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Introduction

Ideal series of semigroups [1] play an important role in the examina-
tion of semigroups which have proper two-sided ideals. But the corresponding
theorems cannot be used when left simple (or right simple or simple) semi-
groups are considered. So it is a natural idea that we try to use the group-
theoretical methods (instead of the ring-theoretical ones) for the examination
of these semigroups.

The purpose of this paper is to find a suitable type of subsemigroups
of left simple semigroups which makes possible for us to generalize some
notions (the notion of the normal series and the composition series of groups)
and some results concerning the groups to the left simple semigroups. We
note that the subsemigroups we are looking for are the reflexive unitary
subsemigroups of left simple semigroups.

For notations and notions not defined here, we refer to [1] and [2].

1. Reflexive unitary subsemigroups

As it is known [1], a subset H of a semigroup S is said to be reflexive
in S if ab € H implies ba ¢ H for all a, b¢ S.

We say that a subset U of a semigroup S is left [right] unitary in S (see
(1) if ab, a € U impliesb ¢ U [ab, b¢ U implies a € U] for all a, b € S. A subset
of S which is both left and right unitary in S is said to be unitary in S.

We note that if 4 € B are subsemigroups of a semigroup S and B is
unitary in S, then A is unitary in B if and only if A4 is unitary in S. In this
paper we shall use this fact without comment.

It can be easily verified that, in a group, the unitary subsemigroups
are exactly the subgroups, and the reflexive unitary subsemigroups are ex-
actly the normal subgroups. So the notion of the reflexive unitary subsemi-
group of a semigroup can be considered as a generalization of the notion of the
normal subgroup of a group.
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Reflexive unitary subsemigroups are important in the description of
the group congruences of left simple semigroups. To show this importance, we
need the following.

Let S be a semigroup and H a non-empty subset of S.

Let
H...a={(st)e85x8: sat€ H}, a€S.

We can define a relation Py(S) on S as follows:
Py(S)={(a.b)€SxS: H...a=H...b}.

It can be easily verified that P.(S) is a congruence on S, such that ¥ =
={c€S: H...c=0}isa PF( )-class and an ideal of 8. P,(S) is called
the principal congruence on S determined by H (see [1]).

If we eonsider and fix a semigroup S then, for a subset H of a subsemi-
group NN of S, the principal congruence on IV determined by H will be denoted
by P,(IN). We shall use P, instead of P, (S). For short, we shall use N/P,
instead of N/P,(N). Py, N will denote the restriction of P,, to N, that is
PN = P,(S) N (NxN).

We note that if & a is congruence on a semigroup S then we shall not
distinguish the congruence classes of § modulo o from the elements of the
factor semigroup Sjz.

Let S denote a left simple semigroup. Then. by Theorem 10.34, Corol-
lary 10.35 and Exercize 17 for § 10.2 of [1].

if H is a reflexive unitary sub-
semigroup of S then the factor semigreup S/P,, is a group with identity

H
element H and, converselv, if P is a congruence on S such that S/P is a group
with identity H then H is a reflexive unitarv subsemigroup of § and P = Py,

The following theorem is important for the next.

Theorem 1. Every right unitary subsemigroup of a left simple semigroup
is left simple.

Proof. Let N be a right unitary subsemigroup of a left simple semi-
group S. Consider two arbitrary elements ¢ and b in NN. Then there is an ele-
ment s in S such that sa = b. As I is right unitary in S, it follows that s ¢ NV
which implies that IV is left simple. Thus the theorem is proved.

The following theorem shows that, fixing a reflexive unitarv subsemi-
group H of a left simple semigroup S, there is a one-to-one correspondence
hemeen the set of all unitary subsemigroups of S containing H and the set of
all subgroups of S/P,;. In this connection the reflexive unitery subsemigroups
correspond to the normal subgroups of S/P,

Theorem 2. Let H C N be subsemigroups of a left simple semigroup
S such that H is reflexive ond unitary in S. Then N is unitary in S if and only
if N is saturated by P, and N|P,, is a subgroup of S/P,. In this case Py(N) =
= P,IN. If N is unitary in S, then it is also reflexive in S if and only if N/P,
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is a normal subgroup of S|P, If this is the case, then (S|P )[(N|Py,) is isomorphic
with S|P,,.

