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i1.hstract 

A constHlctioll of inyerse semi groups whose idempotents form a (locally finite) tree 
and whose congruence lattices have the property P is giyen where P stands for one of the fol­
lowing properties of lattices: (dually) sectionally complemented, relatively complemented, 
modular and complemented, Boolean, respectively. These semigroups arc completely character­
ized up to: congruence-free inyerse semigroups (,dthout zero), simple groups and locally finite 
trees. Furthermore, special sublattices of the congruence lattice easily can be studied: any 
two trace classes ure isomorphic, und the lattices of all semilattice congruences and idempotent 
pure congruences. respectively are Boolean. 

1. Introduction 

The prohlem of characterizing the semigroups 'with Boolean congruence 
lattices has been solved for several classes of semigroups. HA)-IILTON [9] and 
A UINGER [1] studied the question for semilattices. HA}HLTON and ]\,I ORDAHL [10] 
considered commutative semigroups, FOUNTAIN and LOCKLEY [6], [7] solved 
thc pro hIe m for CLIFFORD semigroups and idempntent semigroups, in [1], 
AnNGER generalized their results to completely regular semigroups. Finally, 
ZHITOl\lIRSKIY [16] studied the question for invcrse semigroups. 

In [3], AnNGER proved that in general the pro hIe m can be treated in a 
similar way for the following lattice p;:operties: sectionally complemented, 
relatively complemented, complemented and modular, Boolean, respectively 
and it can he shown that the same is true for the property dually sectionally 
complemented. From now on let P stand for any of these five properties. In 
[4] ArINGER studied inverse semigroups whose congruence lattices have one 
of these properties P. In this paper, we use the results of [3] and [4] to give a 
description of inverse semigroups whose idempotents form a (loeally finite) 
tree and whose lattice of congrul'nces has the property P. 

In chapter t .. wo we collect some results about semigroups S "whose con­
gruence lattice C( S) is sectionally complemented, relatively complemented, 
modular and complemented, Boolean, respectively, and extend thesc results to 
the case when C(S) is dually sectionally complemcnted. 

1* 
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In chapter three, we use the results of chapter 2 and a further result 
about inverse semigroups to give a construction of all inverse semigroups 
whose idempotents E form a tree and whose congruence lattices have the 
property P (Theorem 4). In this way these semigroups are completely charac­
terized up to congruence free inverse semigroups ("\vithout zero), simple groups 
and locally finite trees. Furthermore, for the case when E forms a locally finite 

tree, a simplified version of the theorem can be given. Using this characteriza­
tion, special congTuences on such semigroups easily can be studied: it is shown 
that each trace class is isomorphic to the lattice of normal subgroups of the 
maximal group homomorphic image of S. Furthermore, the lattices of all 
semilattice congruences and idempotent pUTe congruences, respectively, aTe 
shown to be isomorphic to some power set lattices. We also obtain that for 
inverse semigJ"Oups whose idempotents form a tree the following properties 
of the congruence lattice aTe equivalent: (dually) section ally complemented, 
relatively complemented, modular and complemented, respectively. Only the 
maximal group homomorphic image is responsible for the possible difference 
to the Boolean case. 

2. Preliminaries 

We first collect some definitions and results which we need for our in­
vestigations. 

Throughout the paper, the congruence lattice of some semigroup S 
is denoted by (C(S), V, n). c = cs is the identical relation on S, 0) = (J)s is 
the universal relation on S. 

Definition. (i) Let X be an ordered set, x, y E X. Then x covers y or y is 

covered by x, to be denoted by x >- y, if Y < x and y < z x implies that 
z = x. 

(ii) A. scmilattice is a (locally finite) tree if each interval [x, y] = 

= {z E X: x < z ~ y} is a (finite) chain. 
(in) For any semigroup S let S* = S if S has no zero and S* = S/{O} 

if 0 is the zero of S. 
Construction. Let X be a locally finite tree. To each (X E X associate a 

O-simple semigroup I,,-(I,,- {O}) satisfying Ix nIp = 0 if (X {3. For each 
(X E X* let (x' denote the unique element of X that is covered by (x. For each 
(X E X* let f,,-: r: -+ I;, be a partial homomorphism. Let fx,,,-: = idlI; and 

f"p: = f,/" ... f"-n if (X = (Xl >- ... >- (Xn >- /3. Suppose that for any a E I;\ 
b E I~" there exists y < (Xl3 such that the product (aL,,,)(bffl) is defined in 
I;'. Let b(a, b) be the greatest element of X satifying thi8 condition. Let 
S = U (1;: (X E X) and define a multiplication on S hy 

ab: = (af"o(a,b») (bJ;J,Ma,b) for a E I;,b E I~'. 

