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1. Introduction 

The Semi-Group of Operators Theory is especially useful in the treatment 
of problems concerning the approximation of some probability measures by 
others. 

The particular instance of Poisson approximation for independent sum
mands, can be treated in a suitable operator semigroup framework, allowing 
at the same time precise evaluations for the norm of the difference bet'ween 
the associated probability distributions. 

In this paper we study the concrete case in which the independent sum
mands are Bernoulli random variables with different probabilities of success 
and the considered norm induces the total variation distance. 

The space of all absolutely summable sequences is considered and also 
its subset of all probability measures with support contained in the non
negative integers. The function that maps the sum of the absolute value 
terms to each sequence, verifies the axioms of a complete norm. 

An operator from this space to itself is defined via the convolution. 
Hence, we may determine the infinitesimal generator of the Poisson convolu
tion semigroup. Under these assumptions, we can formulate the approximation 
problem for independent Bernoulli summands, hy the semigroup mentioned 
before and with the total variation distance, as a norms evaluation problem 
in this Banach space. 

The first question we will solve in this work is to establish a fir"st estimate 
of the norm term commented above, when the Poisson approximating operator 
is a general one. Finally, we will find the Poisson random variable w-hich optim
izes the approximation in the sense that it minimizes the expression of the 
total variation distance obtained. To achieve this, we will nse some auxiliary 
results from the semigroup approach theory, and other previous techniques 
given by different authors, such as Le Cam, Chen, Barbour y Hall. 
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2. The semigroup approach for the Poisson approximation problem 

Let the Banach space F of all absolutely summable sequences be 

F = {{xn}nEN / ~ IXnl < oo} (2.1) 
n=l 

where for each sequence {x,,}nEN its norm will be: 

Let NI be the subset of all probability measures with support contained 
in the non-negative integers: 

AI = {m: Z+ ~ [0, I] I m is a probability function}. 

For two elements {f(n)}nEN' {g(n)}nEN E F, we define the convolution as: 

n 

(f * g)(n) = ~ f(k)g(n - k) n > ° 
k=o 

that also belongs to F and its norm verifies: 

Ilf * gll < Ilfllllgll 
Let us define the operators Bk on 11 by: 

Bk: F -+ F 

f -+ E k * f: N -+ R 

n r+ E k "* fen) 

'\Vith E k denoting the unit mass at point kEN. Then 

n 

Bkf(n) = (Ek .* f)(n) = ~ Ek(m)f(n - m) = 

k) 
m=O 

if 
if 

k n 

k>n 

(2.3) 

(2.4) 

(2.5) 

Therefore, any measure m E lv! can be interpreted as an operator on 11, 

such as: 

n = 
mf(n) = m * fen) = ~ m(k)f(n - k) = ~ m(k)Bkf(n). (2.6) 

k=O k=O 

Let I be the identity mapping from 11 to 11, and A = B-1 that is 
the infinitesimal generator of the convolution semigroup: 

{ etA / 0 t < oo}. 
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But 

etA! = e-t1etB! = ~ e-ttk(k !Bkf = ~ e-ttk/k !Ek* f= PO(t) * f (2.7) 
k=O k=O 

where P o(t) = ~ e- t tk/k! Eo denotes the Poisson distribution with mean t. 
J{=O 

Then A is the infinitesimal generator of Poisson convolution semigroup. 
On the other hand, given two probability measures m; E 2ii i = 1,2 

we can interpret the total variati9n distance between them as an 11 operator 
norm, since: 

d(ml' m2 ) = (1/2) ~ im1(k) - m2(k) I = (1/2)/(ml - m2) * Eoll (2.8) 
k=O 

\vith Eo the unit mass at point O. 
Hence, we can formulate the approximation problem with the total 

variation metric for independent Bernoulli summands by a Poisson distrihu
tion, as a norms evaluation problem in this Banach space. 