Proof. Assume that N is a unitary subsemigroup of S with H < N.
Let a ¢ N be arbitrary. As S is left simple, there are elements u, v in N such
that wav € H. As H is reflexive in S, rua € H. Since IV is unitary in S, vu € N.
So, for every b § IV, it follows that vub ¢ N from which we get ubv ¢ IN. Thus
ubv § H and so (a, b) € P;; which means that N is saturated by Pj. Since
the inclusion PN = P,(N) follows from the definition of P,,/N and P,(N),
we must omnly show that P,(IN) € P, N. To show this last inclusion, let o
and b be arbitrary elementsin N with (a, b) € P, (N). We prove (a, b) € Py|N.
Assume, in an indirect way. that (a, b) § P,IN. Then there are elements
x,y in S such that either xay € H and xby ¢ H or xay § H and by ¢ H;
we consider only the first case. Since H is reflexive in S, it follows that yxa € H
and yxb € H. As a € N and N is unitary in S, we get yx € N. Thus, for an ar-
bitrary element h in H, it follows that yxeh ¢ H and yxbh € H. Since yx and
h are in N, we have (a, b) € P,(IN) which contradicts the assumption (a, b) €
€ Py(IN). Consequently, (a.b) € P,IN, that is P,{N) = P,IN.

It is evident that N/P, is a subsemigroup of S/P,. Let [b] ¢ N/P,
be arbitrary, where [b] denotes the congruence class of S modulo P, con-
taining b. From [b] [b] 71 € H, it follows that [b] 72 ¢ IV, because Nis unitaryin S.
Thus N/P, is a subgroup of S/P,. Conversely, if N D H is saturated by
P,; and N/P, is a subgroup of S/P,;, then N is a unitary subsemigroup of S.
Next, consider two arbitrary elements ¢ and b in S, and let » denote the
canonical homomorphism of S onto S/P,. Then ab ¢ N if and only if awbw €
€ Now. So N is reflexive in S if and only if Nw is a normal subgroup of S/P,.
To prove theisomorphism between S/P,, and (S/P}/(N/P,)= G, let § denote
the canonical homomorphism of S/P, onto G. Then

S = {s€S: swj is the identity of G}

equals N and (0f) o(wf) = Py (see Theorem 10.34 of [1]). Thus S/P,, is
isomorphic with G. The theorem is proved.

Next we consider other properties of reflexive unitary subsemigroups
of left simple semigroups.

Theorem 3. If H and N are subsemigroups of an arbitrary semigroup
S such that H is reflexive and unitary in S and HN N == @, then H N N is «
reflexive unitary subsemigroup of N and (H, N}|P, isisomorphic with NP, . ..

Proof. Let H and N he subsemigroups of a semigroup S such that H
is reflexive and unitary in S and H 1 NV == @. It can be easily proved that
H N Nis a reflexive unitary subsemigroup of N. We may assume S = {H, N).
Let (a, b) € Py for some a, b € N. We note that P, is the principal congruence
on S = (H,N) determined by H. Then, for every x.y € N, xay € H (1N
if and only if xby ¢ HN N as H is reflexive in S and N is a subsemigroup. So
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(a,b) € Py n(N), that is PN C P, y(IN). Next we show that Py, (V)<
C Py|N. Let a,b € N with (a, b) € Py, (V). Assume, in an indirect way,
that (a, b) § P, |N. Then there are elements x,y in S such that, for example,
xay € H and xby § H. Since H is the identity element of S/P, and S = (H,
N>, there are elements u and v in N with (x, u) € Py and (y. v) € P,
Using (xay, uav) € P, and (xby, ubv) € Py several times, we have uav
€ H and ubv € H. Since u, v € N, the last result contradicts (@, b) €
€ Py n(IN). Noting that, for any x € S, there exists u € N such that (x, u) €
€ Py, we can see that (H, N)/P, is isomorphic with N/P, .

Theorem 4. If H and N are unitary subsemigroups of a left simple
semigroup S such that H is reflexivein S, then (H, N} is ¢ unitary subsemigroup
of S and (H, N> = HN. If N is also reflexive in S, then HN is reflexive in S.
In this case HN = NH.

Proof. Let H and N be unitary subsemigroups of a left simple semigroup
S. Assume that H is reflexive in S. Consider two elements b, and b, in IV with
(by. b,) € Py. By Theorem 1, N is left simple. Thus there is an element x
in N such that xb, = b,. So (xby, ub,) € P, for every u € H. Since P, is a
group congruence on S, we have (x, u) € P, which means that H ) N = 0,
Evidently H N N is a unitary and reflexive subsemigroup of V. Let

K= {s€8: (s,n)¢€P, for some n€ N}.