Then S is a semigroup. Furthermore, for a E I;, I~' = la and SI; ;;;,;; x. 
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Definition. A semigroup so constructed is a tree of O-simple semigroups 
IJ.' to be denoted by S = (X; I~,f~,,'J) If each I~ is congruence free (with 
zero) and not the null-semigroup of order two, then S is a tree of congruence 
free semigrollps, if all I~ are Brandt semigroups, then S is a tree of Brandt 
semigroups. 

Similar constructions appear in [2], [3], [11] and [13]. If X has a least 
element .u then by the conditions of the construction, I: is closed under 
multiplication and thus I; is a simple semigroup. 

The construction seems to be quite "artificial" but it naturally appears 
in the investigations of semigroups with complemented congruence lattices 
as the following theorem proves: 

Theorem 1. ([2]) A globally idempotent semigroup S has a comple­
mented congruence lattice if and only if 

(i) S = (X; I,,f~,ll) a tree of O-simple semigroups 
(ii) sg, the maximal simple homomorphic image of S has a complemented 

congruence lat.tice 

(ill) if xCy and x ~ y then xf~ ,~ Yf~ (x, y E I;) 
(iv) for x E I!, y E I~' there exists y E X such that xf~'1 C yf/l,;' . 

Here ~ and C denote the following congruences: 

x~Y ~ xf~", = YiB,"! for some y (x E I;, yE It), 

xCy ~ J(uxv) = J(uyv) for all u, v E S. 

Some further results: 

Lemma 1. ([8]) A O-simple semigroup S is congruence free if and only 
if for x y there exist It, v E S such that uxv = 0 and uyv ,/ 0, or conversely. 

Lemma 2. ([2]) Let S = (X; I~,f~,lJ) andex;>f}::2:y 6. If x Q Y for some 
x E I:, yE It for some e E C(S) then Z Q zfp,"! for all z E Ip. 

Definition. A lattice L with a least element 8 is sectionally complemented 
if each interval [8, ~] in L is a complemented lattice. A lattice L with a greatest 
element w is dually sectionally complemented if each interval [~, w] in L is a 
complemented lattice. A lattice L is relatively complemented if each interval 
[~,i7] in L is a complemented lattice. It is well-known that Boolean => modular 
and complemented => relatively complemented => (dually) section ally com­
plemented => complemented. 

Lemma 3. ([3]) Let S = (X; I~, f~,'J) be a tree of O-simple semigroups. 
If C(S) is sectionally complemented then I~ is congruence free for all ex;EX*. 

Definition. Let X he a locally finite tree with a least element fL. If ex; >- fL 

then ex; is an atom. Furthermore, let X**: = X/{p, atoms} if p is the least 
element of X and X** = X otherwise. 



6 K. AUISGER 

Lemma 4. Let S = (X; I~,i~'13) be a tree of O-simple semigroups. If 
C(5) is dually sectionally complemented then I~ is congruence free for all 

7. E X*. 
Proof. Let IX E X* and I = U(I~': ?' < x) then I is not empty and hence 

an ideal in S. SII is a tree of O-simple semigroups with tree Y = X/{y E X: 
y < x}. Since xf~ E I for all x E I: we have that f,/ I is a constant mapping 
where f~1 I is the partial homomorphism on I~' in the representation of SI I 
as a tree of O-simple semigroups. By hypothesis, c(SII) is complemented 
and so by theorem 1. (iii) no two elements of I; can he ;-equivalent in S/I, 
i.e. for any x, yE I: there exist u. v E SII such that J(uxv) c-::' J(uyv). Since 
x is an atom in Y, J u, J v J x = r; and so we may assume that u, v El:, 
otherwise we replace them by nfJ,~ and vfp.~, respectively. Again, since x is 
an atom in Y, J(uxv) . / J(nyv) is only possihle if J(IlXV) J(x) = r; U 1 
and J(uyv) ;; I, or conversely which hy lemma 1 impli{cs that I~ is congruence 
free. 

