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Abstract

A constructien of inverse semigroups whose idempotents form a (locally finite) tree
and whose congruence lattices have the property P is given where P stands for one of the fol-
lowing properties of lattices: (dually) sectiomally complemented, relatively complemented,
modular and complemented. Boolean, respectively. These semigroups are completely character-
ized up to: congruence-free inverse semigroups (without zero), simple groups and locally finite
trees. Furthermore, special sublattices of the congruence lattice easily can be studied: any
two trace classes are isomorphic, and the lattices of all semilattice congruences and idempotent
pure congruences, respectively are Boolean.

i. Intreduction

The problem of characterizing the semigroups with Boclean congruence
lattices has been solved for several classes of semigroups. Hayrrrox [9] and
AUINGER [1] studied the question for semilattices. Hanmrrox and Norpasrt [10]
considered commutative semigroups, FounTtaix and Locxrey [6], [T] solved
the problem for CLIFFORD semigroups and idempotent semigroups, in [1],
ATINGER generalized their results to completely regular semigroups. Finally,
ZHETTOMIRSKIY [16] studied the question for inverse semigroups.

In [3]. AuviNgER proved that in general the problem can be treated in a
similar way for the following lattice properties: sectionally complemented,
relatively complemented, complemented and modular, Boolean, respectively
and it can be shown that the same is true for the property dually sectionally
complemenied. From now on let P stand for any of these five properties. In
[4] AvixGER studied inverse semigroups whose congruence lattices have one
of these properties P. In this paper, we use the resulis of [3] and [4] to give a
description of inverse semigroups whose idempotents form a (locally finite)
tree and whose lattice of congruences has the property P.

In chapter two we collect some results about semigroups S whose con-
gruence lattice C{S) is sectionally complemented. relatively complemented,
modular and complemented, Boolean, respectively, and extend these results to
the case when C(S) is dually sectionally complemented.
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In chapter three, we use the results of chapter 2 and a further result
about inverse semigroups to give a construction of all inverse semigroups
whose idempotents E form a tree and whose congruence lattices have the
property P (Theorem 4). In this way these semigroups are completely charac-
terized up to congruence free inverse semigroups (without zero), simple groups
and locally finite trees. Furthermore, for the case when E forms a locally finite
iree, a simplified version of the theorem can be given. Using this characteriza-
tion, special congruences on such semigroups easily can be studied: it is shown
that each trace class is isomorphic to the lattice of normal subgroups of the
maximal group homomorphic image of S. Furthermore. the lattices of all
semilattice congruences and idempotent pure congruences, respectively, are
shown to be isomorphic to some power set lattices. We also obtain that for
inverse semigroups whose idempotents form a tree the following properties
of the congruence lattice are equivalent: (dually) seciionally complemented,
relatively complemented, modular and complemented, respectively. Only the
maximal group homomorphic image is responsible for the possible difference
to the Boolean case.

2. Preliminaries

We first collect some definitions and results which we need for our in-
vestigations.

Throughout the paper, the congruence lattice of some semigroup S
is denoted by (C(S).v, N). ¢ = &5 is the identical relation on S, v = wy is
the universal relation on S.

Definition. (i) Let X be an ordered set, x, y € X. Then x covers y or y is
covered by x, to be denoted by x>y, if y < x and y <5 < x implies that
5= x.

(1) A semilattice is a (locally finite) tree if each interval [x,y] =
= {z€X: x<z<y} is a (finite) chain.

(iii) For any semigroup S let S* = S if S has no zero and S* = S/{0}
if 0 is the zero of S.

Construction. Let X be a lecally finite tree. To each = € X associate a
0-simple semigroup I (I, == {0}) satisfying I, NI, =0 if x == 8. For each
o € X* let o’ denote the unique element of X that is covered by x. For each
x € X* let f,: I — I, be a partial homomorphism. Let f, ,: = id|I} and
fopr =Fffe o i =ay >0, > 5. Suppose that for any a € IZ,
b € I there exists y <_ o7 such that the product (af, )(bf;,) is defined in
I#. Let 6(a,b) be the greatest element of X satifying this condition. Let
S = U({I# 2¢X) and define a multiplication on S hy

ab: = (afz,é(a,b)) (bf: 60 for a € I7.b € I},

. . e e = -
Then S is a semigroup. Furthermore, for a € I}, I" = J, and §/ / =« X.
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Definition. A semigroup so constructed is a tree of 0-simple semigroups
I, to be denoted by S = (X; I,f. ;) If each I, is congruence free (with
zero) and not the null-semigroup of order two, then S is a iree of congruence
free semigroups, if all I, are Brandt semigroups, then S is a tree of Brandt
semigroups.

