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Abstract 

Stochastic character of the proper operation of several machinery prevents the variation 
with time of the developing mechanical characteristics from being described by a deter­
ministic functional relationship. In this study a stochastic model of the rpm and torque 
process in a simple mechanical system will be described, assuming cycle periods of the 
operation process repetitions to be independent random variables of identical distribution 
function. With the knowledge of the characteristic curves of driving and braking torques, 
and of the cycle time distribution function, the stationary limit distribution functions of 
the operation process will be determined. 
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Intro duct ion 

With a great deal of machinery, the variation with time of the develop­
ing mechanical characteristics cannot be given by means of a deterministic 
functional dependence owing to the statistical character of the designed op­
eration. In this paper, the case is examined when the stochastic operational 
process of a mechanical system with one degree of freedom representing the 
machinery can be described by the succession of function graphs alternat­
ing according to a determinate probabilistic law, and this alternation has 
a recurrent character. 

Such a recurrent operational process occurs, e. g. with the main 
power transmission system of the rapid railway vehicles equipped with a 
stage-selection device, as well as with the auxiliary machine units of trac­
tion vehicles, and with the majority of other aggregates (e. g. elevators) 
operating in intermittent duty. 
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Model Description 

The examined mechanical model is formed from a disc fixed on an axle 
and having moment of inertia 8 (Fig. 1). Accelerating torque Mg varying 
according to a fixed time-function is acting upon the axle up to a time­
length g(7). It is assumed that solution function ng(t) belonging to the 
zero initial value of motion equation 

Fig. 1. 

Mg(n) = c8n (1) 

is a strictly monotonously increasing one in interval [0, g( t)]. At point of 
time g(t), the accelerating torque acting upon the system will be released, 
and braking torque M, of fixed variation will be applied, under the influ­
ence of which, the rpm of the disc will decrease to zero during time I (7) 
along strictly monotonously decreasing function n, (t - 'T). Function n, (t) is 
yielded from the solution belonging to zero initial value as given to motion 
equation 

(2) 

Consequently, in interval 

(3) 

the system is performing firstly accelerating then decelerating motion 
phases. Time interval 'T is called the operation cycle of the system. One 
of the realizations of the operational process outlined above is obtained by 
giving the sequence of successive cycles 'Ti according to Fig. 2. Points ti 
will give the stopping points of the system. If t E [ti-l, ti) then the rpm 
at time-point t is given by relationship: 

(4) 
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n 

'-----~v 

ti-1 <j 

Fig. 2. 

Since torque functions Mg(n) and M/(n) are given, the realization function 
of the torques acting upon the system are obtained on the basis of formula: 

if net) > 0 

if net) < 0 
(5) 

The stochastic model describing the variation with time of the mechanical 
characteristics can be created in case cycle-lengths Ti are considered as 
equally distributed independent random variables defined on the set n of 
the elementary events. Let the common distribution function of random 
variables {Ti (w)}:1 yielded accordingly be designated by Pr (x). Thus the 
system of stopping points {ti (w)}:o will be defined by partial sums of 
sequence {Ti(W)} in the following way: 

i 

to(W) == 0, ti(W) = LTj(W). (6) 
j=1 

Now those constitute a so called recurrent point process. The rpm of the 
examined system at time-point t E {ti-l(W), ti(W)} is characterized by the 
random variable determined by expression 

while the torque applied to the system is described by random variable 

if zi(w) > 0 

if zi(w) < 0 

(7) 

(8) 
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If time-point t traverses the positive semi-axis, then expressions (7) and 
(8) determine stochastic processes, consequently, the velocity and force 
action conditions of the model examined can be described by vector-valued 
stochastic process 

{ ilt ( w) } = { [Vt (w ), /Lt ( W ) ] *} . (9) 

First, consider the first order marginal distribution function of process 
{Vt(w)}. Let x designate a fixed level of rpm, and now examine the proba­
bility of Vt(w) < x. In interval [cp(x), 'ljI(x)) defined for value x by pair of 
relationships 

