ON OUTPUT BEHAVIOUR OF MEALY-AUTOMATA

I. Babcsányi

Department of Mathematics, Transport Engineering Faculty, Technical University H-1521, Budapest

Received August 11, 1988

Let $A = (A, X, Y, \delta, \lambda)$ be a *Mealy-automaton*, with state set A, input set X, output set Y, transition function $\delta: A \times X \to A$ and output function $\lambda: A \times X \to Y$. In this paper we assume that the output function λ is surjective. The Mealy-automaton A is *finite*, if the sets A, X and Y are finite.

For a non-empty set Z, Z^* and Z^+ denote the free monoid and the free semigroup over Z, respectively, that is, $Z^+ = Z^* - \{e\}$ where e is the empty word of Z^* .

We extend the functions δ and λ in form $\delta: A \times X^* \to A^*$ and $\lambda: A \times X^* \to Y^*$ as follows:

$$\delta(a, e) = a, \ \delta(a, px) = \delta(a, p)\delta(ap, x),$$
$$\lambda(a, e) = e, \ \lambda(a, px) = \lambda(a, p)\lambda(ap, x),$$

where $a \in A$, $p \in X^+$ and $x \in X$. furthermore ap denotes the last letter of $\delta(a, p)$.

The automaton without outputs $A_{pr} = (A, X, \delta)$ is called the *projection* of A.

The Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ is said to be cyclic, if the projection A_{pr} of A is cyclic with a generating element a_0 , that is, for every $a \in A$ there exists $p \in X^*$ such that $a_0p = a$. A is called *strongly connected*, if every state $a \in A$ is a generating element of A_{pr} .

If $r \in Y^+$ then \overline{r} denotes the last letter of r.

The Mealy-automaton $\mathbf{A} = (A, X, Y, \delta, \lambda)$ is said to be *output-cyclic*, if there exists $a_0 \in A$ such that

$$\forall y \in Y, \exists p \in X^+: y = \overleftarrow{\lambda(a_0, p)}.$$

 a_0 is called an output-generating element of A. A is called output-strongly connected, if for every elements $a \in A$ and $y \in Y$ there exists $p \in X^+$ such that $y = \lambda(a, p)$. The Mealy-automaton $A' = (A', X, Y, \delta', \lambda')$ is called an A-subautomaton of $A = (A, X, Y, \delta, \lambda)$, if $A' \subseteq A$ and $\delta' = \delta|_{A'}, \lambda' = \lambda|_{A'}$ are the restriction of δ, λ to $A' \times X$. A' is called output-full if λ' is surjective. Let $\mathbf{A} = (A, X, Y, \delta, \lambda)$ and $\mathbf{A}' = (A', X', Y', \delta', \lambda')$ be arbitrary Mealyautomata. Then we say that the system (α, β, γ) consisting of the mappings $\alpha: A \to A', \beta: X \to X'$ and $\gamma: Y \to Y'$ is a homomorphism of A into A' if for arbitrary $a \in A$ and $x \in X$:

and

$$\alpha(\delta(a, x)) = \delta^{*}(\alpha(a), \beta(x))$$
$$\gamma(\lambda(a, x)) = \lambda^{*}(\alpha(a), \beta(x))$$

hold. If α , β and γ are onto mappings then A' is called a homomorphic image of A. If α , β and γ are one-to-one mappings the system (α, β, γ) is called an *isomorphism*, and the automata A and A' are said to be *isomorphic*. If β and γ are identical mappings on the sets X and Y, respectively, then the homomorphisms (isomorphisms) of such type are called A-homomorphisms (A-isomorphisms).

Theorem 1. A Mealy-automaton A is output-cyclic if and only if A has an outputfull cyclic A-subautomaton.