Lemm.a 5. ([3]) Let S = (X; I~,f~,fl) be a tree of congruence free 
semigroups I~ such that X has no least element. If C(S) is complemented then 
for x E I'!, y' E I~ there exists ,! E X such that xJ-'; ••• = yi"o .• , i.e. ; = w. 

.... I -,r ...-'"J{J ji 

Lemma 6. Let S = (X; I~,i~.B) be a tree of O-simple semigroups where 
X has a least element ,11. If C( S) ha~ the property P then C( I~') has the prop­
erty P. 

Proof. For P = dually sectionally complemented, this is an immediate 

consequence of I: .COL SI;. The other cases are proved in [3]. 
Now we are able to give a new formulation of theorem 8 in [3]: 

Theorem 2. ([3]) The congruence lattice of a globally idempotent semi­
group S has the property P if and only if S is one of the following: 

(i) S is simple and C(S) has the property P 
(ii) S = (X; I~,fx,a) a tree of congruence free semigroups such that for all 

x E I;, y E I~' there exists y E X satisfving xix" = ,Jp .,' 
(ill) S is a retract ideal extension of a semigroup (i) by' a ~emigroup (ii) with 

zero such that the retract homomorphism f is compatihle 'with the partial 
homomorphisms f~, i.e. Ixf = f for all x E X* *. 
In this case C(S) = C(X) X C(I) where r is the kernel of S. 
Condition (iii) says that S is a tree of O-simple semigroups la. such that 

X has a least element ,u, I", is congruence free for x . ' ,u, and C(I!;) has the 
property P. 

3. Inverse semigroups 

For inverse semigroups we use the notation of [14]. For any inverse 
semigroup S, E = Es denotes the semilattice of idempotents of S. For any 
congruence Q on S, the kernel of (! is defined hy ker Q = {a E S: a Q e for some 
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e E E} and the trace of Q is tr Q QiE. Each congruence is uniquely determined 
by its kernel and trace. The relation Q e ~ <=> tr Q = tr ~ is a lattice congruence 
on C(S), the congruence classes Qe are the trace classes. Some special congru­
ences are the following: 

a ab<=> ae = be for some e E E, 

is the least group congruence on S. Furthermore, 

a p b =- a-lea = b- 1eb for all e E E 

is the greatest idempotent separating congruence on S. An inverse semigroup 
is an antigrollp (fundamental im-erse semigroup) if .u = E, i.e. the identity 
relation is the only idempotent separating congruence. A congruence Q is 
idempotent pure if ker Q E; the greatest idempotent pure congruence on S 
is denoted by T. Furthermore, Q is a semilattice congruence if SI Q is a semi­
lattice, i.e. if ker Q = S. The least semilattice congruence on S is denoted by 
i7. For an arbitrary suhset K c;: S, Kw {a E S: a > b for some b E K} where 
the order relation on S is defined by ab<=> a = be for some e E E. 

In [4] the following theorem is proved: 
Tneorem 3. ([4]) Let S be an inverse semigroup. Then qS) has the prop­
erty P if and only if 

(i) S is isomorphic to a sub direct product of a group G and an antigroup A, 
(ii) qG) and qA) both have the property P 

(iii) for any (x, e), (x, f) E S (where e,f E EA' X 1) there exist (y l' a1), ••• , 

Cyn, an) E S, g E EA such that 

e = a11fa 1a-;lf ... a-;;lfang. 

