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Abstract 

In this paper a short survey of a set of 'Matrix Algorithms and Methods' (MAM) is given 
created by the author during the last three decades, published bit by bit in ZAMM, ISNM, 
IKM, Equa-diff, BAM, etc. by cca 100 papers (P), in several research bulletins (Bn) and 
postgraduate lecture notes (pLn), in some books (Bk) [look at the Reference 1,1 - 4, 9], 
applied in these works to investigate multilaterally various technical etc. systems, among 
others vehicle dynamic ones, too, and programmed into computer in certain languages 
(e.g. in PL1 , Pascal). 

Keywords: MAM created for algebraic, analytic and stochastic tasks connected with the 
investigation of technical systems. 

Introduction 

The pieces of the above mentioned set MAM have - taken together and 
often one by one too - numerous mathematical domains to use (giving 
tasks for these MAM devices). Therefore, it was suitable to choose sev­
eral important domains of use and to show - through these only the 
essence, the structure, the performance, etc. of some MAM's algorithms 
and methods and to compare them with other (known) ones, for finding 
occasionally advantages for our MAM. Such four domains will be here: 

1. algebras (lin. and non-lino ones, with programmings), 
2. ordinary analysis (mainly lino and non-lino diff. equs.), 
3. functional analysis (transform of function systems into various bases), 

and 
4. stochastics (random basic products, Markov chains). 

For the technical (applied) domains, only titles are here available (at 
the end of the chapters). The references (at the end of this paper) allow 
the reader to supplement this survey - with theoretical, numerical, and 
applied details - into totality. Finally, remember here the late scientist 
Acad. Prof. E. Egervary (died in 1958), the great master of applied math-
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ematics and matrix theory; the author as his former co-worker achieved 
these MAM-results by 'following the master's footsteps' [19]. 

1. MAM for AIgebras 

Their main base is our Bn [12]. 

1.1 Let us transform an arbitrary matrix Ao=l[aj]m C En given on an 
orthonormal basis Bo (with BoBo = E), e.g. on Bo = E=l [ed n C En, or its 

aI(,t) ---t €k modified variant Abl] = Ao - (a[ - ek)eI into the ek(,t) ---t aI 

counter-changed basis BI=BIO = E + (aI - ek)e
k

, IBII = ekaI=akI # 0 
(pivot element), thus obtaining our first static/dynamic transform step 
STA1 // DTAI [11] ( at ,=l/akI, BII = E - ,(aI - ek)e

k
): 

Al = BII Ao = Ao - ,(aI - ek)a
k 

, 
[S] 

Al = BII Ab
l
] = Ao - ,(aI - ek)(a

k + eI
) , 

[D] 

(l.lla) 

(l.l1b) 

or obtaining by p similar sequential // simultaneous steps, our transform 
spring DTAp [11] 

p-l p-l 

IAKLI = IBpl = IT IBq+1,ql = IT a~q:Iq # 0, 
q=O q=o 

rKL=AK~) : 

p-l 
A ~B-l A[l] - A L ((q] )( kq Iq) p- pp-l p-l - 0 - ,q aI - ek a[]- e , 
[D]' q=O q q q 

Ap=B;1 A~] = Ao - (AL - EK)rl{L(AK + El), 
[D] 

which yields the blocked form of matrices Ao and Ap: 
[D] 

Ao = [AKL 
AIL 

into D.KJ] 
nIJ ' 

(1.12a) 

(1.12b) 

(1.13a) 
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AIJ - AIL.6.IU=nLIl , 
(l.13b) 

namely with programs made in languages Fortran, PL1 , Pascal, etc. 

1.2 Our DTA was compared multilaterally with other algorithms, e.g. 
with STA, (Gaussian) GMA, (Jordan's) JMA, (our symmetric) SMA (for 
Ao = Ao having the first step (l.l1a), then 

Al = aklAI , 
[J] [G] 

Al = Ao - i(al - ek)(az - ek)'" , 
[Sy] 

namely at so simple lino alg. tasks as 

a) ranking (p = T, if nIJ = OIJ); 
b) norming 

(1.21a) 

(l.21b) 

(l.21c) 

c) ordinary inversion of a regular matrix (n = m = T) by DTA in n 

steps (at different kq = Iq E N={l 2, ... , n}, 'v'atq)1 =1= ° or in v( < n) 
q q 

springs (with regular blocks AKK of p~h order at t Pp = n), giving 
(p) p=I 

An = Aa I [12], (remark: at 'v'aii = 0, we start from a spring DTAp 
[D] 

with IA1{[{1 =1= 0, then continue by steps DTAq with a~Jkq =1= 0; 

d - e) generalized inversion for a whole row / / column ranked [12], 
moreover for an arbitrary matrix by repeated DTA [17], etc . 
... (l.22a, b); at these a - e), the DTA gets more and more 
advanced. 

