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Let A = (A, X, Y, a, I.) he a lVhaly-alltomaton, with state set A, input 
set X, output set Y, transition funetion b: A X X - A and output function 
I,: A X X -r Y. In this paper 'we assume that the output function I. is sur

jective. The Mealy-automaton A is finite, if the sets A, X and Y are finite. 
For a non-empty set Z, Z* and Z+ denote the free monoiel and the free 

semigroup over Z, respeetively, that is, Z-'- = Z* {e} where e is the empty 
word of Z*. 

We extend the functions a and I. in form a: A A X* - A * and J.: A X 

X X~' -r y* as follows: 

a(a, e) a, 6(a, px) = a(a, p)b(ap, x), 

I.(a, e) = e, i.(a, px) = ;.(a, p)?(ap, x), 

where Cl EA, p E)(+ and x EX. furthermore ap denotes the last letter of 

b(a, p). 
The automaton 'without outputs ApT = (A, X, a) is called the projection 

of A. 
The Mealy-automaton A = (A, X, Y, b, }.) is said to be cyclic, if the 

projection ApT of A is cyclic with a generating element ao, that is, for every 
a E A there exists p E X* such that aop = a. A is calleel strongly connected, 
if every state a E A is a generating element of ApT' 

If r E Y+ then r denotes the last letter of r. 
The Mealy-automaton A = (A, X, Y, b, I.) is said to be output-cyclic, if 

there exists (10 E A such that 

Vy E Y, 3p E X+: y = }.(ao'p)· 

ao is called an output-generating element of A. A is called output-strongly con
nected, if for every elements a E A and y E Y there exists p E X+ such that 

'------' 
y = I.(a,p). The Mealy-automaton A' = (A" X, Y, b" ;.') is called an A-sub-

automaton of A = (A, X, Y, a, I.), if A' ~ A and a' = alA" I.' = I.IA' are the 
restriction of 0, I. to A' X X. A' is called output-full if ;: is surjective. 
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Let A = (A, X, Y, 0, I.) and A' = (A" X" Y" 0" J.') be arbitrary Mealy
automata. Then we say that the system (ex;, (3, y) consisting of the mappings 
ex;: A -+ A" (3: X -+ X' and y: Y -+ Y' is a homomorphism of A into A' if for 

arbitrary a E A and x EX: 

ex;(o(a, x») = o'(ex;(a), (3(x») 
and 

y(J.(a, x») = J.'(ex;(a), ll(x») 

hold. If !x, (3 and y are onto mappings then A' is called a homomorphic image 
of A. If !x, (3 and y are one-to-one mappings the system (ex;, (3, y) is called an 
isomorphism, and the automata A and A' are said to be isomorphic. If (3 and 
y are identical mappings on the sets X and Y, respectively, then the homo
morphisms (isomorphisms) of such type are called A-homomorphisms (A-iso
morphisms). 
Theorem 1. A M~ealy-automaton A is output-cyclic if and only if A has an output
full cyclic A-subautomaton. 

Proof. Let the Mealy-automaton A = (A, X, Y, 0, J.) be output-cyclic. 
Let ao be an output-generating element of A. Furthermore, let Ao = 

= {aop/p E X*}. If yE Y then there are p E X* and x E X such that 

y = }.(ao' px) = J.(aop, x). 

This means that Ao = (Ao' X, Y, Cl o' J. o) is an output-full cyclic A-subauto
maton of A, where Cl o = ClIA., and J.o = J.IA

o
' Conversely, let the Mealy-autom. 

aton A' = (A', X, Y, Cl" I,') be an output-full cyclic A-subautomaton of A. 
If ao is a generating element of A" then for every a E A' there is p E X* such 
that a = aop. If yE Y then there are a E A', x E X such that y = J,(a, x). Thus 

y = I,(a, x) = }.(aop, x) = ?(ao,px). 

This means that a o is an output-generating element of A. 
Corollary 1. Every cyclic IVIealy-automaton is output-cyclic. 

A Mealy-automaton A = (A, X, Y, Cl, J,) is covered by the Mealy-autom

ata Ai = (Ai' X, Y, ai' ).i)(i E I) if A = U Ai' O:Ai = Di and I,IA; = J· i· 
iEf 

Corollary 2. A lVIealy-automaton A is output-strongly connected if and only if 
it is covered by its certain output-full cyclic A-subautomata. 
Corollary 3. Every strongly connected M~ealy-alltomaton is output-strongly con
nected. 

We note that a homomorphic image of an output-cyclic (output-strongly 
connected) Mealy-automaton is output-cyclic (output-strongly connected), too. 

The equivalence relation T on the state set A of the IVlealy-automaton 
A (A, X, Y, Cl, ;,) is called a congruence on A, if for every p E X+: 

---.I '--' 

(a, b) ET = [Cap, bp) ET and ;,(a, p) = ;,(b, p)] (a, b EA). 
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We define the following relation a on A: 

-------.J '-----' 

(a, b) Ea<=> [Vp E X+: I,(a,p) = I,(b,p)]. 

