phases.

The first of (28) relationships represents longitudinal (circumferential)
waves, whereas the second — transversal (bending) ones. The functions
described by formulae (28) are functions of two independent variables: the
spatial variable ¢ and time variable t. For n > 0, each of the element series
(28) represents an elastic harmonic (monochromatic) wave. The argument
of each harmonic wave has characteristic property. For each variables ¢
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2

and moments £, which meet the conditions:

go:—ujﬁit—f—const for 1=1,4,
n

Wni

(29)

= — t + const for 1 =2, 3,

n
the value of displacement will not vary. It follows from this that in the
system of coordinates ¢, R the image of motion propagates at the angular
phase velocity equal to wn1/n and wnp4/n, with a sense compatible with the
vector of angular velocity of wheel and with an opposite sense at the phase
velocity wpo/n and wp3/n. Thus every monochromatic wave has four phase
velocities.

In the system of coordinates 1, R (Fig. 1), relationships (29) have
the form:

sm:(gbo-{—gﬂi)t«}-const for 1=1, 4,
n (30)

n

w1 = (gbo—w——>i+const for 1= 2,3.
n

Thus in this system for i=1, 4 and ¢=2, 3 the values of angular phase ve-
locity are suitably increased and decreased by the value of angular velocity
of wheel pg. It follows also from the Fg. (30) that for every monochromatic
wave, propagating in a sense opposite to rotation of wheel, two such ve-
locities g exist, at which for the observer connected with system 1, R, a
stationary harmonic wave comes into being. The values of these velocities
are determined by equation:

-

©wg — ;l;wm' (po) =0 for 1 =2, 3. (31)

This would mean that the angular velocity pg becomes equal to angular
phase velocity wp;/n. The wheel has ‘catch up’ the image of deformations,
propagating in a direction opposite to the sense of velocity. From practical
point of view, this phenomenon is meaningless as it occurs at very high
velocities of wheel.

8. Resuits of Calculations

In Tables 1, 2, 3, 4, 5 and & results of calculations concerning the prop-
agation of elastic harmonic waves in the rotating railway wheel are given.
The waves are excited by the following initial conditions:

'lL((P,O) = ug, 'U((P,O) = V0, 'LLQ((,P,O) = O; 7.}0(901 O) = 0) (32)
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displacements u, v corresponding to deformations of wheel by the action
of concentrated radial force P=1N.

The calculations were made for a wheel of nominal diameter 0.95m
rotating at angular velocity 0, 116.9, 292.41/s, the tyre thickness being
0.075m (Tables 1, 2, 3) and 0.03m (Tables 4, 5, 6). The angular velocities
0, 116.9, 292.41/s correspond to linear velocities 0, 200 and 500km/h in
rolling motion of wheel of nominal diameter. In the first type page, the
lengths of waves are given in radians, in the second one in phase velocity of
waves. Signs ‘+’ or ‘—’ show the sense of angular phase velocity of harmonic
waves in accordance with or opposite, respectively, to the sense of angular
velocity of a wheel. The amplitudes of waves are given in dB, the reference
level being 107 ' m. In Figs. 3, 4, 5 the propagation of elastic harmonic
wave packets is shown, the packet consisting of sum of wave numbers from
1 to 100. Time ¢ after which the actual position of wave packet is shown
in the following Figures, was calculated from the condition that at wheel
velocity o =0, the harmonic wave of maximum phase velocity has run the
way ‘alfa’. The dotted axes of symmetry show the rolling of wheel after
time £.
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) .—-L\ geometric axis
of tyre

Fig. 2. Deformation-of wheel by concentrated radial force
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Table 1