To achieve this, let Xl' ... , Xn he an independent sequence of BernoulIi 
random variables with successful probabilities PI' ... , Pn' and prohability 

n 

distributions ml' ... , mn' Let Sn = ~ Xi with probability distribution be 
i=l 

n 

the convolution of m l , •.. , mn' that will be denoted by If m;. Let Y l , •.• , Y n 
i=l 

he an independent sequence of Poisson random variahles with expectation 

f.LI' ••• , f.1n and probability distributions P O(f.1I)' ••. , P o(f.Ln)' Its sum Tn(f.L) 
n 

is another Poisson random variable with mean ,U = .::2 f.Li and probability 
i=l 

distribution: 
n 

Po(f.L) = POCul ) * PO(V2) * ... * Po(f.Ln) = If Potu;} 
i=l 

For (2.8), (2.7) and (2.4) we can write: 

n n n n 
d(Sn' Tn(EL)) = 1/2\\ (TI e!!iA - II mJ * Eoll < 1/211 [1 e!4A - II mill· 

i=l i=l i=l i=l 

(2.9) 

Using the results concerning the convolution of n operators T I , ••• , Tn 
and Gl , ••• ,Gn , that estahlishes: 

n 

IITI * T2 * ... * Tn - Gl * G2 * ... * Gnll < ~ liT; - Gdl. (2.10) 
i=l 

the inequality (2.9) can he transformed as 

n n 
d(Sn' TnCu)) = 1/21111 ePiA 1/2 ~ Ile!!;A - mdl. (2.11) 

i=l i=l 
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As m; is the Bernoulli distribution with p{ X; = I} = P; i = 1, ... , n, 

then by (2.6) we have: 

m;/ = m;(O)Bof+ m;(I)Bf [(1 - p;)1 p;B]f = (I + p;A)f 'Vi = 1, ... , n. 

Consequently, (2.11) can be v,rritten like: 

n 
1/2 ~ lieprA 

;=1 

3. Evaluation of the total variation distance follmving the 
semiagronp theory 

(2.12) 

(2.13) 

In this paragraph, we will calculate the values of the total variation 
distance between the Binomial-Poisson random variable Sn defined above 
and a general Poisson distribution Tn(fl) with mean ,a, using the operators 
defined in the previous section. We consider again the Poisson random variable 
Tn(fl) as a sum of .on" Poisson random variables Y 1, ••• , Yn "\vith expectations 

n 

fl 1' •••• u'n' that is .u = .:::E ,U;. 
;=1 

Theorem 1. Under these hypotheses the value of the total variation 
distance between the random variables Sn and Tn(,u) is given by the expression: 

n n 

d(Sn' TnCP») = 1/211 ~ (Pi - p;) exp (~ p;)A)A Eo + 
;=1 ;=1 

n n 

+ 1/2 ~ p; exp( ~ pi)A)A2 Eoll + rn(P) (3.1) 
i=l ;=1 

with 
n n 

rn(P) 9 "" 3 r 9 {"" 2} - ( } ~ .,.;;;. p; T ~ .,.;;;. p; max (PI' ... ,Pn (3.2) 
;=1 ;=1 

and 
n n 

Sn(P, ,LL) < 1/4 {~(f1; - p;)}2 max {llexp ((~ pJA)A2 Eo!l, 
;=1 ;=1 

n 

[:exp (( ~ p;)A)A2 Eo!!} 
;=1 

n n n 
max {min (1, 1/(~ fL;)), min (1, 1/(.::E p;»)}{~ (fl; - p;)}2. (3.3) 

;=1 i=l ;=1 

We do not expose here the proof of this result because it was completely 
proved in another article of these authors entitled "Application of Semi-group 
Theory to the norms evaluation of probability measures" [5]. In that work 
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we established another theorem which gives a precise evaluation of the norm 
terms in the distance expression obtained before, that appear in the relation 
(3.1) and (3.3). 

Theorem 2. For t > 0, }' ER, we get: 

t[t] 2 
IletAA Eoll = 2e- t - ~ - for t -+ = 

[t] ! 2nt 

where [t] denotes the integer part of t. 

(3.18) 

IletA A2 Eoll = 2 f t~-l(1X - t) !i3-l«(3 
1 od (3! 

e- t ~ -----:= for t)} 4 
t -+ = 

tV2ne 
(3.19) 

where: 

x = [t + 1/2 and (3 = [t + 1/2 - (t 1/4)1/2] (3.20) 

I to -l( 0 t + y"Vt) _ t'i -l( '17 
Ilyt- l !2etAAEo + etAA2Eol! = 2l a! t + YVt)} -I , e 

'17. 