Similar constructions appear in [2], [3], [11] and [13]. If X has a least
element p then by the conditions of the comstruction, I is closed under
multiplication and thus I} is a simple semigroup.

The construction seems to be quite “artificial”” but it naturally appears
in the investigations of semigroups with complemented congruence lattices
as the following theorem proves:

Theorem 1. ([2]) A globally idempotent semigroup S has a comple-
mented congruence lattice if and only if

(i) S=(X;1.f.;) a tree of O-simple semigroups
(i) S/, the maximal simple homomorphic image of S has a complemented
congruence lattice
(iit) if 2y and x == y then xf, = vf. (x.y € IF)
(iv) for x € I%, y € IF there exists y € X such that «f,  {vf;. .

Here £ and { denote the following congruences:
xEy < af, = yf;, for some y (x € I, y € I),
xly o J{uxv) = J(uyv) for all u, v ¢ S.

Some further resulis:

Lemma 1. ([8]) A O-simple semigroup S is congruence free if and only
if for x == y there exist v, v € § such that uar = 0 and uyv = 0, or conversely.

Lemma 2. ({2]) Let S = (X: L. f, ;) anda>p>y > 6. If x ¢ v for some
x € I7, y € If for some o € C(S) then z g zf;, for all z € If.

Definition. A lattice L with a least element ¢ is sectionally complemented
if each interval [, £] in L is a complemented lattice. A lattice L with a greatest

element o is dually sectionally complemented if each interval [, w] in L is a
complemented lattice. A lattice L is relatively complemented if each interval
[£. 7] in L is a complemented lattice. Tt is well-known that Beolean = modular
and complemented = relatively complemented = (dually) sectionally com-
plemented = complemented.

Lemma 3. ([3]) Let S = (X; I, f, ;) be a tree of O-simple semigroups.
If C(8S) is sectionally complemented then I, is congruence free for all a¢ X*.

Definition. Let X be a locally finite tree with a least element p. o > u
then « is an atom. Furthermore, let X**: = X/{u. atoms} if u is the least
element of X and X** = X otherwise.
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Lemma 4. Let S = (X;I,.f,;) be a tree of 0O-simple semigroups. If
C(5) is dually sectionally complemented then I, is congruence free for all
o & X*,
Proof. Leto € X* and I = U(I3: y < z) then Iis not empty and kence
an ideal in S. S/I is a tree of 0-simple semigroups with tree ¥ = X/{y ¢ X:
y < a}. Since xf, € I for all x € I” we have that f,/I is a constant mapping
where f,/I is the partial homomorphism on I in the representation of S[I
as a tree of O-simple semigroups. By hypothesis, C(S/I) is complemented

-

and so by theorem 1. (iii) no two elements of I¥ can be [-equivalent in S/I,

ie. for any x,y € I7 there exist u,v € S/I such that J(uxv) == J{uyv). Since
o is ap atom in Y, J,, J, > J, = I? and so we may assume that u, v € I7,
otherwise we replace them by uf,, and uf;,. respectively. Again, since xz is

an atom in Y, J(uxv) == J(uyv) is only possible if J{uxv) = J(x} = I*¥ U I
and J(uyz) € I, or conversely which by lemma 1 impliss that {, is congruence
free.

Lemina 5. ([3]) Let S =(X;1..f.;) be a tree of congruence free
semigroups /, such that X has no least element. If C(S) is complemented then
for x € I7, y € Ij there exists y € X such that xf, , = vf;.. i.e. £ = o.

Lemma 6. Let S = (X I, f.,) be a tree of 0-simple semigroups where
X has a least element u. If C(S) has the property P then C(I}) has the prop-
erty P.

Proof. For P= dually sectionally complemented, this is an immediate
consequence of I =« S/L. The other cases are proved in [3].

Now we are able to give a new formulation of theorem 8 in [3]:

Theorem 2. ([3]) The congruence lattice of a globally idempotent semi-
group S has the property P if and only if S is one of the following:

(i) S is simple and C(S) has the property P

(if) S = (X: I.f.;) a tree of congruence free semigroups such that for all
x € I7, y € I there exists y € X satisfying «f, , = yf;..