Proof. Let the Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ be output-cyclic. Let a_0 be an output-generating element of A. Furthermore, let $A_0 = = \{a_0 p | p \in X^*\}$. If $y \in Y$ then there are $p \in X^*$ and $x \in X$ such that

$$y = \overline{\lambda(a_0, px)} = \lambda(a_0 p, x).$$

This means that $A_0 = (A_0, X, Y, \delta_0, \lambda_0)$ is an output-full cyclic A-subautomaton of A, where $\delta_0 = \delta|_{A_0}$ and $\lambda_0 = \lambda|_{A_0}$. Conversely, let the Mealy-automaton $A^* = (A^*, X, Y, \delta^*, \lambda^*)$ be an output-full cyclic A-subautomaton of A. If a_0 is a generating element of A', then for every $a \in A^*$ there is $p \in X^*$ such that $a = a_0 p$. If $y \in Y$ then there are $a \in A^*$, $x \in X$ such that $y = \lambda(a, x)$. Thus

$$y = \lambda(a, x) = \lambda(a_0 p, x) = \overline{\lambda(a_0, px)}$$

This means that a_0 is an output-generating element of A. Corollary 1. Every cyclic Mealy-automaton is output-cyclic.

A Mealy-automaton $\mathbf{A} = (A, X, Y, \delta, \lambda)$ is covered by the Mealy-automata $\mathbf{A}_i = (A_i, X, Y, \delta_i, \lambda_i)(i \in I)$ if $A = \bigcup_{i \in I} A_i$, $\delta | A_i = \delta_i$ and $\lambda | A_i = \lambda_i$.

Corollary 2. A Mealy-automaton A is output-strongly connected if and only if it is covered by its certain output-full cyclic A-subautomata.

Corollary 3. Every strongly connected Mealy-automaton is output-strongly connected.

We note that a homomorphic image of an output-cyclic (output-strongly connected) Mealy-automaton is output-cyclic (output-strongly connected), too.

The equivalence relation τ on the state set A of the Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ is called a *congruence* on A, if for every $p \in X^+$:

$$(a, b) \in \tau \Rightarrow [(ap, bp) \in \tau \text{ and } \overline{\lambda(a, p)} = \overline{\lambda(b, p)}] (a, b \in A).$$

We define the following relation σ on A:

$$(a, b) \in \sigma \Leftrightarrow [\forall p \in X^+: \ \overline{\lambda(a, p)} = \overline{\lambda(b, p)}].$$

It is evident that σ is a congruence on A and if τ is a congruence on A, then $\tau \leq \sigma$.

The Mealy-automaton A is called *simple*, if

$$[\forall p \in X^+: \ \overline{\lambda(a,p)} = \overline{\lambda(b,p)}] \Rightarrow a = b,$$

that is, σ is the equality relation on A. With other words, every A-homomorphisms of A are A-isomorphism of A.

A is called state-independent, if for every $p, q \in X^+$ and $b \in A$:

$$bp = bq \Rightarrow [\forall a \in A: ap = aq].$$

Similarly, A is output-independent if for every $p, q \in X^+$ and $b \in A$:

$$\overleftarrow{\lambda(b,p)} = \overleftarrow{\lambda(b,q)} \Rightarrow [\forall a \in A: \overleftarrow{\lambda(a,p)} = \overleftarrow{\lambda(a,q)}].$$

Theorem 2. If the simple Mealy-automaton is output-independent, then it is state-independent.

Proof. Let $ap = aq(a \in A; p, q \in X^+)$. Then for every $r \in X^+$:

$$\overline{\lambda(a,pr)} = \overline{\lambda(ap,r)} = \overline{\lambda(aq,r)} = \overline{\lambda(aq,r)}.$$

But A is output-independent, thus for every $b \in A$:

$$\overrightarrow{\lambda(bp,r)} = \overrightarrow{\lambda(b,pr)} = \overrightarrow{\lambda(b,qr)} = \overrightarrow{\lambda(bq,r)}.$$

Since A is simple, therefore bp = bq.

In the following example it is shown that the converse of Theorem 2 does not hold.

Example 1. We define the state-independent simple Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ such that

$$A = \{1, 2\}, X = \{x_1, x_2\}, Y = \{y_1, y_2\},$$

$$\delta(1, x_1) = \delta(1, x_2) = 2, \ \delta(2, x_1) = \delta(2, x_2) = 1,$$

$$\lambda(1, x_1) = \lambda(1, x_2) = y_1, \ \lambda(2, x_1) = y_1, \ \lambda(2, x_2) = y_2$$

A is not output-independent.

Let $\varrho_{\mathbf{A},a}$ be a right congruence on X^+ defined by

$$\forall p, q \in X^+ \colon [(p, q) \in \varrho_{\mathbf{A}, a} \Leftrightarrow ap = aq]$$

2

for every $a \in A$. The Myhill-Nerode congruence ϱ_A of A_{pr} is defined by $\varrho_A = = \bigcap_{a \in A} \varrho_{A,a}$.

