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Abstraet

Given symmetric group S, and its subgroup (S,X S;), p + g = n, we establish neces-
sary and sufficient conditions for the decomposition of Sj into left cosets of (§;XS,) in Sp.
If n=2" (m=12,...) and p = g = n/2 then by iteration we obtain a decomposition of
an arbitrary 7 € S in the form z = (BYBL BY) . . . (BL*~ L. .., N), where N = log,n and
Bi is the j-th left coset leader obtained on the i-th stage. We develop an 0{(n log n) serial algo-
rithm for the programming the tree cellular permutations networks which result from the
above decomposition scheme.

1. Introducton

An important problem in the theory of interconnection networks is to
find methods of decomposing an arbitrary permutation of a large number of
elements. Basing on those methods various permutation networks as well as
control algorithms are to be designed.

OprerMAN and Tsa0-Wu published an algorithm for decomposing an
arbitrary permutation of n = d X g elements into d permutations of g elements
each and (2¢ — 1) permutations of d elements each [7]. Their algorithm is
devoted to a classical BEnEs network [1], which is a member of Clos’ type
networks [3]. A modified version of that algorithm was presented by Rama-
~Nujaym [10]. However, KuBALE showed it to be only partially correct. He
pointed out that for this class of interconnection networks the most efficient
approach is a decomposition by edge coloring bipartite multigraphs.

Kavtz et al. [5] described another large class of interconnection net-
works: cellular permutation networks. This class consists of several families
of networks built from 2-permuters (i.e. triangular, diamond, rectangular,
pruned rectangular, rthomboidal, almost square etc.). Orvc and Praxasy [8]
developed control algorithms for triangular and diamond cellular arrays based
on a certain factorization of permutation cycles. Recently Oruc and Oruc
found the best known algorithm for the programming triangular permutation
arrays through iterative coset decomposition of symmetric groups [9].

The method of iterative decomposition of permutations presented below
is to be applied for the programming a family of cellular permutation networks,
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we call tree permutation arrays. It is based on the decomposition of symmetric
groups into cosets. An arbitrary permutation = €S, (n =2 m=1,2,...)
is transformed by the algorithm into a composition of a certain n-permutation
B €S, being a left coset leader of the subgroup (S,XS)) in S, (p = ¢ = n/2)
and a pair of two n/2-permutations (m, 7,) € (Sp>< Sq). This decomposition
procedure requires 0(n) sequential time and is repeated iteratively stage by
stage N = log,n times. Hence, the time complexities are 0(n log n) for the
serial algorithm and 0(n) for the parallel algorithm, respectively.

2. Validity of decomposition

From the theory of groups the following elementary results form a back-
ground for developing the decomposition procedure.

Theorem 1. Let G be a permutation group on a finite set Q =
= {1.2,....n}. Let P be any proper subset of 2. Then the permutations
of G fixing all the elements of P form a subgroup K. The permutatiouns per-
muting the elements of P among themselves form a group H which contains
K as a normal subgroup.

Theorem Z. A group G is isomorphic to the direct product of two sub-
groups A and B (denoted 4 B) if 4 and B are normal subgroups such that
ANB=1,4AUB=¢0.

Lemma 1. Let G= S8, and Q=PUQ, PNQ=0. Let Q|=n,
[Pl =p. 2 =gq and p,q= 0. If according to Theorem 1 the permutations
of S, fixing all elements of P(¢) form a normal subgroup K, (K,). K; < H, < S,
(K, < H, < S,), then H, = H, = K, xK,.

Proof. Proof follows from Theorems 1 and 2

It is clear that K(X,) is isomorphic to the symmetric group S,(S,).

For given group G and its subgroup H the set of all elements {g gh; g€oG,
g fixed, h € H} is called a left coset of H in G.

Lemma 2. Two different left cosets of H in G are either disjoint or identical
sets of elements.

We write =g, H U g, H U ... UgH, where 1 denotes the number of
left cosetsof Hin Gand g, (1 =1,2,.... 1) we call the left coset leader.
Let g, and g, be any two permutauons in S,. They may always be
written in the following two-row matrices:
\ {0l 0—0 Py
e J{Ll(P 1 J"’1(@ {gl(P — P)}. {200} {g.(0 — Q)3 {gl(Pl)H

I |
{P} {0}

}{DII(P)} {gf(Q)}’
{ P {0 }
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[P Q)|
(&P}, { 8:(0)

{ P—P, }
{g(P — Py)},

82 =
L

{g (D)) {g77(Q)}]
P L{Q }
The elements of P — P, and Q,(P — P, and {,) are moved under g,(g,) into
elements of P. The elements of § — ¢, and P,(Q — Q, and P,) are moved

under g,(g,) into elements of Q.
Theorem 3. Two left coseis of H in G: g H and g,H are disjoint if the

following condition holds
{(P, = P,) U (Q,=0,)}.