(iii) S is a retract ideal extension of a semigroup (i) by a semigroup (ii) with
zero such that the retract homomorphism fis compatible with the partial
homomorphisms f,, i.e. f,f= f for all = ¢ X**,

In this case C(S) = C(X) x C(I) where I is the kernel of S.

Condition (iii) says that S is a tree of O-simple semigroups I, such that
X has a least element p, I, is congruence free for « 5= u. and C(I,) has the
property P.

3. Inverse semigroups
For inverse semigroups we use the notation of [14]. For any inverse

semigroup S, E = Eg denotes the semilattice of idempotents of S. For any
congruence p on S, the kernel of o is defined by ker p = {a € S: a o e for some
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e € E} and the trace of pis tr p = o/E. Each congruence is uniquely determined
by its kernel and trace. The relation p O £ < tr p = tr £ is a lattice congruence
on C(S), the congruence classes p@ are the trace classes. Some special congru-
ences are the following:

acbe ae = be for some e € E,
is the least group congruence on S. Furthermore,
apbe alea=>b""b for all e ¢ E

is the greatest idempotent separating congruence on S. An inverse semigroup
is an aniigroup (fundamental inverse semigroup) if u = ¢, i.e. the identity
relation is the only idempotent separating congruence. A congruence p is
idempotent pure if ker p = E: the greatest idempotent pure congruence on S
is denoted by 7. Furthermore, 0 is a semilattice congruence if S/o is a semi-
lattice, i.e. if ker ¢ = S. The least semilattice congruence on S is denoted by
7. For an arbitrary subset K € S, Ko» == {a € S: @ > b for some b ¢ K} where
the order relation on S is defined by a </ b < a = be for some e € E.
In [4] the following theorem is proved:
Theorem 3. ([4]) Let S be an inverse semigroup. Then C(S) has the prop-
erty P if and only if

(i) S is isomorphic to a subdirect product of a group G and an antigroup 4,
(ii) C(G) and C(A) both have the property P
(iii) for any (%, ¢e), (%, f) €S (where e, f€ E,, x = 1) theve exist (y,, ay)s ...

(¥,» a,) €S. g€ E, such that

P s D PV S YT - o n H
x =y Wty 7% L.y ey, where ¢, € {— 1,1} and

e = a; Ya,a7f ... a; a,z.

Furthermore, in this case C(S) = C(G) x C(A).

Now we use theorems 2 and 3 to construct the inverse semigroups S
where Eg is a tree and C(S) has the property P.

We first treat the case (ii) of theorem 2. Let S = (X; I, f, ;) be a tree
of congruence free inverse semigroups such that Eg forms a tree. Then E
is a tree and by [14], IV, 3. 11, E, is(-disjunctive which by [14], T1V. 3. 13,
is equivalent to: for idempotents e < f there exists g€ E;x, 0 == g < f and
ge = 0. Since E ;s is a tree, g < e or e < g, then g > ge = 0 implies e g
and e = eg=10. We have thus obtained that each idempotent is primitive,
i.e. I, is a Brandt semigroup. Since I, has no proper congruence, we obtain
that I, o2 K, XK, U {0} for some set K, a Brandt semigroup over the
trivial group. Partial homomorphisms among the nonzero paris of such semi-
groups are given by the following

Lemma 7. ([5]) Let ¢: K, — K; be an arbitrary mapping. Then
fi K. xK, — K;xK,;, defined by (i, j)f = (ig, jp) is a partial homomor-
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phism and conversely, each partial homomorphism f: I} — I can be so con-
structed.
We are able to give the following

Proposition 1. Let S = (X; I.f.;) be a tree of Brandt semigroups
I, over the trivial group. Then C(S) has the property P; in particular, C(S)
is Boolean.

Proof. By theorem 2, it remains to show that for x ¢ I, y ¢ Iﬁ" there
exists y € X such that xf, = yf;.. Since xf, ., and yf;.. €I we may
assume that o = f. Let (7. j). (I, k) € I¥. There exists y such that the product
(@ Nf Ak Df,, is defined in If= K xK,. thus jo = ke, where
¢..: K, — K, is the defining mapping for f, . By analogy, ig,; = lg, s for
some 0 and thus (i.j)f., = (L k)f.; for § = min (y. 9).