Let $\vec{\varrho}_{\mathbf{A},a}$ be an equivalence on X^+ defined by

$$\forall p, q \in X^+ \colon [(p,q) \in \overleftarrow{\varrho}_{A,a} \Leftrightarrow \overleftarrow{\lambda(a,p)} = \overleftarrow{\lambda(a,q)}]$$

for every $a \in A$. The left congruence ϱ_A on X^+ is defined by $\varrho_A = \bigcap_{a \in A} \varrho_{A,a}$. The *Peák-congruence* ϱ'_A of A is defined by $\varrho'_A = \varrho_A \cap \varrho_A$. The factor semigroup $S(A) = X^+ | \varrho'_A$ is called the *characteristic semigroup of the Mealy-autom*aton A.

Theorem 3. The characteristic semigroup of a simple output-independent Mealyautomaton is left cancellative.

Proof. Indeed, for all $p, q, r \in X^+$ we get that

$$(rp, rq) \in \varrho_{A}^{\circ} \Leftrightarrow [(rp, rq) \in \varrho_{A} \text{ and } (rp, rq) \in \varrho_{A}] \Leftrightarrow \forall a \in A:$$

 $[arp = arq \text{ and } \overleftarrow{\lambda(a, rp)} = \overleftarrow{\lambda(a, rq)}].$

Thus

$$\forall a \in A: \ \overline{\lambda(ar, p)} = \overline{\lambda(a, rp)} = \overline{\lambda(a, rq)} = \overline{\lambda(ar, q)}.$$

But A is output-independent, therefore

$$\forall b \in A: \ \overrightarrow{\lambda(b,p)} = \overrightarrow{\lambda(b,q)}.$$

By Theorem 2, A is state-independent, thus

$$[\forall a \in A: arp = arq] \Rightarrow [\forall b \in A: bp = bq].$$

This means that $(p, q) \in \rho'_A$.

In Example 2 it is shown that the converse of Theorem 3 does not hold. *Example 2*. Let

$$A = \{1, 2, 3\}, X = \{x\}, Y = \{y_1, y_2\},$$

$$\delta(1, x) = 2, \ \delta(2, x) = 3, \ \delta(3, x) = 1,$$

$$\lambda(1, x) = \lambda(2, x) = y_1, \ \lambda(3, x) = y_2.$$

The Mealy-automaton $\mathbf{A} = (A, X, Y, \delta, \lambda)$ is simple, but it is not outputindependent. Let τ be an equivalence on X^* . Then $\tau[p]$ denotes the τ -class containing $p \in X^*$. We get that

$$\varrho_{\mathbf{A}}[e] = \{e, x^3, x^6, \ldots\}, \ \varrho_{\mathbf{A}}[x] = \{x, x^4, x^7, \ldots\}, \ \varrho_{\mathbf{A}}[x^2] = \{x^2, x^5, x^8, \ldots\},$$
$$\overline{\varrho}_{\mathbf{A}}[x] = \varrho_{\mathbf{A}}[x], \ \overline{\varrho}_{\mathbf{A}}[x^2] = \varrho_{\mathbf{A}}[x^2], \ \overline{\varrho}_{\mathbf{A}}[x^3] = \varrho_{\mathbf{A}}[e] - \{e\}.$$

Thus $\varrho_A = \varrho_A$. This means that S(A) is left cancellative.

Let $A = (A, X, Y, \delta, \lambda)$ be a Mealy-automaton. $G(\subseteq A)$ is an outputgenerating system of A, if

$$Y = \{ \overleftarrow{\lambda(a, p)} \mid a \in G, \ p \in X^+ \}.$$

A is called *characteristically output-free*, if there exists an output-generating system G of A such that

$$\overline{\lambda(a,p)} = \overline{\lambda(b,q)} \Rightarrow [a = b \text{ and } (p,q) \in \overline{\varrho_A}]$$

 $(a, b \in G, p, q \in X^+)$. In this case, G is called a characteristically output-free system.