1.3 a) Again, our DTA gives for the gen. lino unequality Aoa: :::; ao, or 
for its equivalent equality (0 :::;)u = ao· 1 + Ao(-a:)=Ao(-iV) 
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- just at the rank T = p(Ao) = p(AKd - the compatib. 
(rxr) 

condition (CC) (0 :::;) UI = ... and the gen. solution (G8) for 
(11) 

the main unknown :CL = ... [12, 15]: 
[r) 

(v = n - T, f.L = m - r), 

b) For the gen. lino equation (at U = 0), 

(1.32) 

Its CC and G8 by the STA, GMA and our SMA (for Ao = An), 
as comparison is shown in [12, 14]. 

c) Then an iteration VSI is treated with a regular 

for 

namely by sequential powering of our operator matrix 

§ = E - t ei"t at t = t - i: dijG" 
i=l j=l 

[12], giving the convergent solving sequence 

dll) = S~II ;;[0] ( [0] d) '" "" e.g.:c = 0 . (1.33a - 6) 

1.4 The lino programming (LP) tasks, namely e.g. 

a) LP of production for max. profit, 
b) LP of consumption for min. expense 

;;; __ [~~] __ [aaOoO a
O

] [ 1] ~ ( ~) ..".." Ao -:I: = Ao -:I: , 



CONTRIBUTIONS TO MATRIX METHODS 105 

(at ao > 0,3 aOl < 0) " (at aO > 0*,3 akO < 0) 

o $~, 0 $ u, uo = maxI (aoo = 0) 0 $ y, 0 $ Vp, vo = mint 

and 
c) integer LP with ;;e = int! are related tasks to 1,3 and so well solvable 

a) by (primal) DTA steps / / b) dual DTAq one 

Aq+1 = Aq -Iq (~~:l + ekg) (a~ - e
1g

) , 
[DJ 

(1.42a) 

(1.42b) 

for the special choice of pivots a~q:lg =l/lq 1= 0 and with stop 

a~p) ;?: 0* / /a~) ;?: 0, then 

c) by 6TAp till max., then - after a (diophantic) supplement -
by a DTAp+l for into Details are contained in our Bn. [13]. 

(1.43c) 
1.5 a) Our generalized gDTA was proved suitable to solve a gen. non­

lino unequality 

ao(~) ~ ao(~o) + Ao(~o).6.;;e $ 0, 

or its equivalent equality 

(0 $).6.u = ao(~o)( -1) + Ao(~o)( -.6.~)=Ao(~o)( -.6.Z) , 
(1.51a, b) 

by using diagonal pivot a~qJk 1= 0 chosen to a 'bottle neck rule' 
9 p 

and producing an approx. 'moving inversion' 

namely at the Newton-Raphsonian conditions and at a conver­
gency's acceleration compared with it [12 - 14]. (1.52a, b) 

b) This gDTA seems to be useful also for nonlin. (convex) P, but 
also the original DTA is sometimes suitable for quadratic (Q) P 
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[12, 15], further - a special iteration (CVA) seems suitable at 
an irrational (I)P studied in [11, 15]. (1.53a-c) 

1.6 We created further (algebraic) algorithms, e.g. for 

a) orthogonalizing a regular Ao (OMA), 
b) triangularizing a determinant IAo I (TAD), both are used in 4.3) to 

create ITA and OTA [14]. (1.61a-c) 

1.7 As techn.-econ. applications of our upper MAM, let us mention, e.g. 

a) for 1.45 various production and consumption (dieta, mixtura) LP 
tasks, transport and schedule LP tasks, then cutting and purchase­
storage LP tasks in [11, 16], 

b) for 1.52 some transport and electric network QP tasks [16], 
c) 1.53 centre location LP tasks in [11] etc. 

1.8 Our brochure [18] for matrix methods of graph theory used 

a) real, or 
b) binary ordinary, or 

r) real d' . 1 b c b b' !red matnx a ge ras. 
In. 