It is evident that a is a congruence on A and if T is a congrueuce on A, then 

T < a. 

The Mealy-automaton A is called simple, if 

[vp E X+: I_(a,p) = I_(b,p)] == a = b, 

that is, a is the equality relation on A. With other ''lords, every A-homo
morphisms of A are A-isomorphism of A. 

A is called state-independent, if for every p, q E X + and b EA: 

bp = bq :=} [Va EA: ap = aq]. 

Similarly, A is output-independent if for every p, q E X+ and b EA: 

'---' '-------' 
I_(b, p) = I_(b, q) = [va EA: I_(a, p) = J.(a, q)]. 

Theorem 2. If the simple lV[ealy-automaton is output-independent, then it is 
state-independent. 

Proof. Let ap = aq(a EA; p, q E X+). Then for every rE X+: 

'""-----' '-' ~ 
I,(a,pr) = I,(ap, r) = I,(aq,r) = I,(a,qr). 

But A is output-independent, thus for every b EA: 

_, __ I '-' '-' 

I_(bp, r) = I_(b, pr) = I.(b, qr) = ?(bq, r). 

Since A is simple, therefore bp = bq. 
In the following example it is shown that the converse of Theorem 2 

does not hold. 
Example 1. We define the state-independent simple Mealy-automaton 

A = (A, X, Y, 0, 1_) sueh that 

0(1, Xl) = 6(1, x z) = 2, 6(2, Xl) = 6(2, x z) = 1, 

1_(1, Xl) = ;_(1, x 2) = )'1' 1_(2, Xl) = Yl, ;_(2, x 2) = )'2' 

A is not output-independent. 
Let !h,a be a right congruenee on X+ defined by 

vp, q E X+: rep, q) E QA,a <=> ap = aq] 

2 
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for every a E A. The Afyhill-Nerode congruence eA of Apr is defined by eA = 

= n eA,a' 
a E A. 

Let QA,a be an equivalence on X+ defined by 

~ '------' '-----' 

'lP, q E X+: [(p, q) E eA,a <:;. A(a, p) = ;.(a, q)] 

for every a EA. The left congruence eA on X + is defined by eA = n eA,a' 
aEA. 

The Peak-congruence e: ... of A is defined by e~ = eA n eA' The factor semi
group S(A) = X + I e: ... is called the characteristic semigrolLp of the l\;fealy-autom
aton A. 
Theorem 3. The characteristic semigrollp of a simple output-independent lVlealy
automaton is left cancellative. 

Proof. Indeed, for all p, q, r E x+ ·we get that 

(rp, rq) E e~ <:;. [(rp, rq) E eA aud (rp, rq) E eA] <:;. 'la EA: 

'-----J '------' 

[arp arq and ;.(a,rp) = ),(a,rq)]. 

Thus 

~ ~ '---' ~ 

Va EA: ).(ar,p) = ).(a, rp) = ).(a, rq) = ),(ar, q). 

But A is output-independent, therefore 

----.J L....-.....J 

Vb E A: ),(b,p) = I,(b, q). 

By Theorem 2, A is state-independent, thus 

['la E A: arp = arq] = [Vb E A: bp = bq]. 

This means that (p, q) E e: .... 
In Example 2 it is shown that the conver:::e of Theorem 3 does not hold. 
Example 2. Let 

A = {l, 2, 3}, X = {x}, Y = {Yl'Y2}' 

0(1, x) = 2, 0(2, x) = 3, 0(3, x) = 1, 

}.(l, x) = ).(2, x) = Yl' ),(3, x) = Y2' 

The Mealy-automaton A = (A, X, Y, 0, }.) is simple, but it is not output
independent. Let T be an equivalence on X*. Then T[p] denotes the T-class 
containing p E X*. We get that 

~ ~ ~ 

eA[x] = eA[X], QA[x2] = eA[x2], eA[X3 ] = e . ...[e] {e}. 
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Thus (lA = 'lA, This means that S(A) is left cancellative. 
Let A = (A, X, Y, 0, I,) be a Mealy-automaton. G(C A) is an output

generating system of A, if 
"------' 

Y = {A( a, p) I a E G, p E X + }. 

A is called characteristically output-free, if there exists an output-generating 
system G of A such that 

~ '---' 

;,(a, p) = ;,(b, q) = [a = band (p, q) E eA] 

(a, bE G,p, q E X+). In this case, G is called a characteristically output-free 
system. 

Example 3. Let 

A = {a o' aI' az}, X = {Xl' x z}, Y = {YI' yz}, 

o(ao' Xi) = ai' o(al' Xi) = az, o(az' xJ = aI' 

).( ao' Xi) = Y l' ).( aI' xJ 

Since ;.( ao' Xl) = ;,( ao' Xz) = Y 1 and 

;.(az, xJ = Yz (i = 1,2). 

