# MODULAR GROUP RINGS AND WREATH PRODUCTS OF GROUPS 

P. Lakatos<br>Mathematical Institut of L. Kossuth University H-4.010, Debrecen

Received August 10, 1988

Now we give some definitions and notations. Let $A$ and $B$ be two groups. Define $A^{B}$ to be the set of all functions $f: B \rightarrow A$ such that $f(b) \neq 1$ for all but a finite number of $b \in B$, and with componentwise multiplication

$$
f g(b)=f(b) g(b) \text { for all } b \in B
$$

Then $A^{B}$ is a restricted direct product of copies of $A$. The standard restricted wreath product of $A$ by $B, A \geqslant B$ is defined as the extension of $A^{B}$ by $B$ given by

$$
f^{b}\left(b^{\prime}\right)=f\left(b^{\prime} b^{-1}\right) \text { for all } f \in A^{B} ; b, b^{\prime} \in B
$$

As we only use the standard restricted wreath product, we will simply call it the wreath product.

In the following let $Z_{p^{n}}$ be the ring of the integers $\bmod p^{n}$, where $p$ is a prime number, and let $G=A \geqslant B$ be a wreath product of a cyclic group $A$ by a finite $p$-group $B$. We denote by $K=A^{B}$ the base group of $G$.

If we consider $K$ as an additive group, then an arbitrary $b \in B$ generates an automorphism $\varphi_{b}$ of group $K$ defined in the following way

$$
k \varphi_{b}=b^{-1} k b ; \quad b \in B ; \quad k \in K
$$

Denoting $k \varphi_{b}=k b$, the additive group $K$ can be identified with a $B$-module, just as $G=A, B$ may be realized as the group ring $Z_{p^{n}}[B]$ extended by $B$ in its right regular representation. Using automorphism $\varphi_{b}$ element [ $\left.k, b\right]$ can be written in the form $k(1-b)$, where $k \in K, b \in B$.

As it is known, the augmentation ideal $I\left(Z_{p^{n}}, B\right)$ of the group ring $Z_{p^{n}}[B]$ as an additive group can be generated by elements of form $1-b$, $b \in B$ and $I^{k}\left(Z_{p^{n}}, B\right)$ can be generated by elements

$$
\left(1-b_{i, 1}\right) \ldots\left(1-b_{i, k}\right)
$$

where $b_{i, j}$ are arbitrary elements of group $B$.
It can be seen from these ([2]) that

$$
\begin{equation*}
\gamma_{i}(G)=\left[K I^{i-1}\left(Z_{p^{n}}, B\right)\right] \gamma_{i}(B) \tag{1}
\end{equation*}
$$

where $\gamma_{i}(G)$ and $\gamma_{i}(B)$ denote the $i$-th member of lower central series of corresponding groups.

Denoting by $p(n, B)$ the nilpotency class of $I\left(Z_{p^{n}}, B\right)$ and using (1) we obtain

$$
\left.v(n, B)=c l \quad\left(C_{p^{n}}\right\} B\right) .
$$

Therefore we get the $c l(A \backslash B)$ by determining $v(n, B)$, where $A$ is an abelian group with finite exponent $p^{n}$ and $B$ is an arbitrary finite $p$-group.

Now we show some simple connections between nilpotent wreath products and modular group rings.

Let $B=\gamma_{1}(B) \supset \gamma_{2}(B) \supset \ldots \supset \gamma_{L+1}(B)=1$ be the lower central series of $B$. We denote by $r(j)$ the rank of $\gamma_{i}(B) / \gamma_{i \div 1}(B)$ and $B_{i}=\{b(i, j), 1 \leq j \leq r(j)\} \subseteq$ $\subseteq \gamma_{i}(B)-\gamma_{i+1}(B)$ denotes an independent set of generators for $\gamma_{i}(B)$ modulo $\gamma_{i+1}(B)$, such that $|b(i, j)|=p(i, j)$ where $p(i, 1), \ldots, p(i, r(i))$ are the orders, indescending powers of $p$, of cyclic factors of $\gamma_{i}(B) / \gamma_{i+1}(B)$.