Further on it treats practical problems associated with them, namely 
ad a) seeking a (real) critical path = CP("\, /L), (1.81) 
ad b) flow-crossing of hostile pairs as binary CP; 
ad c b) cooperation of two discrete automats Ga = (X3, U) and Gb = 

x 
(Y2, V) by simultaneous (parallel) transits: Gcp = (Z6, W) and 

+ 
by sequential (serial) ones: Gc. = (Z6, W) at Z6 = X3 X Y2, 

x + 
where W = U X V = [UijV], W = U + V = [uijE + bijV] as 
dir. prod. (x) / / dir. sum (+) .. 

(1.82) 

2. MAM for the Function's Analysis 

Their main bases are our Bn [22] and Ps [23, 24, 28], which show per­
suasively the advantages of matrix methods in various (scalar) analytical 
problems (e.g. diff. equs) and in their applications. 
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2.1 Lin. diff. equations of nth order (LDEn) 

n-1 { 0 (h) 
Ln[y]=y[n1 + L Pk(t)y[k1 = y[n1 + p*(t)y = p*(t)y = . 

k=O x(t) (th) 
(2.lla - c) 

('Vt E T = (a, ,8); 'VPk(t), x(t) E eT; Y=~-l [y[k1]) 

- completed by identities y[k+11 - y[k+1J = 0 and got under initial con-

ditions (Ien) y[k1(to) = Ybk1 for to ET .................. ..... (2.12) 
- occur in the matricial form [as a special case of 

{ ~n(t) 

z = A(t)z + B(t)x{t)] 

/i~) LIn [y]=iI + P(t)y = 

(2.13) 

(2.14) 

For its solution - at Lipschizian and helping limitation [22] - the 
existence and unicity (EU) are valid. 

2.2 For homo (h) LIn[Y] = having a (full) scalar f f vector solving system 

(Wronskian) 

some theorems are proved [22]: 

a) 

are particular solutions; 
b) at lino indep. (basic) one 

y(t)=/=O at c-:j:.O for 'VtET, 

so (with EU) in case of regularity of Y(t): 

IY(t)1 =F 0 for 'Vt ET, y(t)f fy(t) 
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is the general solution; 
C) a lino manifold of such (basic / / regular) system 

can be formed by an (arbitrary) regular matrix factor C (I Cl =F 0) 
from an (ever existing and) known Y(t); 

d) this Y c(t) ever has an entity Y ~(t, to)=Y(t)Co being E-normed for 

to E T Y ~(to, to)=Y(to)Co = E consequ. (with Co = Yol (to) 

counted by our DTA of 1.2c) I 

for Vt, to E T] , 

where 
o [(k) ]n-l Y ~(t, to)=n-l y (t)Z(1) (to) 

with 

and 
Yn(t, to)=Y(t)Z(n_l)(iO) with Yn(to, to) = en 

occur in Green type; 
e) Y ~(t, to) is a resolvent matrix giving the conditional solution so: 

yo(t) = Y ~(t, to)yO [at yo(to) = Eyo]. (2.21 - 25) 

2.3 Some methodical contrib. [22] for hLDEni 

a) a given, in T regular W-matrix (basic vector system) 

determines, together with 

the corresponding hLDE: 

Y(t) + P(t)Y(t) = 0 
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or its (contin.) coefficients: 

pet) = - Y(t)Z(t) ::> _y(n)(t)Z(t) = p*(t) :3 _y(n)(t)Z(l)(t) = 

= Pn-l(t) = -Y(t)Z(t) 

[with derivation of W-determinant Y(t)=IY(t)l1; 
b) it results the Liouville-formulas: 

(2.31 al') 

(for 'Vt ET), (2.31a) 

Y~(t, to) = e-[Pn-l(t)-Pn-l(to)l=e-~Pn-l(t,to) =1= 0; (2.31b) 

c) the DE 

has not - generally - an exponential solution 

being 
- Y(t)P(t) + P(t)Y(t) ~ 0, (2.32a) 

but the associate DE 

has such a solution: 

being 
Z(t)P(t) - Z(t)P(t) == 0 ; (2.32b) 

d) consequ. for 

iJ + P(t)y = 0, there is Y(t)c =1= e-P(t)c, 

but for 

(e1Z=)z* = z*P(t) , or for z - P*(t)z = 0, 

there is 

(2.33a,b) 
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2.4 a) The lino transform 

of a homo LDE can be performed advantageously by our product 
form [23] 

b. 

with the (lower triangular) derivative matrix of Pascal type Y 1 (t), 
which results a (from n into n - 1) sub ordered LDE1n _

1 
and W­

det. (as SoTAI): 

In T, (2.42) 

b. ::".. 