Wheel angular velocity

01/s (0km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity
[rd] [1/s] AU [dB] ¥ AV [dB] @
+6954 10.49 0 6.81 ™
2 —6954 10.49 ™ 6.81 ™
—17471 ~5.42 0 -2.28 ™
+17471 ~5.42 v ~2.28 T
+4636 4.56 0 9.04 0
™ —4635 4.56 ™ 9.04 0
-12729 ~12.78 ™ ~17.06 0
+12729 —12.78 0 ~17.06 0
+3509 —0.68 T 7.99 T
e —-3509 —0.68 0 7.99 ™
~11882 —21.43 0 —28.86 ™
+11882 ~21.43 ™ —28.86 ™
+3152 —6.37 0 4.94 0
z ~3152 ~6.37 ™ 4.94 0
~11604 —28.28 ™ ~37.17 0
+11604 —28.28 0 -37.17 0
+3194 -12.61 T 0.57 ™
s —3194 ~12.61 0 0.57 w
-11481 -33.74 0 —43.33 ™
+11481 ~33.74 ™ —43.33 ™
+3418 ~18.78 0 ~4.20 0
z —3418 —18.78 ™ —4.20 0
~11416 ~38.24 ™ -48.13 0
+11416 —38.24 0 —48.13 0
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Table 2

Wheel angular velocity
116.96 1/s (200km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity

[rd] [1/s] AU [dB] P AV [dB] ©

+6847 10.64 0 7.01 T

27 —7062 10.33 T 6.61 T

-17368 —5.41 0 ~2.16 w

+17575 —5.42 T —2.40 T

+4582 4.68 T 9.12 0

s —4690 4.44 0 8.95 0

—12680 -12.79 T -17.15 0

+12799 —12.76 0 —16.97 0

+3480 —0.58 0 8.05 T

i —3539 ~0.79 ™ 7.93 x

—11837 —21.52 0 —29.05 T

+11908 -21.35 7 —28.68 T

+3132 -6.28 T 4.99 0

z —3172 —~6.47 0 4.89 0

—11588 —-28.39 7 —37.38 0

+11620 -28.17 0 —36.98 0

+3179 —12.53 0 0.61 w

iz ~3209 ~12.70 7 0.54 7r

—11469 —33.86 0 —43.52 7

+11492 ~33.62 T —43.13 7

+3406 —~18.71 7 -4.17 0

z —3430 —18.86 0 —4.22 0

—11408 ~38.36 g —48.31 0

+11425 -38.12 0 —47.95 0
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Table 8

Wheel angular velocity

292.391/s (500 km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity
[rd] [1/s] AU [dB] ¥ AV [dB] @
+6689 10.86 0 7.29 x
2 ~7227 10.10 ™ 6.30 ™
~17216 -5.41 0 ~1.97 *
+17733 -5.44 ™ ~2.58 ™
+4503 4.85 ™ 9.24 0
# ~4771 4.25 0 8.83 0
~12606 ~12.82 ™ ~17.30 0
+12854 ~12.74 0 ~16.85 0
+3436 ~0.42 0 8.15 ™
X —3584 -0.95 7 7.83 ™
—11819 ~21.66 0 ~29.34 7
+11947 ~21.23 ™ —28.42 ™
+3102 ~6.15 ™ 5.06 0
z -3202 ~6.61 0 4.82 0
+11565 ~28.57 w ~37.69 0
+11645 ~28.01 0 —36.69 0
+3156 ~12.41 0 0.66 w
Iz ~3232 ~12.82 7 0.48 ™
~11453 ~34.05 0 ~43.83 ™
+11510 ~33.45 T —42.85 rr
+3387 ~18.59 ™ —4.13 0
T —3449 —18.98 0 —4.27 0
~11394 ~38.55 7r ~48.59 0
+11439 ~37.95 0 —47.69 0
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Table 4

Wheel angular velocity

01/s (0km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity

[rd] [1/s] AU [dB] ¥ AV [dB] @

+8739 10.56 7 3.68 7

27 ~8738 10.56 0 3.69 T

—19102 —2.81 0 3.17 7

+19102 ~2.81 w 3.16 T

+6101 5.71 0 8.65 0

s -6101 5.71 0 8.65 0

~12885 -6.90 w -9.11 0

+12885 —6.90 0 —-9.11 a

+4397 1.25 T 9.25 T

iz —4397 1.25 0 9.25 ™

—11854 -15.22 0 ~20.38 s

+11854 -15.22 w —20.38 ™

+3464 —-2.30 0 8.76 0

7 —3463 —-2.30 7 8.76 0

~11550 ~21.90 0 —27.93 0

+11550 —21.90 0 ~27.93 0

+2968 —5.69 n 7.53 T

= —2968 ~5.69 0 7.53 x

—11432 —27.12 0 -33.24 ™

+11432 -27.12 T —33.24 T

+2734 -9.28 0 5.58 a

3 —2734 -9.28 T 5.58 0

-11382 —31.32 ™ —37.23 0

+11382 -31.32 0 -37.23 0
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Table 5