We now consider the case (i) of theorem 2. By theorem 3, S is isomor-
phic to a subdirect product of a group G and an antigroup 4. If S is a group
it is well known that necessary and sufficient in order that C(S) has the prop-
erty P is that G is a direct sum of simple groups (in which no Abelian factor
appears twice for the Boolean case). For the case when S is an antigroup
we show

Proposition 2. Let S be a simple antigroup such that E¢ is a tree and
C(S) is complemented. Then S is congruence free.

Proof. Let ¢ € C(S). 0 == ¢ and let £ be a complement of o.

(i) For any e, f€E, e > f we have ep v {f. Since E is a tree there exist
unique n €N, ey ..., e, € E such that e=e¢; >... >e, =f ande=
= ¢y0,e,0, ... O.e, = fwhere 0, € {9, £} and O, == O, ;. Let n(e, f): = n;
then for e >f > gnle, g) >> nle. f) + n(f. g) — 1.

(1) Lete,f€ E, e > f. Since S is simple, there exists a € S such that e = ga~1
and a”la < f. By [14], IV.2.3, the mapping % g = e 'ga is an iso-
morphism between the principal ideals {g < aa™} and {g < a~la} of
E. Since S is an antigroup and C(S) is complemented, by [4], ¢ = o,
ie. ker ¢ = Ew = S. So there exists b ¢ E such that k < a. This implies
that g6 = g for all g < h. Since e6® < f < ¢ we have b <{ f. Now choose
€gr+ vty €FE such that e=e; >e >... >e¢,=h and ¢;0,,0,..
O,e, with O, € {p, £} and 0O, O, ;. > €,6°0.,6°0, ... O,¢,6° = e,.
Since ¢,0° > ¢,6* > ... >¢,6% and 0, = 0,,, we obtain n(f, k) > n.
Then n = nle, k) > n(e, f) + n{f. h) — 1 > n + n(e, f) — 1 which implies
that n(e, f) = 1. Thus for arbitrary e > f either e g f or e & f holds. Since
0 == ¢ there exist e > f with ep f. Let g, h € E, g > h. Suppose that
g &£h. S is a simple antigroup, so E is subuniform: there exists i € E
such that ¢ < hf. By the foregoing argument, e o7 and g&i and so
hf o N &4, a contradiction. Therefore, tr £ = ¢ and thus o = © which
proves that S is congruence free.
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An immediate consequence of this proof is.

Coreollary 1. Let S be a simple antigroup such that Eg is a locally
finite tree and C(S) is complemented. Then S is the trivial semigroup.
Summarizing the results we can formulate

Theorem 4. Let S be an inverse semigroup. Then Eg forms a tree and
C(S) has the property P if and only if S is (isomorphic to) one of the following:

(i) a congruence free semigroup A (without zero) where E, is a tree
(ii) a direct sum of simple groups (in which no Abelian factor appears twice
for the Boolean case)
(iii) a subdirect product I of a semigroup & as in (ii) and a semigroup 4 as in
(i) such that for any (x.e). (x.f) €1 with e, f€E . x == 1, there exist

(via), . {vpa,) €l gcE, such that
x = ¥Rty vy % Ly %y, where ;= 4 1 and
€= “T{f(’:{-’z_lﬂ’z Tt a;ﬂfang

(iv) S = (X; L.f, ;). a tree of Brandt semigroups over the trivial group
(v) S=(X; J..f.;). a tree of O-simple semigroups where X has a least
element y, I} = I is a semigroup as in (i) — (iii) and each I, is a Brandt
semigroup over the trivial group for « == u.
Proof. It remains to show that for the case (v), Eg is a tree. Let e, f
be uncomparable elements of E;. We may assume that e € I and f¢ I}
If g > e then g € I} for some 3 >« and gf, ; = e. By the uncomparability
ofeandf, f<e = ef, , > f and thus g is no upper bound for f.

m
«u Lhen g

By

For the case (v) where I is a semigroup as in (iii).
C(S) e¢ C(X) x C(I) == P(X*)>x N(G) x Cy =< P(X) x N(G)

where P(Z) is the power set of Z and IN(G) is the lattice of the normal sub-
groups of G and C, = {e, o} the chain of two elements. For the simpler cases
the analogous results hold (some factors may be missing). A consequence is
that for inverse semigroups whose idempotents form a tree the properties
(dually) sectionally complemented, relatively complemented, modular and
complemented, respectively, are equivalent, and the difference to the Boolean
case only depends on S/¢, the maximal group homomorphic image of S.