L1n[Y]=P*Y = P*(t)Yl(t)U+ = f(t)Yl(t)U = Yl(t)· q*(t)u= 

=Yl (t) . L1n _1 [u] = O. (2.43) 

b) By repeating the steps SoTAq, our total algorithm S(;1'An -l [23] 
can be realized. E.g. at n - 4, the S;;TA3 has the form: 

::".. ::,. ::".. 

L4[Y]=P*YIU2V3w = YIU2V3' [w + SOW]=!I,2,3(t)· Ll[W] = 0, 

YI Y3 
V3 = yr' 

2 

In 

(2.44) 

T· , (2.45) 

(2.46) 

2.5 For the inhom. (ih) LDEi,n (2.13) and reIn (2.14), some theorems 
are proved [22J: 

a) 

y(t)x=y(t) + Yl (t)x = Y(t)c + Yl (t)x [Y(t)"# ° for "it ET, 

L1n[Yl(t)x] == :l:n(t)] 
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is the general solution, 

is the Yo-conditional one; 
b) the Yl(tO)z O-conditional one can be found by Lagrange's variations 

of const.: 

finally 

yet):/! = Y{t}c{t) [at c{t) =?] , 

LIn[YCJ=O + Ye = ren=:l:en, 

c = Zren, 

t 

c = J Zrend-r , 
to 

t t 

Yl (t)x = yet) J Z(r)ren{r)dr = J Y....,(t, r)ren{r)dr = 
to to 

t J Yn(t, r)x(r)dr 
to 

to 

[at Yl(tO)x = J ... dr = 0]. 
to 

2.6 a) At the LDEIn of const. coeffs 

P=IPI =po, 

(2.51) 

(2.52) 

(2.61a) 

(2.61b) 

the trial for horn. LDE yet) = e-).t v leads us to the eigen prob­
lem [22, 25J 

at the condition 
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with the roots 

(2.62a-d) 

then - e.g. at single 

with 
Y( ) ~V -A\t [ ->. .t] t = e = vje J 

and 

at W = V-I. (2.63a-d) 

Determinant Vn=lllJln can be counted quickly by our triangu­
larizing algorithm TAD [22]; e.g. for n = 4 and with 

at single Aj 

L':J.ji = -Aj +Ai, lli = IT L':J.ji 
i<j~n 

V4= \V4 +)'1 (e* - e1)1 = L':J.l V3= IV3 + l2(e* - e
2

)\ = 

L':J.1L':J.2V2 = L':J. 1L':J.2L':J.3· 1:j:. O. 
r 

For the more general case with A = -Ap with lip 2': 1, I: lip = n, 
p=1 

look at our [22]. 
b) The inhom. LDE1n (2.61b) - e.g. at lIcr 2': 1 of A = -0: - will 

be solved so (for k = 0): 

t 

Yl1(t)x = J y~(t - r)x(r)dr = ... = el"e-crtQv,,(t). (2.65) 
to 

c) It should be noted that such LDE1n is sometimes replaced in 
practice [21, 25] by difference equation got e.g. by 

.. ~ 1 C 
Ye.=- 2" Ye. r 
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( at i::lt='r and with s.c. continuant 

C = 2 -1 2 '" . 
[

-1 2 0 ... ]) 

.~. 2 ~~ 2 ...... 

(2.66) 

2.7 a) The special state LDEIn Z = Ai + Ba:(t) 

(with z=. ;[Zi] t= ~_dz(i-I)], generally) used often by us [28] 

has again expon. solutions z(t) = ue- At for homo case, namely 
with the (more general) eigen problem [24, 28] 

at char. equ. 

r 

iAn(A)A.n(A)i = Dn(A)=' rr (,\ - Ap)Qp = 0, (2.71) 
p=I 

(t o!.p = n, 
p=I 

Dn(A) == 0) 
and min. equ. [with g.c.d. S(A)] 

i::l (A)=' Dn(A) =. rrr (A _ A )(3p = 0 
m S(A) p, 

p=l 

r 

r :5 L (3p = m :5 n, 
p=l 

E.g. in the extra-min. case'V(3p = 1, there is 

r 

(2.72) 

A = L Up' ApEQp ' VP='UA\V 
p=l 

(at V='U- 1
), const. 