Proof. Proof is provided by contradiction. The above condition reflects
an obvious fact that no two cosets can be identical if the permutations which
belong to those cosets, map different elements from P into Q or from Q into P.
The dependent condition {[(P — P,) == (P — P,)1 U [(Q — Q) = (0 — 0.)]}
reflects an analogous observation related to complementary subsets (P — P,)
and (0 — Q).

The above mathematical background allows us to develop a recursive de-
composition procedure in the next section,

3. Algorithm

Tetn=2"(m=1,2,....) and p = g = n/2. As we have siated pre-
viously an arbitrary permutation z € S, is factorized by the algorithm iter-
atively, stage by stage.

On the i-th stage (i=1,2,..., N; N = log, n) 2} permutations
ai(j=0,....207D — 1) is decomposed by a recursive procedure into 2!
permutations forming (i -~ 1)-th stage. This iteration may be written as follows

o = B, ).

The lower index i denotes the number of a stage, the upper index j denotes
the number of the permutation on the i-th stage (see Fig. 1).
The set of all left coset leaders B/ obtained on subsequent stages of the de-
composition produces a full binary tree shown in Fig. 2. The upper index j
has a decimal value corresponding to the binary path in the tree.

The final decomposition of the permutation =0 is described by the equation

m = (BD(E% B - - - (B .. B
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Fig. 1. Decomposition scheme for i=1,j=10
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Fig. 2. A full binary tree of left coset leaders 3}

Algorithm 1

Input: n, 7 in two-row matrix form; the first row is called PERMI, the
second row is called PERM2.

Output: table I. in which [T(1. k). T(2, k)] denotes k-th transposition {cell
in the “bend” state).

1.7« 1;

2.7« 0

3.t 0

4. call algorithm TREEFACTOR (n, 1, j, PERMI., PERM2, ¢, T).

algorithm TREEFACTOR (n, ¢, j, PERMI, PERM2, ¢+, T).

1. a — n/2%;
2. relabel PERM1, PERM2 according to the following patiern:

21.PERM1 ~ 1....,a,a+1,...,2al;
2.2. PERM2 - zi(1), ..., 7d(a), wi(a + 1), ..., 2l2a);
3.¢~ aj;

compute correction

d.u « 0;
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5.v « 0;
6.for k-~ 1 until a do
6.1. if PERM2 (k) < a then
611 u~—u-+1;
6.1.2. T(1,t -+ u) «— PERM2 (k) + ¢;
6.2. if PERM2 (a -+ k) > a then
621, v—uv-1;
6.2.2. T(2,t -+ v) ~— PERM2 (a + k) + ¢

.if (7 -+ 1) >log, n then return

else
71. PERMl — ja+1,a+2,...,2a, 1,2, ..., a;
7.2, for 1 — 1 until v do
7 2 1 PERMI (T2.t+1) —¢—a)« T, -+ 1),
.PERMI (Tt + 1) —c+a)« T2, ¢+ 1);
T3, t<«t -+
74. for k — 1 until a2 do
7.4.1. PERMIA (k) — PERMI (a + k);
7.4.2. PERM2A (k) — PERM2 (a -+ k):
7.4.3. PERMI1B (k) — PERM1 (k);
7.4.4. PERM2B (k) — PERM2 (&);
7.5. call algorithm TREEFACTOR (n,i1-+ 1, 25, PERMIA, PERM2B, ¢, T);
7.6. ecall algorithm TREEFACTOR (n.¢ 4+ 1,27 - 1. PERMI1B, PERM2B
t; T);
8. return.

The time complexity of above sequential algorithm on the i-th stage
is O(n): 2% 1) 1eft coset leaders of length n/2¢~Y are generated. Since N = log, n
iterations are performed, the total time complexity is O(n log n). The parallel
algorithm consumes 0(n) time.

4. Tree permutation arrays

In Fig. 3 two realizations of tree permutation arrays are visualised.
Those cellular permutation networks have different assignments of inputs and
outputs. For giVen mapping of inputs into outputs the first network is pro-
grammed with 7} = z, while the second one is programmed with 23 = [z,.,] "%
This last solution is preferable from practical point of view, because it allows
overlapping of the set up time of the network and the propagation delay.
Moreover, there is no conflict between the marking of cell transpositions and
the whole network input-ontput marking in the case of the second network.
A primary network setting is that of “cross™ state. When Algorithm 1 is
applied, all cells specified in the table T are programmed to the “bend” state
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Input
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Fig, 3a. Tree permutation array for al == n =8
Input 1 2 3 4 5 5 7 8
Qutput
b)

Fig. 3b. Tree permutation array for ad = [y] ' n =8
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