(10) 

contains at least one point of events ti, then the occurrence of event 
{Vt (w) < x} is obvious. On the contrary, if {Vt (w) < x} has occurred, then 
[cp(x)'ljI(x)) is 'not empty'. Consequently, required distribution function 
Fv,(x) = P{Vt(w)<x} can be determined on the basis of expression 

Fv,(x) = p{Vt(w) < x} = P {[cp(x), 'ljI(x)) is 'not empty'} . (11) 

For us, the stationary probabilities yielded by means of limit transition 
t -+ 00 are of paramount importance. These probabilities are designated by 
Poo . It can be pointed out that the stationary probability of the emptiness 
of [cp(x), 'ljI(x)) is given by formula 

00 

Poo{[cp(x), 'ljI(x))is'emptY'}=~J J [l-F,(y)]dy, (12) 
1jJ(x)-y(x) 

where TJ = MTi is the common expected value of random variables Ti. On 
the basis of (12), the required marginal distribution is yielded in the form 
([3], [5]): 

00 

J (13) 

Let us introduce the strictly monotonous function v( x) by the following 
definition: 

v(x) = 'ljI(x) - cp{x). 
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On the basis of formula (13) the marginal density function fv{x) can also 
be determined: 

(13.a) 

where Gr (-) = 1 - Fr (-). 

Process {Vt{w)} is differentiable at almost each point of time t, and 
thus derivative process {Vt (w)} can be interpreted. The sign conditions of 
process {Vt{w)} play an important role in the examination of the dynamic 
characteristics. Since events {Vt{w»O} and {Vt{w)<O} constitute a total 
system of events, consequently, a number of results can be achieved by the 
decomposition with respect to this system of events. When using a lengthy 
mathematical deduction, the probability of the two above events can be 
expressed by the following formula: 

00 

Poo{v > O} = ;1 J[I- Fr [g-1 (u)J] du =p+ ( 14) 

o 

and 
00 

Poo{V < O} = 1- ;1 J[I- Fr [g-l(u)]]du = p-. (15) 
o 

For the determination of the conditional distribution functions of rpm pro­
cess, the knowledge of the probability of event {Vt(w)<x, Vt(w»O} is 
required. As a result of lengthy deduction [3], required probability q+(x) 
is yielded in the form: 

n;l(x) 

Poo{v < x, V> O} = ;1 J [1- Fr [g-l{u)]]dU = H{X), (16) 
o 

and hence, on the basis of the total probability theorem 

(17) 

Consequently, the conditional distribution functions of the rpm process can 
be calculated with the help of formulas: 

. H{X) 
Fl'{xlv > 0) = --; 

p+ 

. q_(x) 
Fv (xlv < 0) = -- . 

p-
(18) 
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The stationary distribution function of torque process {JLt (W)} will be 
yielded on the basis of the total probability theorem, as a result of com­
bining conditional distribution functions 

Fp. (yjzi > 0) = Poo {Mg(v) < yjzi > O} = Poo {v > M;l(y)jzi > O} = 

(19) 

and 

(20) 

with respect to conditions {zi > O} and {zi < O}, resp., and applying 
weighing factors p+ and p_, the distribution function in question will have 
the following form: 

(21) 

In formula (19), F;; indicates the right-hand side limit value of Fv. With 
the deduction of the conditional distribution functions, the invertibility of 
torque functions M=f(n) was assumed, which is ensured, e. g. in the case 
of the strictly monotonous and continuous properties of them. More general 
torque functions can be examined similarly by means of the distinction of 
cases. 