For semigroups whose idempotents form a locally finite tree we obtain a
simplified version of the theorem (using corollary 1):

Corollary 2. Let S be an inverse semigroup. Then E¢ forms a locally
finite tree and C(S) has the property P if and only if S is (isomorphic to) one
of the following:

(i) a direct sum of simple groups (in which no Abelian factor appears twice
for the Boolean case)
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(i1) a tree of Brandt semigroups over the trivial group
(iii) an ideal extension of a semigroup (i) by a semigroup (ii) with zero.
Proof. By Corollary 1, the cases (i) and (iii) of theorem 4 violate the
condition that Ejg is locally finite. Clearly the idempotents of a tree of Brandt
semigroups form a locally finite tree. Finally, each ideal extension of a grounp
G is a retract ideal extension. It remains to prove that f, f = f for all x ¢ X**
where f denotes the retraction. This is clear for idempotents since G has only
one idempotent. Let (i,7) € K, X K and (J, 1)f, = (jo, ig);let (i.j)f = x and
(- f.S =y Then (. 1.0 )) = (. ) LG ). = (o 19)g- jo) = (jo. jo) =
=UPL Now e GRS = 10006 D) £ = (8= 1. T
Gf=x=3"=[0-DLf)7 = G. 07V = @ )LS

Remark. As it can be seen in [3], the semigroups characterized by corollary
2 are exactly the completely semisimple inverse semigroups whose congruence
lattice has the properiv P. For the Boolean case, this was cbtained by
ZE1ITOMIRSKIY [16].

For the case (v) of theorem 4 we now study some special congruences
of €(S). For the less complicated cases (i) — (iv) the analogous results can
be obtained immediately.

Using the results of [3] and [4], each congruence p on S can be identified
with a triple (04, 0g. 0.4) € C(X) X C(G) x C(A4) given by:

zoxpexoxf,; and yoyfy ; for all x € I7. ¥ €rI;

xps ¥y e (x.e)0 (\ e} for some e E,

ao b= (1, a Ya) o(1,67Yb) for all f€E,
where the pairs mean elements of I’*in its representation asasubdirect prod-
uct of G and 4.

It is easy to see that the trace class of some congruence o is given by
00 = {{0y, & 0,4): £€C(G)}. Any two trace classes are i:omorphic lattices.
In particular. [0, o] = {(0, §, w): &€ C(G)} and [e, pu] = {(=. e C(G)}.

Now we study semilattice congruences: it is clear that QG = © and
0, = o for any semilattice congruence p. Thus the lattice of all qemilattice
congruences |1, »] is isomorphic to an interval of C(X). In [1] it is shown
that C(X) = P(X*) for any locally finite tree X. From this we can obtain
that [1. ] is isomorphic to the power set lattice of some subset of X.

Lemma 8. Let 5 be the least semilattice congruence on S. If I > 1
for o € X* then x nxf,.

Proof. By [14], I1i, = j*, the congruence generated by Green’s
relation ;’ Let x 5= y € IF then x 7 y. Since I, is congruence free there exist
u, v € I* such that uxv € I and uyv € I} for some § <7z, or conversely. By
lemma 2 we obtain that x 7 «f, for all x ¢ I*.

Corollary 3. Let o > j; if |[5| >1 for all « > 6 > f then x 7 xf,;
for all x ¢ I,
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Notation. X*+ = {« € X*: [IF| =1}
Theorem 5. S/naox X+% U {u} and [, o] == P(X*7).
Proof. For x € X we define

z if IF =1
a4+ =3 pfifa=oag>oa>...>a,=p I;]l=1and I} >1fori<n
pif 1150 > 1forall g < o

Then g4+ = 2+ and a > g = a4+ > f-+. For x € I, y € I3 define
voyveat =5+
We prove that p= 7. Since ¥ oaf, .. = (af, .. ) if a == p or x 0 2f, 0
(zf. ). p is a semilattice congruence and hence 1 < 0.
el @ g =00
Tet xpy. le. a>ay>...>ar.f>F ... >+ and x+ = f-+,

I3 >1 for all o€ (x+,a] U(x+,p] and [IZ /=1 or x4+ = y. Since
v v for all u.v €I, by corollary 3 we obtain that x naf, .. 13f.. 15,
thus x5 y.

Now we show that the mapping F: x5 — a-~ for x € I7 is an (order)
isomorphism between S/nand X+* U {u}. Clearly, F is surjective. If (x7) F =

=(yn)F, ie. 24+ = p-+ where x € I}, y € I then x oy and thus xn = y7.
Let xnp >y then yu= (xy)n. f+ = 6(x, ¥)+ << d(x.v) <« and thus
f-+ <az+. Conversely, let (vig)F =oa4 >4+ = (ypF. Let wuel].,

v € I} : I ; is closed under multiplication, thus uv = (uf,. ;. )v € I5,.

