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Abstract 

It is well-known that the 3-web formed by three pencils of straight lines is topologically 
equivalent to the hexagonal 3-web composed of three peneils of circles which belong to the 
same bundle. In this work, corresponding to the web under consideration a quasi-group is 
constructed "ith the help of the property mentioned. 

1. Preliminaries 

Tlu:ee pencils of circles are said to belong to the same bundle, if there 
exist a real circle or a circle with null sheet or a circle of radius zero [1, p. 64] 
cutting all the cll-cles of the pencils at right angles. 

It is well known that, in the plane, three pencils of straight lines form a 
hexagonal web [2] and that this web is topologicalIy equivalent to the 3-web 
formed by three pencils of circles which belong to the same bundle [2], [3]. 
Blaschke gave a few examples of circle pencils which form a hexagonal 3-'web 
[2]. He, further, stated that it was very difficult to solve this problem in the 
general case. This latter problem is completely solved in my dissertation [3], [4]. 

The problem of determining hexagonal n webs (n > 3) of circle pencils 
is studied by myself and presented at the International Conference On 'Web 
Geometry which was held in August 1987, Szeged (Hungary). 

It seems reasonable to construct quasi-groups corresponding to the hexag­
onal 3-webs studied in [3]. 

In this short note, a quasi-group corresponding to the 3-web which is 
formed by three pencils of circles of the same bundle, is constructed. 

2. Quasi-group 

A set G is said to be a quasi-group with binary operation ( . ), if the 
follo"\\ing conditions are satisfied [5], [6], [7]: 

(2.1) x' b = c, 
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and 

(2.2) 

has exactly one solution for x and y respectively. 
If x, y E G, the ordered pair (x, y) is called a "point". 
The set of points (c,y) (c is a constant and y is variable) is called a "1-

curve" while the set of points (x, c) (x is variable) is called a "2-curve". On 
the other hand, if c is a fixed element of G and x . y = c, then the set of points 
(x, y) is called a "3-curve". The set of I-curves, 2-curvcs and 3-curves is the 
'web corresponding to the quasi-group. 

3. The main problem 

We will now try to find a quasi-group conesponding to a weh formed 
by three pencils of circles which helong to the same hundle. To do this, we 
make use of the fact that the web under consideration ist opologically equiv­
alent to the three-web which is formed by three pencils of straight lines. 
If x, y, II E R (the set of real numbers) and II -:;-'- 0, we define the hinary opera­
tion ( . ) hy the equation 

x . y = llX + y. (3.1) 

It is easy to see that this operation satisfies conditions (2.1) and (2.2). In 
c-b 

fact, from (2.1) we find llX + b = c which gives x = --. From (2.2) we 
II 

find lla + Y d and consequently y = d - lla. 

On the other hand, 
i) The set of points (u1,y) is "I-curves", where U 1 is a constant and 

y is a variable (Fig. 1), 
ii) The set of points (x, U 2) is "2-curves", where x is a variable and U 2 

is a constant (Fig. 2), and 
iii) The set of points (x,y) = (x,-ux U3) is "3-curves", where 

x . y = U3 (U3 a constant), (Fig. 3). 

A 
Y 1 -curves 

x 

Fig. 1 
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y 
2-curves 

Fig. 2 

Fig. 3 

Fig. -1 

Therefore, by means of the binary operation (3.1) we have assigned a 
quasi-group corresponding to the hexagonal 3-"web which is formed by three 
pencils of straight lines, (Fig. 4). Since, by suitable inversion, we can trans­
form the three pencils of straight lines under consideration into three pencils 
of circles belonging to the same bundle, the quasi-group which we have 
already found corresponds also to the web formed by the three pencils of 
circles of the same bundle. 
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