Wheel angular velocity
116.96 1/s (181 km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity

[rd] {1/s] AU [dB] ¥ AV [dB] @

+8649 10.71 0 3.94 T

25 —8827 10.40 T 3.43 T

-19019 -2.93 0 3.28 7

+19186 -2.71 7 3.05 T

+6043 5.81 7r 8.72 0

7 —-6160 5.61 0 8.59 0

—12832 -6.90 7 —~9.14 0

+12938 -6.91 0 ~9.09 0

+4362 1.33 0 9.30 T

Zz —4432 1.14 ™ 5.16 ™

—-11825 —15.29 0 -20.51 T

+11883 -15.15 w —20.25 T

+3439 —2.20 ™ 8.82 0

T —3488 —2.40 0 8.71 0

i ~11531 —22.00 x —28.08 0

+11570 —21.81 0 —27.79 0

42948 -5.59 0 7.58 T

= ~2988 —5.78 7 7.48 7

—11417 -27.23 0 —33.38 T

+11447 —27.03 T —33.11 T

+2717 ~9.19 ™ 5.63 0

3 —2752 —-9.37 0 5.53 0

—-11370 —-31.42 T —-37.35 0

+11395 —31.23 0 -37.11 0
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Table 6

Wheel angular velocity

292.391/s (453km/h)

Wavelength Wave phase Amplitude and phase of a wave

velocity

[rd] {1/s] AU [dB] ¥ AV [dB] ©

+8516 10.93 0 4.30 7

27 -8962 10.15 iz 3.02 T

—18899 -3.11 0 3.46 7

-+19316 —-2.58 7 2.87 ™

+5956 5.96 w 8.82 0

7 —6249 5.46 0 8.48 0

—12753 —-6.90 T -9.18 0

+13018 —6.91 0 ~9.06 0

+4311 1.50 0 9.39 7

iz —4484 0.98 ™ 9.11 ™

-11781 -15.40 0 —20.71 7

+11928 —15.05 w —20.08 7

+3402 —2.05 7 8.90 0

5 —3526 ~2.56 0 8.62 0

—11502 -22.15 w —28.30 0

+11600 —21.67 0 —27.59 0

+2018 —-5.45 0 7.66 T

= —3019 ~5.93 7 7.40 0

-11395 —27.38 0 -33.59 7

+11469 —26.88 7 ~32.92 s

+2691 ~9.06 T 5.71 0

5 —2778 -9.51 0 5.45 0

—11352 —31.57 7 —37.54 0

+11413 —-31.09 0 —36.94 0
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7. Conclusion

It follows from Tables 1, 2, 8, 4, 5 and 6 that for the two-dimensional model
of railway wheel, every monochromatic wave has four phase velocities, two
of them showing a sense consistent with a vector of angular velocity of
wheel and the other two with sense opposite to that. This does mean that
the propagation of waves occurs in the directions of opposite senses and
for pg = 0, a full symmetry of values of phase velocities and amplitudes
takes place. The rotating motion of wheel causes violation of propagation
symmetry of elastic waves (in system @, R) because inertia forces occur
in conformity with Coriolis acceleration, thus the decrease of minor phase
velocity and the increase of the higher one of waves running according to
sense g as well as the decrease of lower velocity of waves and the increase
of higher velocity ones, running opposite to pg. Waves running according
to @g are principally characterized by greater value of amplitudes.

The propagation of wave packets, as shown in Figs. 3, 4, 5, shows
also the symmetry for ¢o =0 and asymmetry for ¢g # 0. The calculations
show that the wave packets undergo strong dispersion.
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