So we get (xn)(yn) = (un)(vn) = [(uf.. p.)v]n = vy = yn thus vy > ya.
Sjn ez X*+ U {u} implies that [1, o] a< C(S/n) == C(X++ U {u}). In [1]
it is proved that C(X) =< P(X*) for locally finite trees X, so we obtain that
[7. ] = P(X77).

Using the triple representation of a congruence g on S, we get

Corollary 4. A congruence p on S is a semilattice congruence if and
only if

(1) og=o
(i) oy =
(i) « px x+ forall & € X*.

Remark. If X is a locally finite tree without a least element it may
happen that x- is not defined for some . In this case we define 2+ to be
o+ := p § X. then the theorem can be proved in the same way as above.
If X has no least element p but -~ is defined for all  then we can use the

same proof as above which shows that in this case S/naz X*% and again
[7, @] & P(X* 7)., Theorem 5 is a special case of the following fact: let S =
=(X; I.f.;) be a treeof O-simple semigroups and X+% = {ax € X*: I} is

closed under multiplication} then S/ =< X+ + (U {¢}) and [1, o] == P(X*¥)

Now we want to study idempotent pure congruences.
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Lemma 9. Let o be an idempotent pure congruence on S then p; = .
If T, the kernel of S is not E-unitary then p, = &.

Proof. Let I’ be given in its representation as a subdirect product
of a group and an antigroup. Let x pg v, i.e. (x,¢) o (v, e) for some e € E .
Then (1,e) o (vx~1 e), i.e. x = y since p is idempotent pure.

Since A is congruence free, g, = ¢ or 0, = w. If o, = o then (x, a)
o(y. b)ye=x o5y and a p, b x = y. In this case oI’ is the least group con-
gruence on I. Since ¢ is idempotent pure this implies that I¥ is E-unitary.

Proposition 3. A congruence p on S is idempotent pure if and only if
(i) og=¢
(i) o, = & if I% is not E-unitary
(i) if « oy p then f,.; and f;.; map non idempotent elements onto non
idempotent elements.

Proof. Let g be idempotent pure and suppose that « oy § and xf, ;€ E
for some x § E. z oy f implies that «x p af, ,; which is a contradiction.

Conversely, suppose that (i) — (iii) hold. ¢ is idempotent pure on I
since p|IF = & or p|I = ¢'I but in the latter case I7 must be E-unitary.
Suppose that xpe for x¢I% xdE, ec ENIJ Then xoyup oy ff and
%f, .z 0 €f; .- By condition (iii) xf, .; is not idempotent, so we may assume

X351

£

« = f3. Since o[l is idempotent pure, & > 1. x == e and the congruence free-
ness of I, by lemma 2 imply that z g zf, for all z¢ I*. Then « o, " where
« > o’ and by condition (iii) f, maps non idempotents onto non idempotents.
Now we apply the same procedure to xf, o ef, and we repeat this argument
for o > oy, %y > otg, . . . until o, = z--. (For the case (iv) where «-- mayhe
is not defined, we repeat this procedure until xf, , = ef,..) Then « gy o+
and xf, ., = ef, ., €E or ¢ = pand«f,, oef, . The first case is a contra-
diction to the assumption on the mappings f,. the second to the assumption

that o/l is idempotent pure.

The lattice {ox: o is idempotent pure} = [e, 7] is an interval of the
lattice C(X) =2 P(X*) and thus is isomorphic to some power set lattice:
[e, ] a2 P({&: £ <1y, &is an atom in C(X)}).

The atoms in C(X) are given by the relations
{(et; "), (2", )} U &g where o > «” so we have obtained the following theorem
Notation. X+ = {a € X*: xf, ¢ E if x{ E}
Remark. For o € X** a necessary and sufficient condition in order that
o € XT is that f, is injective.
Theorem 6. The lattice of all idempotent pure congruences is Boolean.
In particular,

P(X*)xC, if the kernel of S is no group and E-unitary

[e, == P(X™) otherwise
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Remark. Immediately from the triple representation (py, pg, 04) it can
seen that each complement of a semilattice congruence is idempotent

pure but the converse does not hold, even if C(S) is Boolean.
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