Furthermore, in this case qS) r-J qG) X qA). 
Now we use theorems 2 and 3 to construct the inverse semigroups S 

where Es is a tree and qS) has the property P. 
We first treat the case (ii) of theorem 2. Let S = (X; 1,,-, f,,-,p) be a tree 

of congruence free inverse semigroups such that Es forms a tree. Then Eli 
is a tree and by [14], IV. 3. 11, EJ)sO-disjunctive which by [14], IV. 3. 13, 
is equivalent to: for idempotents e < f there exists gEE J2f.' 0 "~ g f and 
ge = O. Since E J";. is a tree, g < e or e:::;;: g, then g >ge = 0 implies e g 
and e = e g = O. We have thus obtained that each idempotent is primitive, 
i.e. I,. is a Brandt semigroup. Since I" has no proper congruence, we obtain 
that I" '" [(,X K,. U {O} for some set K", a Brandt semigroup over the 
trivial group. Partial homomorphisms among the nonzero parts of such semi­
groups are given by the following 

Lemma 7. ([5]) Let q;: K,. -~ Kp be an arbitrary mapping. Then 
f: K,,-x K,,- -->- KfJX K p' defined by (i, j)f = (iq;, jcp) is a partial homomor-
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phism and conversely, each partial homomorphism f: I: -+ It can be so con­
structed. 
We are able to give the following 

Proposition 1. Let S = (X; I~,f~./3) be a tree of Brandt semigroups 
I~ over the trivial group. Then C(S) has the property P; in particular, C(S) 
is Boolean. 

Proof. By theorem 2, it remains to show that for x E I:, yE I;j there 

exists y E X such that xf,.,;. yf{3,)'· Since xj",7.{3 and )i{3,"{3 E I:{3' we may 
assume that oc = /3. Let (i, j), (l, k) El:. There exists y such that the product 
(i, j)f",),(k, l)f",,. is defined in I; = K,. X K,., thus j({l""y = krr9 where 
ep",y: K" Ky is the defining mapping for f",,.. By analogy, icp~,Q = lep",a for 
some 0 and thus (i,j)f~,{3 = (I, k)f",{J for I~ min (y, 0). 

We now consider the case (i) of theorem 2. By theorem 3, S is isomor­
phic to a sub direct product of a group G and an antigroup A.. If S is a group 
it is well known that necessary and sufficient in order that C(S) has the prop­
erty P is that G is a direct sum of simple groups (in which no Abelian factor 
appears twice for the Boolean case). For the case when S is an antigroup 
we show 

Proposition 2. Let S be a simple antigroup such that Es is a tree and 
C(S) is complemented. Then S is congruence free. 

Proof. Let Q E C(S), Q ~. 8 and let ; be a complement of Q. 

(i) For any e, fEE, e > f we have e QV; f. Since E is a tree there exist 

unique n E lV, eo, ... , en E E such that e = eo > ... > en = f and e = 
= e/31e10 2 ••• 0 n en = fwhere 0 i E {Q, nand 0 i ~~ 01+1' Let n(e, f): n; 
then for e > f > g nee, g) > n(e,f) + n(f, g) 1. 
(ii) Let e, fEE, e > f. Since S is simple, there exists a E S such that e = aa-1 

and a-la < f. By [14], IV.2.3, the mapping oa: g \-r a-1ga is an iso­
morphism between the principal ideals {g aa-I} and {g < a-la} of 
E. Since S is an antigroup and C(S) is complemented, by [4], Cl = (0, 

i.e. ker Cl = Em = S. So there exists h E E such that h < a. This implies 
that gcP = g for all g < h. Since eoa < f < e we have h f. Now choose 
eo, ... , en E E such that e = eo > e1 > ... > en = hand e00 1e10 2 ••• 

On en with 0 t E {Q, nand 0 i ~' 0;+1' f> eOOa01e10a0':!, '" 0 nenoa = en' 
Since eooa > e10a > ... > encl and O; " 0 i + 1 we obtain n(f, Iz) > n. 
Then n = nee, h) > nee, f) + n(f, h) - 1 > n + nee, f) - 1 which implies 
that n( e, f) = 1. Thus for arbitrary e > f either e e f or e ; f holds. Since 
e .' 8 there exist e > f with e e f. Let g, h E E, g > h. Suppose that 
g ; h. S is a simple anti group, so E is subuniform: there exists i E E 
such that i < hf. By the foregoing argument, e e i and g; i and so 
hf en; i, a contradiction. Therefore, tr; = 8 and thus Q = m which 
proves that S is congruence free. 
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An immediate consequence of this proof is. 