so 
t 

zo(t) = eA(t-to)zo + J eA(t-r) . Ba:(r)dr. 

to 

(2.73a) 
(2.73b) 

(2.73c) 
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b) The general state LDEn Z = A(t)z + B(t):z:(t) has generally no 
expon. and exact solution; the resolvent matrix can be sought 
from the horn. matrix integral equ. 

t 

Z",(t, to) = E + J A(-r)Z",(r, to)dr; 
to 

by successive approximation 

t 

Zk+l (t, to) = E + J A(r)Zk(r, to)dr. (2.74) 

to 

But our proposed trial 

Z(t) = U(t)i\(t) atU = Al(t)U [with Al(t)=A(t) - Ao(t)] 
(2.75) 

often results in such solution through the time-variant eigen­
problem 

U(t)A\ (t) - Ao(t)U(t) = 0 ; 

by choosing Ao(t) suitably, so it is very useful in numerous sys­
tems. 

2.8 We gave MM to solve some non-lino DE1n [23]: 

a) The Bernoulli type: 

Z\ = A(t)Z\ + B(t)Z, [a =1= 0, 1], z = A(t)z + B(t)zO< 

[with Z, e= ;[zf· 1J = [zfJ=zCY] ; 

a right-multiplication by (1 - a)Z\"CY and a transform I;\ = Z,-CY 
linearizes it: 

(2.8la,b) 

which - as the former type - can be often solved by our trial (2.75). 

The Riccati type [23J and its transform by 

(2.82a) 
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• 2 
Z\ = A(t)Z\ + B(t)Z\ + e(t) , 

~ . - -2 
Z\ = Abl(t)Z\ + B(t)Z\, 

t\ = -Abl(t):E\ - B(t). 

The Duffing type [27]: 

(a = 3), 

:E\ = -2A(t)~ - 2B(t). 

115 

(2.82b) 

(2.82c) 

(2.83a) 

(2.83b) 

b) The locallinearization for a nonlin. state vDE1n Z = (jz), then 
c) to perform a step of the Runge-Kutta method in a nonlin. state 

vDEIn Z = f(z,~, t) by our algorithm of 4 substeps is treated in [24]. 
d) We sometimes made dynamic optimization for such state vDE1n and 

with an object !o(z,~, t) by the variational task [26]: 

T T 

J(z,~, t)= J [fo + )..*(1 - z)]dt = J [H>.(z,~, t,J..) - A* z]dt = Min! 

o 0 
(2.89) 

2. 9 Let some technical applications of our upper MAM be mentioned; e.g. 
ad 2.6: analysis of a turbine axle for critical w, bending analysis of chain 
bridge, motor vehicle as vibrating system; bending, buckling, vibrating 
bars [21, 25J; ad 2.7 - 8: various systems with theoretical and electrical 
problems [28], dyn. optimization of lino control system at quadr.criterion 
[26J) nonlin. vibrations with bifurcations [27] and still more. 

3. MAM for the Functional Analysis 

Their main basis is given by our papers and bulletins [31 - 33], which 
illustrate well- e.g. also under complex circumstances of the Hilbert-space 
for Lebesgue sense quadratically integrable functions L~ - the elasticity, 
efficiency and other advantages of matrix methods. 

3.1 Functions system (FS), functions bases (FSs) and their norm dyads 
(NDs). 

a) Having at the interval 
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and a clinogonal (cg) FB 

[so lino indep.: b*(t)c -# 0 at c -# 0 for t E T] , 
where m < M, or m -+ 00 and v -+ 00. Either of the systems can be 
characterized by its (systems / / basis) norm dyad (SND/ /BND) and 
by their (common or) cross norm dyad (having a Gram-type): 

n < '" < 2[ ]~ 2) A ± [ajoq] = ±a a ± a 1 = ± a U , 
> > 

C=[b,a'"] = ... = 0 [C~j}m ~ ±a,8U 

(Bn=det(B n) > 0 for 'in E No: def. pos) . 