(2/tV2n){Ce- Cl/2 )'-' I/Ce-(1/2)C2} > 4/(tY2ne) for t -~ = (3.21) 
where: 

o = [t - Q + (t + (2)1/2] '17 = [t - (! ( t 
with 

r2 = 1/2(yVt - 1) and t = ),/2 + (1 

4. The optimal approximating Poisson random variahie 

In this section we ",-ill finally find the Poisson random variable which 
optimizes the approximation in the sense that it minimizes the e:x.~ression of 
the total variation distance obtained in the third par-agraph. 

We ",,-ill first observe that the asymptotic optimality may be reached 
n 

for any P = :;2 P i' In fact, the value inf d( SI1' TnCu») is actually attained by 
i=l p. 

the continuity of the d(m, Po(t» in t > 0, for any measure mE 111". 
Now, we will try to find which is the parameter fL asymptotically optimal 

in each case. This question will depend on the Sn random variable mean's 
size, as we are going to establish in the follow-ing theorems: 

Theorem 3. Let PI' ... ,Pn and I' i = log (1 - Pi) for i = 1, ... , n. 
n 

If 0 < I. = :;2 I' i < 1 then for all choice of ,Ui' i = 1, ... , n we have: 
i=l 

n n n n 
d(Sn' Tn) > {:;2(ei

., - 1 -- I.J} exp (-:;2).J > 1/2{:;2).i} exp (-:;2 I· i ). 
i=l i=l i=l i=l 

(4.1) 
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n 
Consequently, if PI' ... ,Pn depend on n such ~ Pi --+ 0 for n --+ = then uni

i=I 

formly in n, we have: 
n 

inf d(Sn' Tn(fL») r-J d(Sn, TnP.)) r-J 1/2 ~ pi (4.2) 
p i=l 

while 
n 

d(Sn' Tn(P)) r-J ~ Pi only (4.3) 
i=l 

\vhere for fL = (!lI' ••• ,fLn)' Tn(fL) denotes a Poisson random variable \vith 
n 

expectation ~ Pi' and the inf. is taken over all allowable values of ,Ll. 
i=l 

Proof: The expression of the total variation distance 

00 

d(Sn' TnCu») = 1/2 ~ Ip(Sn = k) - p(TnCu) = k)1 
k=O 

can be bounded by: 

2d(Sn' Tn(fL)) = Ip(Sn = 0) - p(Tn(P) = 0)1 + ip(Sn = 1) - p(TnCLl) = 1)1 

+ Ip(Sn 2:: 2) - p(TnCu) > 2)1· 
Evaluating the probability terms that appear on the right side, we have: 

Ip(Sn = 0) - p(Tn(fL) = 0)1 = ie-J. - e-I'I = e- io j1 - e-hl 

where h = P - I. 

n 

/p(Sn = 1) - p(Tn(fL) = 1)1 = e-io[I~(eioi 1 I.J + A - e- l1 (h + }.)J] 
i=l 

n 

/p(Sn > 2) - p(Tn(fL) > 2)1 = e-io l1 + ~ (e ioi - 1 - I'i) + 
i=l 

+ I, - e-h(l + h + 2)1. 

Let A(h)e-io be the sum of these three terms. Then: 

The result now follows from the fact that: 
a) When h 2:: 0 

n 

1/2A(h) 2:: (A + 1) e-"(I. + h + 1) + ~ (ei
.; - 1 - I.J > 

i=l 
n 

2:: ~ (e io; - 1 - I. i ) = 1/2A(0) 
i=l 

where the last inequality occurs because the function 
p. + 1) e-h(l, + h 1) is always greater than zero. 
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b) When h < 0, using a similar argument: 

n n 
1j2A(h) > I. - e-Izp. h) + .:E (e i

'i - 1 - I.i) > .:E (ii - 1 - I'i) = 1/2A(0) 
1=1 i=1 

n 

Finally: d(Sn' TTl(p)) > e- i 
. .:E (e ioi 1 i'i)' 

i=l 

The second inequality in (4.1) is ohvious, for the function 
f(x) = eX - 1 - x - (1/2)x2 is always positive when x > o. 