Corollary I. Let S be a simple antigroup such that Es is a locally 
finite tree and qS) is complemented. Then S is the trivial semigroup. 
Summarizing the results we can formulate 

Theorem 4. Let S be an inverse semigroup. Then Es forms a tree and 
qS) has the property P if and only if S is (isomorphic to) one of the following: 

(i) a congruence free scmigroup A (without zero) where EA is a tree 
(ii) a direct sum of simple groups (in "which no Ahelian factor appears t'wice 

for the Boolean case) 
(ill) a sub direct product I of a semigroup G as in (ii) and a semigroup A as in 

(i) such that for any (:c e), (x,f) E I with e,fE EA' x 1, there exist 

(Yl' all, ... , (Yn. an) El, g E EA such that 

1 and 

(iv) S = (X; I,.f,,{J)' a tree of Brandt semigroups over the trivial group 
(v) S = (X; J" fd)' a tree of O-simple semigroups where X has a least 

element p. I: ~ I is a semigroup as in (i) - (iii) and each I, is a Brandt 
semigroup over the trivial group for x " p. 

Proof. It remains to show that for the case (v), E s is a tree. Let e, f 
be uncomparahle elements of Es. We may assume that e E I: and fE I~. 
If g e then g E It for some /3 > x and gj"p = e. By the uncomparability 
of e and f, f < ef,,!,' Then gfp,!, = ef,,!, > j and thus g is no upper hound for f. 

For the case (v) where I is a semigroup as in (iii) , 

qS) r-v qX) X qI) ~ P(X*) X N(G) X Cz r-J P(X) X N(G) 

where P(Z) is the power set of Z and N(G) is the lattice of the normal sub­
groups of G and C2 = {c, (J)} the chain of two elements. For the simpler cases 
the analogous results hold (some factors may he missing). A consequence is 
that for inverse semigroups whose idempotents form a tree the properties 
(dually) sectionally complemented, relatively complemented, modular and 
complemented, respectively, are equivalent, and the difference to the Boolean 
case only depends on Sja, the maximal group homomorphic image of S. 
For semigroups whose idempotents form a locally finite tree we obtain a 
simplified version of the theorem (using corollary 1): 

Corollary 2. Let S he an inverse semigroup. Then Es forms a locally 
finite tree and qS) has the property P if and only if S is (isomorphic to) one 
of the follo-wing: 

(i) a direct sum of simple groups (in which no Abelian factor appears t"wice 
for the Boolean case) 
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(ii) a tree of Brandt semigroups over the trivial group 
(iii) an ideal extension of a semigroup (i) by a semigroup (ii) with zero. 

Proof. By Corollary 1, the cases (i) and (iii) of theorem 4 violate the 
condition that Es is locally finite. Clearly the idempotents of a tree of Brandt 
semigroups form a locally finite tree. Finally, each ideal extension of a group 
G is a retract ideal extension. It remains to prove that f~f = f for all x E X** 
where f denotes the retraction. This is clear for idempotents since G has only 

one idempotent. Let (i, j) E K~ X K, and (j, i)f~ = (jer, icp); let (i, j)f = x and 
(j, i)fJ = y. Then (j, i)f~(i,j) = (j, i)f~(i,j)f, = (jcr, ic{)(ic{,jq:) = (jrp,jcp) 

(j,j)f,. Now yx = (j,i)fJ(i,j)f= [(j,i)fJi,j)J~]f= (j,j)fJ= 1. Thus 
( ' .) r -1 [(' ·)·l'f]-l (. ')-11' f (") rf 1,11=X=Y = j,lJ~ = 1,1 J,. = L11~' 

Remark. As it ean be seen in [3]. the semigroups characterized by corollary 
2 are exactly the completely semisimple inverse semigroups whose congruence 
lattice hes the property P. For the Boolean case, this was obtained by 
ZHITOMIRSKIY [16]. 

For the case (v) of theorem 4 we now study some special congruences 
of C(S). For the less complicated cases (i) (iv) the analogous results can 
be obt ained immediately. 