Example 3. Let

$$A = \{a_0, a_1, a_2\}, X = \{x_1, x_2\}, Y = \{y_1, y_2\},$$

$$\delta(a_0, x_i) = a_i, \ \delta(a_1, x_i) = a_2, \ \delta(a_2, x_i) = a_1,$$

$$\lambda(a_0, x_i) = y_1, \ \lambda(a_1, x_i) = \lambda(a_2, x_i) = y_2 \ (i = 1, 2).$$

Since $\lambda(a_0, x_1) = \lambda(a_0, x_2) = y_1$ and

$$\forall p \in X^+ - X: \ \overleftarrow{\lambda(a_0, p)} = y_2,$$

therefore $A = (A, X, Y, \delta, \lambda)$ is a characteristically output-free cyclic Mealyautomaton.

We denote the cardinality of a set B by |B|. **Theorem 4.** Every characteristically output-free system G of a Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ is minimal among the output-generating systems of A in the usual sense. Furthermore, if A is finite, then

$$|G| = \frac{|Y|}{|X^+/\rho_{\mathbf{A}}|}.$$
(1)

Proof. Let G be a characteristically output-free system of A. Assume that there is an output-generating system G' of A such that $G' \subset G$. If $a \in G - G'$ then for every $p \in X^+$ there are $a_0 \in G'$ and $q \in X^+$ such that

$$\overleftarrow{\lambda(a,p)} = \overleftarrow{\lambda(a_0,q)}.$$

But G is a characteristically output-free system, thus $a = a_0$. It is impossible. This means that G is a minimal output-generating system of A.

The mapping $\varphi: G \times X^+ / \overleftarrow{\varrho_A} \to Y$ such that

$$\varphi(a, \overline{\varrho_{\mathbf{A}}}[p]) = \overline{\lambda(a,p)} \ (a \in G, \ p \in X^+)$$

is a one-to-one mapping of $G \times X^+ / \vec{\varrho}_A$ onto Y. Therefore, if A is finite, then (1) is true.

The Mealy-automaton $\mathbf{A} = (A, X \ Y, \delta, \lambda)$ is the direct sum of the Mealyautomata $\mathbf{A}_i = (A_i, X, Y_i, \delta_i, \lambda_i)(i \in I)$ if $A = \bigcup_{i \in I} \mathbf{A}_i, \ Y = \bigcup_{i \in I} Y_i, \ \delta | A_i = \delta_i$ and $\lambda | A_i = \lambda_i$. Furthermore, for every $i \neq j(\in I)A_i \cap A_j = \Phi$ and $Y_i \cap Y_j = \Phi$.

Theorem 5. The simple Mealy-automaton $A = (A, X, Y, \delta, \lambda)$ is characteristically output-free if and only if there is an A-subautomaton of A such that it is a direct sum of isomorphic characteristically output-free cyclic Mealy-automata.

Proof. Let the simple Mealy-automaton $\mathbf{A} = (A, X, Y, \delta, \lambda)$ be characteristically output-free and let G be a characteristically output-free system of A. Take the sets

$$A_b = \{ bp \mid p \in X^* \} \ (b \in B).$$

Assume that $b_1, b_2 \in G$ and $A_{b1} \cap A_{b_2} \neq \Phi$. If $b_1p = b_2q(p, q \in X^*)$, then for $x \in X$:

$$\overleftarrow{\lambda(b_1, px)} = \lambda(b_1p, x) = \lambda(b_2q, x) = \overleftarrow{\lambda(b_2, px)}.$$

Thus $b_1 = b_2$. That is, $A_{b_1} = A_{b_2}$. For every $b \in G$, let

$$Y_b = \{ \overleftarrow{\lambda(b,q)} \mid q \in X^+ \}.$$

$$\begin{split} \mathbf{A}_b &= (A_b, X, \, Y_b, \, \delta_b, \, \lambda_b) \text{ is a characteristically output-free cyclic Mealy-autom-}\\ \text{aton. It is evident that for every } b_1 \neq b_2 \in G, \, \, Y_{b_1} \cap \, Y_{b_2} = \varPhi \text{ and } Y = \bigcup_{b \in G} Y_b.\\ \text{Let } A_1 &= \bigcup_{b \in G} A_b. \, \mathbf{A}_1 = (A_1, X, \, Y_1, \, \delta_1, \, \lambda_1) \text{ is an } A\text{-subautomaton of } \mathbf{A}. \end{split}$$