In order to prove the relation (4.2), we will use the second inequality in 
Tl n 

(4.1). But as 2'Pi -+ 0 then exp (- .:E I. i) -,. 1. 
i=l i=l 

Therefore: 

On the other hand: 
Tl 

p(Sn ,~ Tn(}.)) < 1 - If (1 - P(Xi Y;)) = 
1=1 

11 11 n 

= I-If (1 }·i)e-i.i) < .:t (ei.; - 1 - i.;)e-?'i < 1/2 .::E i.~. 
i=l i=1 i=l 

Consequently: 

n 

Since i'i - Pi = (1/2)P7 o(p~) Vi = 1, ... , n then asymptotically ..:z }.~ ."J 

n i=1 
~ .:2 pi which establishes (4<.2). 

i=l 

The expression (4.3) is obtained from (3.1), (3.2) and (3.3) for p = p. 
n 

This last result shows that ·whenever P = .:E Pi tends to zero for n -,. =, 
n i=l 

the choice ,Ll = ). = .:E - log (1 - Pi) is indeed asymptotically optimal. 
i=l 

However, if we assume that P tends to infinity in a certain way for 
n -. =, the optimal approximation Poisson random variahle is that of mean 
fl = p. In fact, 'we have: 

11 

Theorem 4. If .:EPi -. ex and max {PI" .. ,p,,} ~ 0 for n -+ 'Xl then 
i=1 

Tl n 
d(S", T..,(p)) ~ (2:Te)-li2{.:E pW{.:E pJ. 

i=1 i=1 

11 

If additionally t~' p;} max (PI' ... ,P,J ~ 0 then also: 
i=1 

Inf d(S", T,,([1)) "'- d(S", Tn(p)). 
I' 

(4.4) 

(4.5) 
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Proof: The first relation (4.4) will be proyed taking into account the 
theorems in section three. By the expression (3.1) for fh = P, we get: 

n n 

d(S", T,,(p) = 1/4{~ p7}l\exp ((~p;)A)A2 Eoll + T'l(p) 
i=1 i=1 

with rn(p) ~ 0, which, using the expression (3.19), is asymptotically as: 

n n 

d(S", T,,(p) ~ (2ne)-1/2{~ pn/{~ Pi}' 
;=1 i=1 

This proves relation (4.4). 

" If additionally {~p;} max {PI"" ,Pn} -~ 0 then 
i=1 

11 n 
d(SI1' T,,(p) ~ (2;-re)-1/2{~ p7}!{.:2 pJ < 

i=l i=l 

(9 )-1/2 " ( 1 ---+ 0 _ne max iPl' ... ,Przj Il~= • 

On the other hand, for any optimal choice of f1 'we haye: 

under the assumptions considered, and since: 

2d(Tn(.a), T,,(p)) ~ /p(Tr;(,u) = 0) p(Tn(P) = O)i = le- 11 

we must have ,u ~~ p. Then we can write that for any such p, there exists some 
real number y with fh r-.,.. P + (y/2)p- 1• 

So using the expressions (3.1), (3.2) and (3.3) for this {t we get: 

n n 11 

d(S", T"Ca) ~ 1/4{~ p7} I:(y/~ Pi) exp ((2' pJA)A Eo + 
i=l i=l ;=1 

n 
+ exp ((~ p;)A)A2 Eoil 

i=1 

because the terms r ,,(p) and S,,(p, p) tend to zero as n tends to infinity. Now 
n 

using the result (3.21) for t = 2' Pi -+ = we can conclude: 
i=l 

n n 
d(S", Tn(.Ll) > (2ne)-1/2{2' p;}/{2' Pi} ,-~ d(S", T,,(p). 

i=l ;=1 

This choice corresponds to y = O. This proves theorem 4 completely. 
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5. Conclusions 

In this paper 'we have shown two theorems allowing a precise evaluation 
of the total variation distance between n independent Bernoulli summands 
and a general Poisson distribution. The proofs of these theorems can be found 
in [5]. The main aim of this evaluation has been to find the mean of the Poisson 
random variable, which minimizes the expression obtained. 

We have got it when the mean p of the random variable S II tends to zero 
and to infinity. 

Another open problem is to study the intermediate case in which the 
mean p tends to a real number a E (0, =). 
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