C sing the results of [3] and [4], each congruence Q on S can he identified 

with a triple (Qx' QG' QA) E C(X)XC(G)x C(A) given hy: 
·x Ox p.~ <=> x ° x+;' -f' and Y 0 )tl'p _p for all x E I~'. v E r~ _ _ J :.., .... ,) ~ _ J /J, .... p ..... --' I) 

x QGY <=> (x, e) Q (y, e) for some e E EA 

a QA b <=> (1, a-lfa) Q (1, b-1fb) for all fE EA 

where the pair,; Il1pan elements of I; in its representation as a suhdirect prod­
uct of G and A. 

It is easy to see that the trace class of some congruence Q is given by 

QG = {(Qx, $, QA): ~ E C(G)}. Any two trace classes are isomorphic lattices. 
In particular, [a, (I)] {(Cl), ~,(I)): ~ E C(G)} and [I', p] = {(e. ~,c): ~ E C(G)}. 

Now we study semilattice congruences: it is clear that QG = OJ and 
QA = (!) for any semilattice congruence e. Thus the lattice of all semilattice 
congruences [lj, w] is isomorphic to an interval of C(X). In [1] it is shown 
that C(X) cY. P(X*) for any locally finite tree X. From this wc can obtain 
that [17, OJ] is isomorphic to the po,\-er set lattice of some suhset of X. 

Lemma 8. Let l) be the least semilattice congruence on S. If iI~' i > 1 

for x E X* then x 1] xf~· 

Proof. By [14], HI, 77 = ,; *, the congruence generated by Green's 
relation )'. Let x "' y E I; then x 'i) y. Since I ~ is congruence free there exist 

u,v E r; such that uxv E I~' and uyv E I,; for some f3 < x, or conversely. By 
lemma 2 we obtain that Xl) xfx for all x E I~k. 

Corollru.'y 3. Let x > ,3; if II~I > 1 for all x > 6 > f3 then x 17 xf~,r; 
for all x E I;. 
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Notation. X++ = {x E X*: II~"1 = I} 
Theorem 5. S/17 "-" X++ U {.u} and [1], w)~ P(X++). 
Proof. For x E X we define 

x if iI:1 = 1 

11 

x+ . -! . - f3 if x = Xo >- Xl>-'" >- xn = /3, iIt]! = 1 and \I~'i! > 1 for 1: < n 
,u if :Iti /'1 for all /3 < x. 

Then x+ = x+ and x > f3 =- x+ > f3+. For x El;, J E It define 

We prove that Ql). Since x Q xf,",~+ = (xj~,,,+)2 if x+ " ,u or x Q xf",!,{} 
(:xia,/j2, Q is a semilattice congruence and hence 1] Q. 

Let x Q J, i.e. x>- 0: 1 >- ... >- x+, f3 >- f3I ... >- f3+ and x+ = f3+, 
1nl> 1 for all bE (x+, x] U (x+, f3] and /1;+1 = 1 or x+ = fl. Since 
U17 D for all 1I, v E r::, by cOl"ollary 3 we obtain that x 1] xf(1.,,"+ 1] yf{3,,"+ 1] J, 
thus XI] J. 

Now we show that the mapping F: xr)~,.. x+ for x E I: is an (order) 
isomorphism between Si)) and X+ + U {p}. Clearly, F is surjective. If (:XI])F = 

=(Y1])F, i.e. x+ f3+ where x E I~', yE It then x Q J and thus X1] = Jl). 
Let Xl) > )'1); then J)) = (xY)I], f3+ = b(x, Y)+ b(x. y) < x and thus 
f3 + <x+. Conversely, let (x1])F = x+ > fJ + = (Yl)F. Let II E I;+, 
v E It+; I~'+; is closed under multiplication, thus uv = (uf,,+,p.:,.)v E IJ+. 

SO we get (XI])(Yl) = (U1])(V1) = [(uj,,+,p-,-)v]17 = DJ) = J1] thus X1] yl). 

Sj17 ,"J X++ U Cu} implies that [J),w] "-"C(S/l) r-JC(}(++ U {,Ll}). In [1] 
it is proved that C(X) r-J P(X*) for locally finite trees X, so we obtain that 
[r7' w] = P(X+ +). 