E.g a cgFB consists of polynomials 

1 

bi(t)= L Ch th E b*(t), 
h=O 

then a FS by powers 

(3.lIa) 

(3.lIb) 

(3.lIc) 

(3.12) 

b) It is advantageous to choose an orthogonal (og) FB b1. =d*(t), or a 
S.C. orthonormal (on) one bi=e'"(t) because 

E.g. an ogFB consists of the (spherical) Legendre's polynomials so: 

(3.14a,b) 
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3.2 a) The (exact, linear) basic product form (BPF) of a*(t) on b*(t) 
is sought so: 

a'(t)£O[aj(t)[m = [t. bi(t)4ij] = [b'(t)aj[ = [b~(t),b~(t)l [!: 1 = 

= b~(t)An + b~(t)Av=b*(t)A (3.21) 

and its (exact) unknown coefficient A is obtained from the am­
plified equ. 

n n n -1 n J 
C =(b, a*) = (b, b*)A=B A so A = B C = fJ(t)a*(t)dt 

(T) 

(3.22) 
with the inverse (i)FB 

(3.23) 

b) The approximate BPF of a*(t) on b~(t) C b*(t) is searched as 

and the unknown An by minimizing the error norm dyad (END) n _ 
Hn(An) with the error 

Its necessary condition and optimal solution 

are as follows: 
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(3.26c) 

c) This (optimal) approximate coefficient shows the very pleasant 
permanency 

4n = An, so a~(t) - a~(t) = 0, h~(t) = a~(t) 

for the orthogonality of FB 

b*(t) = d*(t) , 
n n 

then B = D 

n n 
Dnv = Bnv = 0, 

resulting a more simple form: 

== J 5n(t)a*(t)dt, 

(T) 

coeff. 
as new END - formula. 

( diagonal), so 

(3.27a) 

(3.27b) 

(3.27c) 

In the case of totality, the limit of END at n -+ 00 is as follows 
n n n 

(with Av = A - An): 

. n.L . n n ~n *n 
hm Hn(An) = hm(A-An)=A-A DA=O, so 

n-+-oo n~oo 

n *n 
A = A DA. (3.28a) 

d) On the basis of (3.28a) and a*(t) = d*(t)A = e*(t)A', our ortho­
gonal/orthonormal Basis Factorisation Algorithm (og-BFA/on­
BFA) 

n.L ( n n n ..) 
lim Hn == lim An - '\' diia~al 

n-+oo n-+-oo L-t 
i=O 
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(3.29a) 

gives the coefficient matrix 

(lower triangular [32]). 

3.3 Transform an FS into various FBS. 

a) Having a FS 

in BPF 

a*(t) = e*(t)A~, (with C=(e,a*) = (e,e*)A~=EAo = Ao) 

one can try 
a) an unilateral change on-FB: 

and 
f3) a bilateral one, namely also a counter-change in FS, too: 

(3.32) 

obtaining so new BPFs 
a) 

(3.33) 

and 
b) 

(3.34) 

with the new coefficient matrices given by our former STAl of 
(l.lla) and DTAl of (l.llb), then at the pth din. transform 
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with Ap given by our DTAp of (1.12a,b). Of course, all their 
(D) 

vectors of 00 dimens. (e.g. '!faj E l~) must have finite norms 
( 1* I ) e.g. aj aj < 00 . 

(3.35) 
b) If one can make a (regular) full bilateral change in on-FB: b~(t) = 

a*(t) and in cg-FS (being lino indep.) a~(t) = e~(t), then it can be 
written: 

e:n(t)(m+l) = a*(t) A~ = a*(t) A~-1 
(D) (m+l)2 

at 

E ~A/*-1 n A' m=- 0 Ao 0, 
n -1 1-1 

aCt) = Ao aCt) = Ao em(t) (3.36) 

at 
(a, a*) = A~-IEmA~::Em, (3.37) 

consequ. the inverse FS aCt) of the original cg-FS aCt) = A~* €m(t) 
produced by A~-1 (made by our main diagonal DTAm+l of (1.22c) 
and on-Fb em(t) [32]. 

c) Let our matricial investigations [33] into the lino integral equ. (LIE) 
be mentioned, e.g. to treat the type 

yet) - >. J K(t, r)y(r)dr = x(t) (3.38) 

(T) 

with the kernel K(t,r)::a*(t)b(r), then to approach arbitrary LIE by 
corresponding lino alg. equ. (LAE), further on to apply two on-FSs 
with a certain type etc. 

(3.39a,b) 

3.4 For their technical applications, there are interesting e.g. 

a) Fourier analysis of a multivariate vibrating system n the og-FB 
d(t)::[sin kwt, 1, cos kwt] [32]; 

b) expansion of solution by eigen-og-FS with a certain (parametrical) 
hLDE of bar [32]; 

c) expansion of symmetric kernel by eigen-on-FS at LIE of 2nd kind [32], 
etc. 