Let $b_1, b_2 \in G$. We define the following mappings φ and ψ :

$$\begin{split} \varphi \colon \ b_1 p \to b_2 p \ (p \in X^*), \\ \psi \colon \overleftarrow{\lambda(b_1, q)} \to \overleftarrow{\lambda(b_2, q)} \ (q \in X^+). \end{split}$$

It is obvious that ψ is one-to-one. If $b_1p = b_1p'(p, p' \in X^*)$, then for every $r \in X^+$:

$$\overrightarrow{\lambda(b_1, pr)} = \overrightarrow{\lambda(b_1p, r)} = \overrightarrow{\lambda(b_1p', r)} = \overrightarrow{\lambda(b_1, p'r)}.$$

Since A is characteristically output-free, thus $(pr, p'r) \in \varrho_A$. That is,

$$\lambda(b_2p,r) = \lambda(b_2,pr) = \lambda(b_2,p'r) = \lambda(b_2p',r)$$

for every $r \in X^+$. But A is simple, thus $b_2 p = b_2 p'$. This means that φ is one-to-one.

$$\varphi(\delta_{b_1}(b_1p, x)) = \varphi(b_1px) = b_2px = \delta_{b_2}(b_2p, x) = \delta_{b_2}(\varphi(b_1p), x))$$

and

$$\psi(\lambda_{b_1}(b_1p, x)) = \psi(\lambda(b_1, px)) = \lambda(b_2, px) = \lambda_{b_2}(b_2p, x) = \lambda_{b_2}(\varphi(b_1p), x)$$

 $(p \in X^*, x \in X)$. This means that (φ, ι, ψ) is an isomorphism of \mathbf{A}_{b_1} onto \mathbf{A}_{b_2} , where ι is the identity mapping of X. We get that \mathbf{A}_1 is the direct sum of isomorphic characteristically output-free cyclic Mealy-automata $\mathbf{A}_b(b \in G)$.

Conversely, let A_1 be an A-subautomaton of A and let A_1 be a direct sum of isomorphic characteristically output-free cyclic Mealy-automata $A_{b_i}(i \in I)$. $(b_i \text{ is a generating element of } A_{b_i}$. We note that b_i is an outputgenerating element of A_{b_i} , too.) Let $(\varphi_{i,j}, \iota, \psi_{i,j})$ be isomorphic mappings of A_{b_i} onto $A_{b_i}(i \neq j \in I)$. Then every $p \in X^*$:

$$\varphi_{i,j}(b_i p) = \varphi_{i,j}(b_i) p = b_j p.$$

Thus $\varphi_{i,j}(b_i) = b_j$. Let $G = \{b_i \mid i \in I\}$. G is an output-generating system of A. Let

$$\overline{\lambda(b_i,p)} = \overline{\lambda(b_j,q)} \quad (p,q \in X^+).$$

Then $b_i = b_i$ and thus i = j. Let $k \in I$. Then

$$\overrightarrow{\lambda(b_k, p)} = \overleftarrow{\lambda_k(b_k, p)} = \lambda_k(\varphi_{i,k}(b_i), p) = \overleftarrow{\psi_{i,k}(\lambda_i(b_i, p))} =$$

= $\overrightarrow{\psi_{i,k}(\lambda_i(b_i, q))} = \overleftarrow{\lambda_k(\varphi_{i,k}(b_i), q))} = \overleftarrow{\lambda(b_k, q)}.$

Thus $(p,q) \in \varrho_A$. This means that A is characteristically output-free.

References

- 1. BABCSÁNYI, I.: Characteristically free quasi-automata, Acta Cybernetica, 3, 1977, pp. 145-161.
- BABCSÁNYI, I.: A characterization of cyclic Mealy-automata, Papers on Automata and Languages, IX., K. Marx Univ. of Economics, Dept. of Math., Budapest, 1987, DM 87-2, pp. 19-46.
- 3. CLIFFORD, A. H.: and PRESTON, G. B. The algebraic Theory of Semigroups, Providence, R. I., Vol. 1, 2, 1961, 1967.
- 4. GÉCSEC, F. and PEÁR, I.: Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
- 5. PUSKÁS, Cs.: On the semigroups of Mealy-automata, Papers on Automata Theory, III.,
- K. Marx Univ. of Economics, Dept. of Math., Budapest, 1981, DM 81-2, pp. 1-39.

István BABCSÁNYI H-1521, Budapest