Using the triple representation of a congruence Q on S, we get 
Corollary 4. A congruence If on S is a semilattice congruence if and 

only if 

(i) QG = w 

(ii) [lA = w 

(iii) x Qx x+ for all x E X*. 
Remark. If X is a locally finite tree without a least element it may 

happen that x+ is not defined for some x. In this case we define x+ to be 
x+: ,LL ~ X, then the theorem can be proved in the same way as above. 
If X has no least element (l hut x+ is defined for all x then we can use the 
same proof as above which shows that in this case S/J) r-J X+ + and again 
[1], w] r-v P( X + +). Theorem 5 is a special case of the following fact: let S = 

=(X; I,,j,,,{J be a tree ofO-simple semigroups and X++ = {x E X*: I~ is 
closed under multiplication} then S/17 """ X++ (U {fL}) and [17, w] r-J P(X++) 
Now we want to study idempotent pure congruences. 
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Lemma 9. Let Q he an idempotent pure congruence on S then QG = C. 

If 1';, the kernel of S is not E-unitary then QA = c. 
Proof. Let I; be given in its representation as a sub direct product 

of a group and an antigroup. Let x QG y, i.e. (x, e) Q (y, e) for some e E EA' 
Then (1, e) Q (yx- l , e), i.e. x = y since Q is idempotent pure. 

Since A is congruence free, QA c or QA = W. If QA = w then (x, a) 
Q(Y, b)-<=>x QG Y and a QA b -<=> x y. In this case Q[I; is the least group con­
gruence on I;;. Since Q is idempotent pure this implies that 1'; is E-unitary. 

Proposition 3. A congrut>nce Q on S is idempotent pure if and only if 
(1') QG = C 

(ii) QA = C if 1';: is not E-unitary 

(iii) if cc Qx {J then f~"i; and ffJ,'fJ map non idempotent elements onto non 
idempotent elements. 

Proof. Let Q be idcmpotent pure and suppose that cc Qx /J and xf",fJ E E 
for some x ~ E. cc Qx {J implies that x Q xf~"p 'which is a contradiction. 

Conversely, suppose that (i) - (iii) hold. Q is idempotent pure on I;;' 
since QII; = c or Q11; = u:1'; but in the latter case I~ must be E-unitary. 
Suppose that x Q e for x E 1':, x ~ E, e E E n 1;'. Then cc Qx cc{J Qx {J and 

xj",fJ Q efp"fJ' By condition (iii) xf""o is not idem potent, so 'we may assume 
cc = {J. Since QI1~~ is idempotent pure, cc > p. x .' e and the congruence free­
ness of I, by lemma 2 imply that Z Q 4, for all z E 1';. Then cc Qx cc' where 
IX >- cc' and by condition (iii) f, maps non idempotents onto non idempotents. 
NO"l we apply the same procedure to xf, Q ef, and we repeat this argument 

for cc >- CCl' 1X1 >- 1X2' ... until IXn = IX+. (For the case (iv) where cc+ maybe 
is not defined, wc repeat this procedure until Xf"y = ef~" .. ) Then cc ex IX+ 

and xf",+ = ef",+ E E or IX+ = P and Xf,,!, Q ef~,!l' The first case is a contra­
diction to the assumption on the mappings f" the second to the assumption 
that QIl is idempotent pure. 

The lattice {Qx: Q is idempotent pure} = rc, TX] is an interval of the 
lattice C(X) ""-' P(X*) and thus is isomorphic to some power set lattice: 

[.0, TX] ""-' peg: ~ T X ' ~ is an atom in C(X)}). 
The atoms in C(X) are given by the relations 
{(IX, IX'), (x', IX)} U cs where x >- cc' so we have obtained the follo,.,ing theorem 

Notation. X+ = {x E X*: xf~ ~ E if x ~ E} 
Remark. For x E X** a necessary and sufficient condition in order that 

IX E X+ is that f, is injective. 

Theorem 6. The lattice of all idempotent pure congruences is Boolean. 
In particular, 

[ {P(X+) X Co if the kernel of S is no group and E-unitary 
c, T] Co,< P(X+) otherwise 
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Remark. Immediately from the triple representation (ex, eG' eA) it can 
be seen that each complement of a semilattice congruence is idempotent 
pure but the converse does not hold, even if C( S) is Boolean. 
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