4. MAM for Stochastics 

4.1 We mention from [41] the random variable (rv) ~ = g(w) on n = {w} 
with state space/values X :;, Xi = g(wd (i = 1, 2, ... , n), the random 
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function (rf) e(t) = g(w, t) on n, for T = {t} with realizations X :J Xi(t) = 
g(Wi' t) and sections X :J ej = g(w, tj) (j = 1, 2, ... , m) at stochastic 
processes/chains (of contin./discr. X) 

(4.11) 

then with distribution F(x, t)=P [e (t) < xl (at m = 1, 2, ... ), station­
(m) 

arity F(x, t + 1?e) = F(x, t), expectation meet), variance a-€(t), covariance 
C{{' (t, t f

) etc. j 

the vector rf e(t) and the Gaussian one. 

We refer from [41} to random derivatives, integrals, diff. equs, too. 

(4.12) 

( 4.13) 

(4.14) 

4.2 a) We proposed the random basic product (rbp) of a scalar rf e(t) 
[42]: 

o 00 

e (t)=e(t) - meet) = L Xk(t)ek=( x(t) 
k=l 

with parameters 

and functions 

m{=[m{,J = 0, 

C{e=[cel;{l] = (C{I;{I; = V{I; }=vi 

Cee(t, tf
) = :z:*(t)vi(l), 

V{(t)=a-l(t) = C{{(t, t) " 

(at Ve' = If vel; > 0) , 
ce,{(t) = :z:*(t)Vi· 

b) One can often approach it [42]: 

o 0 n 

e (t) ::::: e net) = L ekZk(t)~Zn(t) 
k=l 

(4.21) 

(4.22a) 

(4.22b) 

( 4.22c) 

(4.23a) 

(4.23b) 

(4.23c) 
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with demand 

o ::; (j~n(t):::M [p;(t)] = min!, 

having min. cr~n (t) in case of permanency Zn(t) = ;Vn(t) C ;vet) 
and a-~n (t) t ) 0 for totality. 

a n-oo 
( 4.24) 

o 
c) The Rbp for a vector rf e(t) is also constructed in our [42]. 

4.3 a) From the (probable/statistical) sample 

and 

r (t)::: 1 [e(tj)] m / /fCt)=;[;i (tj)] m 1 

the (indep./orthogon.) Rbv/m 

("=l[ej]m/ (El. = ;[Xij]m 

of the requested properties 

(mE = 0, C EE = Vd /Mr:, = 0, Cr:,r:, = Vr:,) , 

can be produced as 

( with 

o 
(" = €* (t) Y'; 1 (t) 

Y{t) = 1 and Yij(t) = bij ) 
( i?:j) 

o 1 
El. = E(t)Y'; (t) (4.31a,b) 

suitably by our algorithms ITA/OTA of recurrent formulas [42] 
o 0 . 0 0 . 

€* jet) = €* j-I (t) - erlf (t)/ /Ej(t) = Ej-I (t) - xflf (t) 
(at j = m with = 0/ /0) . (4.32a,b) 

OTAm can be used for forecasting, too. 

4·4 We gave useful MM also for the Markovian chains e.g. its vector (v) 
vAE, vDaE and vDE with basic properties 

!.ip !.iP 
pet + r) = P(rlt)p(t) , !.it = !.it p(t); 

(for Tcont only; p(19) ~ 0, P(rlt) ~ 0; 

e*P (rlt) = e*; lim P(rlt) = E; 
1"-+0 

pet) = P(lt)p(t) 

e"p(19) = 1, 

e*P(lt) = 0*) , 
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then occasional properties (superposed sequentially) for practical case ho­
mogeneous: PI, n rare: P~, n posteffectless: Px.. (biprimitive), n increas-

ing: P'>,. (primitive); ergodic: 

pet) -+ p, so pet) -+ 0 at t-+oo. (4.46a-e) 

4.5 As their technical applications, let e.g. 

a) various Markov chains be mentioned for mass service, demography, 
storage, inventory etc. problems [43, 44]; 

b) optimization of multivariate informational systems [45, 48]; 
c) analysis of various stochastic systems and their processes [42, 46, 47] 

etc. 

References to the author's works, namely to his books (Bk), bulletins 
(Bn), papers (P), postgraduate lecture notes (pLn), etc.; look at their 
literature data for other authors, too. 
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