Theorem 1. [5]. If $A$ is an abelian $p$-group of exponent $p^{n}$ and $\bar{W}=$ $=A$, $B$, then

$$
\begin{gathered}
c l(W)=\sum_{i=1}^{L} \sum_{j=1}^{r(j)} i(p(i, j)-1)+(n-1) m p(m, 1)(p-1) p^{-i}+1 \\
m p(m, 1)=\max _{1 \leq i \leq L}\{i p(i, 1)\}
\end{gathered}
$$

We define the Jennings-series of a nilpotent $p$-group $G$ by the equation

$$
K_{i}(G)=\prod_{n \cdot p j \geq i} \gamma_{n}(G)^{p^{i}}
$$

where $\gamma_{n}(G)$ is the $n$-ts member of the lower central series of $G(i \geq 1)$.
Let $B$ be a finite $p$-group and $d$ a maximal number such that $K_{a}(B) \neq 1$.
Let $p^{e(j)}=\left|K_{j}(B) / K_{j+1}(B)\right|$ and $a=1+(p-1) \sum_{j=1}^{d} j e(j), b=(p-1) d$.
Theorem 2. [6]. If $A$ is a nilpotent $p$-group of class $c, B$ is a finite $p$ group and the exponent of $\gamma_{\omega}(A)$ equals $p^{5(\omega)}(1 \leq \omega \leq c)$, then

$$
c l(A\rangle B)=\max \{a \omega+(s(\omega)-1) b \mid 1 \leq \omega \leq c\}
$$

This shows that to know the lower central series is important for the investigation of nilpotent wreath products.

Corollary 3. If $A$ is an abelian $p$-group, and exponent of $A$ equals $p^{n}$, then

$$
v(n, B)=v(1, B)+(n-1)(p-1) d
$$

Proof. Applying theorem 2. with $c=1$ the statement follows from $a=v(1, B)([1])$.

Remark: The class of the radical of $Z_{p^{n}}[B]$ is equal to $v(n, B)$ if $\nu(n-1, B)<\nu(n, B)$ for all $n$ ([2]).

By corollary 3. the last property is true for all finite $p$-groups. It means that determination of nilpotency classes of nilpotent wreath products has an important application in the theory of modular group rings.

Theorem 4. If $B$ is the group defined in the theorem 1 , then the nilpotency class of the radical of $Z_{p}[B]$ equals

$$
v(1, B)=\sum_{i=1}^{L} \sum_{j=1}^{r(j)}(i p(i, j)-1)+1,
$$

and the length of the Jennings-series of $B$ equals

$$
\alpha=p^{-1} \max _{1 \leq i \leq L} i p(i, 1) .
$$

Proof: Combining theorem 1. and corollary 3. we obtain the statement (omitting the term depending on the $n$ ).

Example. Similarly to the example 4.3 in [5] determine the $\left.\nu\left(n, C_{p^{m}}\right\} C_{p}\right)$ (where $C^{p m}$ denotes a cyclic group of order $p^{m}$ ).

Let $\left.B=C_{p^{m}}\right\} C p, A=C_{p^{n}}$ and $K$ be the base group of $B$. Then $|B|=p^{m p+1}$ and by the arguments in [7] $B / K$ abelian, $\gamma_{2}(B) \subset K$, $\gamma_{1}(B) / \gamma_{2}(B)=C_{p^{m}} \times C_{p}, r(i)=1, p(i, 1)=p$ for $i=2,3, \ldots, m(p-1)+1$. Thus by the theorem 1. the class of $G=A ? B$ is also

$$
v(n, B)=p^{m}(1+n(p-1))+(p-1) \frac{m(p-1)+2}{2}(m(p-1)+1)
$$

Theorem 5. Let

$$
\left.\left.\left.\left.G=\left(\ldots\left(A_{k}\right\} A_{k-1}\right)\right\} \ldots\right\} A_{2}\right)\right\} A_{1}
$$

where $A_{j}=A_{j, 1} \times \ldots \times A_{j, r(j)},\left|A_{j, i}\right|=p^{\alpha(j, i)}$,

$$
p^{\alpha(j, 1)} \geq p^{\alpha(j, 2)} \geq \ldots \geq p^{\alpha(j, r(i))} \quad(j=1,2, \ldots, k)
$$

then

$$
\begin{gather*}
c l(G) \geq \prod_{j=1}^{k-1}\left(\sum_{i=1}^{r(j)}\left(p^{\alpha(j, i)}-1\right)+1\right)+\prod_{j=1}^{k-2}\left(\sum_{i=1}^{r(j)}\left(p^{\alpha(j, i)}-1\right)+1\right)(\alpha(k, 1)-1) \\
\cdot\left(p^{\alpha(k-1,1)-1}(p-1)+1\right) \tag{2}
\end{gather*}
$$