So far, the distribution functions of the torques and rpms were in­
vestigated distinctly from each other. However, as far as the dimensioning 
of the machinery is concerned, the bivariate distribution function of the 
two mechanical characteristics is needed. Similarly to the train of thoughts 
used throughout above, conditional distribution functions 

Hv,p. (x, yjzi > 0) = Poo {v < x, JL < yjzi > O} (22) 

and 
Hv,p. (x, yjzi < 0) = Poo {v < x, JL < yjzi < O} (23) 

can be calculated from formulae: 
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Hv,J.l (x, Ylzi > 0) = 

{ 

Fv (Xlzi > 0) if Y > Mg(O) , 

ROv (xlzi > 0) - Fv (Mil(Y)lzi > 0) if Mg(x) < Y < Mg(O) , (24) 

if Y < Mg(x) 
and 

if Y > M/(x) , 

if y::; M/(x) , 

if y < M/(O) , 

(25) 

respectively. The stationary distribution function of vector process {"t (w)} 
= {[Vt(W), J.Lt(w)]*} based upon rpms and torques is yielded by formula: 

Hv,)1(x, y) = Hv,)1 (x, ylzi > 0) p+ + Hv,)1 (x, Ylzi < 0) p- , (26) 

which follows from the total probability theorem. 

Possible Generalizations 

The generalization of the model examined so far is advisable to take place in 
two directions. On the one hand, in the course of the individual operational 
cycles, the slope of rpm functions can be considered as varying, while on the 
other hand, rest cycles can also occur between the individual operational 
cycles, and it is also desired that they should be reckoned with in the course 
of investigations. 

First, the case of the cycle-wise varying slope of rpm functions should 
be examined. For the sake of simplicity of discussion, the moment of in­
ertia of the disc should be considered as varying cycle-wise. Thus, during 
the operational cycles of length Ti(W), let the moment of inertia be char­
acterized by random variables 8 i (w). Concerning sequence {8 i (w)}, let it 
be assumed that its elements are independent from on an.other, and those 
of sequence {Ti(W)} and their bivariate distribution function is Fe(z). Un­
der the mentioned conditions, one of the realizations of the rpm process is 
shown in Fig. 3. 

Let {v; (w)} designate the rpm process of cycle-wise varying slope, 
then the marginal distribution function belonging to it is obtained by the 
following Stieltjes integral 
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n' 

Fig. 3. 

In formula (27), 1jJ(x, z) and rp(x, z) resp. designate the quantities according 
to (10) with fixed 8=z. The characteristics of process {J.Li(w)} belonging 
to {v~(w)}, as well as those of vector process {Ut(w)} can be determined 
analogously on the basis of those written above. 

As for the examination of the second possibility of generalization, let 
it be assumed that there occur rest cycles {TI (w)} between operating cycles 
{Ti(W)}. As for the sequence of random variables {TI(w)}:l it is assumed 
that its elements are independent from each other, as well as from those of 
sequence {Ti(W)}, and that they have identical distribution function Fr,(x). 
One of the realizations of rpm process {vi' (w) } yielded is shown in Fig. 4. 
If the common expected values of variables TI is designated by T2, then the 
stationary probability of the operation or the state of rest of the system 
can be given by pair of relationships 

n" 

Fig. 4. 

(28) 

The stationary marginal distribution of rpm process {vi' (w)} can be given 
by relationship 
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FVII(x) = 

as it can be proved from the total probability theorem. 
The analysis of torque process {J.L~ (w)} can be carried out on the basis 

of the defining relationship: 

if zi~' > 0, 

if ·11 = 0, Vt (30) 

if zi~' < 0, 

with the method introduced in the foregoing. The determination of the 
stationary probabilities of vector process {d/(w)} can be performed in a 
quite similar way. 

The stationary distribution function obtained by the analysis of the 
stochastic model of the operational process ensures the reliable implemen­
tation of stress dimensioning and the dimensioning with respect to the 
operation requirement of the machinery examined. As far as the sphere 
of problems associated with the dimensioning with respect to operation is 
concerned, the optimization of the energetic conditions of the drive system 
can be underlined, while with respect to that of stress dimensioning, the 
determination of the equivalent loads required for life-dimensioning can be 
put into the foreground. 
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