'---
VP E X+ - X: }.(ao'p) = Yz' 

therefore A = (A, X, Y, 0, I,) is a characteristically output-free cyclic Mealy
automaton. 

We denote the cardinality of a set B by I B /. 
Theorem 4. Every characteristically output-free system G of a .Mealy-automaton 
A = (A, X, Y, 0, ?) is minimal among the output-generating systems of A in the 
usual sense. Furthermore, if A is finite, then 

IY' 
I
GI __ 1 _ 1_. 

I-IX+/- I' eA, 
(1) 

Proof. Let G be a characteristically output-free system of A. Assume 
that there is an output-generating system G' of A such that G' c G. If a E 
E G - G' then for every p E X+ there are ao E G' and q E X+ such that 

1...----1 ~ 

;.(a,p) = ),(ao' q). 

But G is a characteristically output-free system, thus a = a o' It is impossible. 
This means that G is a minim~ output-generating system of A. 

The mapping cp: GXX+/eA -~ Y such that 

'--
cp(a, QA[P]) = ),(a,p) (a E G, pE X+) 

is a one-to-one mapping of G X X + / eA onto Y. Therefore, if A is finite, then 
(1) is true. 

2* 
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The Mealy-automaton A = (A, X Y, 0, I,) is the direct sum of the Mealy

automata Ai = (Ai' X, Y i, ai' },J(i E I) if A = U Ai' Y = U Y i, olAi = 0i 
iE! iEI 

and }-IAI = Ai' Furthermore, for every i ~/ j(E I)Ai n Aj = 1> and Y i n Y j = 

= 1>. 
Theorem 5. The simple Nlealy-automaton A = (A, X, Y, (:;, }.) is characteris
tically output-free if and only if there is an A-subautomaton of A such that it is 
a direct sum of isomorphic characteristically output-free cyclic IVlealy-automata. 

Proof. Let the simple Mealy-automaton A = (A, X, Y, 0, I,) he charac
teristically output-free and let G be a characteristically output-free system of 
A. Take the sets 

Ab = {bp I p E X*} (b E B). 

Assume that 01' 02 E G and Abl nAb, 
xEX: 

1.(b 1, px) = 1.(bIP, x) 

Thus b1 = b2 • That is, Ab, = AJ; 
For every bEG, let 

~'--' 

Yb P(b, q) Iq E X+}. 

then for 

Ab = (Ab' X, Yb' Ob' I.b) is a characteristically output-free cyclic Mealy-autom
aton. It is evident that for every bl 02 E G, Y b, n Y b, = rp and Y = U Y b• 

bEG 

Let Al = U Ab' Al = (AI' X, Y 1 , 61, )-1) is an A-suhautomaton of A. 
bEG 

Let bl , b2 E G. We define the follo'wing mappings rp and 1p: 

'-------' 
1p: ).(b l , q) -~ ).(b2, q) (q E )(+). 

It is obvious that7jJ is one-to-one. If blP = bIP'(p, p' E X*), then for every 

r EX+: 
I , f !! , 

I.(b l , pr) ).(blP, r) = A(bIP', r) = ).(b l , p'r). 

Since A is characteristically output-free, thus (pr, p'r) E QA" That is, 

for every rE X+. But A is simple, thus b2P = b2P'. This means that rp is one
to-one. 
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and 

'1jJ(Ab1(bIP, x)) = '1jJ(A(bI,px))'= ;.(b2,px) , ;'b,(b2P, x) = Ab,(cP(bIP), x) 

(P E X*, x E X). This means that (cp, l, '1jJ) is an isomorphism of Ab onto Ab' 
where l is the identity mapping of X. We get that Al is the dire1ct sum df 
isomorphic characteristically output-free cyclic Mealy-automata Ab(b E G). 

Conversely, let Al be an A-subautomaton of A and let Al be a direct 
sum of isomorphic characteristically output-free cyclic Mealy-automata 
Ab.(i El). (b i is a generating element of Ab!" We note that bi is an output
generating element of Ab;' too.) Let (CPi,j' t, '1jJi,j) be isomorphic mappings of 
Ab. onto Ab.(i " j E I). Then every pE X*: , , 

C{'i,/biP) = CPi,/bJp = bjP, 

Thus CPi)bJ = bj • Let G = {bi liE I}. G is an output-generating system 
of A. Let 

'--- ~ 
).(bi,p) = ).(bj,q) (p,qEX+). 

Then bi = bj and thus i = j. Let k E I. Then 

~) = }'k(bk,p) = ),lCPi,k(bJp) = ~i,i;'i(bi';)) = 

~ ______ ~r ~~ ~ 

= '1jJi,k()·lbi, q)) = )·lCPi,k(bi), q)) = ).(bk, q). 

Thus (p, q) E eA' This means that A is characteristically output-free. 
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