If $r(j)=1$ for all $j=1,2, \ldots, k$ or $\alpha(k, 1)=\alpha(k, 2)=\ldots=\alpha(k, r(k))$ then the equality holds in (2).

Proof. We apply the induction by the number of wreath factors. If $j=k-1$, then

$$
\begin{gathered}
\left.c l\left(A_{k}\right\rangle A_{k-1}\right)=\sum_{i=1}^{r(k-1)}\left(p^{\alpha(k-1, i)}-1\right)+(\alpha(k, 1)-1)+(\alpha(k, 1)-1) \cdot \\
\cdot p^{\alpha(k-1,1)-1}(p-1)+1 .
\end{gathered}
$$

If $\left.\left.\left.A=\left(\ldots\left(A_{k}\right\} A_{k-1}\right)\right\} \ldots\right)\right\} A_{j-1}$ then $\left.\left.\operatorname{cl}\left(A_{p}\right\} A_{j}\right) \geq \operatorname{cl}\left(C_{p}\right\} A_{j}\right) \cdot \operatorname{cl}(A)$ because in the case of $\exp (Z(A))=p$ by theorem 2. $\left.c l(A\} A_{j}\right)=v\left(1, A_{j}\right) c l(A)$ (see also [4] theorem 2.5) and $\exp (Z(A)) \geq p, s(\omega) \geq 1$ for all $1 \leq \omega \leq c$.

$$
\text { As } \left.c l\left(C_{p}\right\} A_{j}\right)=\sum_{i=1}^{r(j)}\left(p^{z(j, i)}-1\right)+1
$$

the induction hypothesis implies the statement of theorem 5 .
If $\exp (A j)=p$ for all $j=1,2, \ldots, k$ then

$$
c l(G)=\sum_{i=1}^{k-1} \prod_{j=1}^{r(i)}\left(p^{\alpha(i, j)}-1\right)+1 \quad \text { holds }
$$

If every $A_{j}(j=1.2, \ldots, k)$ is cyclic, then reducing the determination of nilpotency class of $G$ to the determination of nilpotency class of two cyclic groups ([8]), we obtain

$$
c l(G)=\alpha(k, 1)\left(p^{\sum_{i=1}^{k-1} \approx(i, 1)}-p^{\sum_{i=1}^{k-1} \approx(i, 1)-1}\right)+p^{\sum_{i=1}^{k-1} x(i, 1)-1} .
$$

This completes the proof.

## References

1. Jennings, S. A.: The structure of the group ring of a p-group over a modular field Trans. Amer. Math. Soc. 50 (1941), 175-185.
2. Buckiey, J.: Polinominal functions and the wreath products - III. J. of Math. 14 (1970) 274-282.
3. Sandling, R.: Modular augmentation ideals - Proc. Camb. Phil. Soc. 71, (1972) 25-32.
4. Sandling, R.: Subgroups dual to dimension subgroups - Proc. Camb. Phil. Soc. 71 (1972) 33-38.
5. Morley, L. J. and Perkel, M.: The nilpotency class of extensions of certain p-groups Communications in algebra (8 (11), 1053-1069 (1980).
6. Marconi Riccardo: Sulla classe di nilpotenza dei prodotti intrecciati - Bollettino U.M.I. Algebra e Geometria Serie VI. Vol. II-D.N.1. 9-19. (1983).
7. ЛАКАТОШ, П.: О скруктуре сплетения двух циклических групп порядков степеней простого числа. Publ. Math., 1974, tom. 22. pp. 293-305.
8. ЛАКАтош, П.: Класс нильпотентности кратных сплетений цикличечких групп порядков степени простого числа. Publ. Math. 1985. tom. 31. pp. 153-156.