Then K is a subsemigroup of S. We show that K is unitary in S. Let a, b be
arbitrary elements in S. Assume a, ab € K. Then there is an element a, in N
such that (a, a;) € P,,. Since H (1 N is a reflexive unitary subsemigroup of
N and N is left simple, Py, (IV) is a group congruence on N. Thus there is
an element r in IV such that ra; € H N N. Then ra € H which impHles (rab, b ) ¢
€ P,. Since rab = r(ab) € NK € K, it follows that b ¢ K. Thus K is left
unitary in S. To show that K is right unitary in S, assume a, ba € K. Let k
denote the product ba. Then there are elements a,, k; € N such that (a,, a) €
€ P, and (k;, k) € P,,. Since IV is left simple, there is an element ¢ in IV such
that ga, = k,. Then (ba, qa) € P,. Since P, is a group congruence on S, it
follows that (b, g) € P, that is b ¢ K. Thus K is right unitary in S. So K is
unitary in S. The proof of the first assertion will be complete if we show that
HN = K. Since H, N C K, it follows that HN < K. Let k be an arbitrary
element of K. Fix an element v of NN such that (v, k) € Py. Since S is left
simple, there is an element s in S such that sv = k which means that s € H
and so k¢ HN. Thus K ¢ HN, that is K = HN. Assume that N is also re-
flexive in S. Then H NN N is a reflexive unitary subsemigroup of S and both
H and N are saturated by Py . Let o denote the canonical homomorphism
of S onto S/P, .. Then Hw and Neo are normal subgroups of S/P.
and so NoHw = NHw is a normal subgroup of S/Py. 5. Let L = {s¢€S:
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sw € NHo}. Then, by Theorem 2, L is a reflexive unitary subsemigroup of
S and L = HN = NH.

Theorem 5. (Zassenhaus lemma). Let S be o left simple semigroup
and A, B, M, N subsemigroups of S. Assume that A and B are unitary in S
and A N B = 6. If N and M are reflexive unitary subsemigroups in A and B,
respectively, then N(4A N M) and M(B \ N) are reflexive unitary subsemigroups
in N(4 N B) and M(B N A), respectively, such that N(A 0 B)|Pysnpy 18
isomorphic with M(A N B)/P yy 5 ny

Proof. First we prove that 4 (1 M == §. By the assumption for 4 and
B. A N B is a unjtary subsemigroup in B. Since M is a reflexive unitary
subsemigroup in B, we get that M(A (N B) is a unitary subsemigroup in B
and so in S such that (M, 4 N B) = M(4 N B). So, for every element x
in M, there are elements v € M and ¢ € 4 N B such that x = ye. Since M
is unitary in B, it follows that ¢c€ M and so A N M= A4 N BN M=40.
We can prove B [1 N ==, in a similar way. By the assumption for 4 and N,
A (1 M and B (1 N are reflexive unitary subsemigroups in 4 M B. Then, by
Theorem 4, (4 N M, BN Ny = (4 N M)(B N N) is a reflexive unitary sub-
semigroup in 4 (N B.

Let C, D and H denote the semigroups 4 1 B, (4 N M)(B N N) and
C/Pp, respectively. Since C is left simple (Theorem 1), H is a group. We give
a homomorphism p of NC onto H. Let x be an arbitrary element in NC. Then
there exist elements ¢ € N and ¢ € C such that x = ac. Let xp be equal to the
congruence class of C module P,(C) containing the element ¢. We prove that
p is uniquely determined. Let ¢, € N and ¢; € C be arbitrary elements with
a,¢; = x. We prove that (¢, ¢;) € P,(C). Since H is a group, there is an element
¢’ in C such that c¢,¢’ € D. Thus acc” = a,c,¢’ € ND. Since D is unitary in
A (B, it is unitary in 4. Consequently (N, D) = ND is a unitary subsemi-~
group of 4 and so of S. Since acc’ € ND and a € (N, D) = ND., it follows
that c¢” € ND. This implies that cc” € D, because N and C are unitary subsemi-
groups of S and

NDNC=((NND)U (N —D)D)NC=((NND)D)NC)U
(N—=DD)NC)=(NNDD)NC=DNC=D.

Consequently (¢, ¢,) € Pp. Thus p is uniquely determined. It can be
easily verified that p maps NC onto H. To prove that p is a homomorphism,
let x and y be arbitrary elements of NC. Then xy € NC. Thus there are elements
€1: Cos €3 In C and ay, 4y, a5 in N such that x = a6, ¥ = ay¢, and xy = agc,.
We show that (c,¢s. c3) € Pp(C). Since a,6,a,6, = ascy, we have (a,6,a564, ase5) €
€ P, (A). Since N is the identity element of AP, it follows that (c.c,, ¢;) €
€ P, (A). To prove (¢,s, ¢3) € Pp(C), we must show that, foreveryu, v € 4 N B,
both uc,c,v and ucyy are either in D or in C — D. First we show that, for

o
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every t, s € C, the condition (¢, 5) € P,(A) implies that both ¢ and s are either
in D orin C — D. Since N ¢ (N. D) = ND and ND is a unitary subsemi-
group of S, we get that ND is saturated by P,(4). Since ND 1 C = D (as
we have shown above), it follows that (¢, s) € P,(4) implies either ¢, s ¢ D or
t,5 & D. for every t, s € C. Let u and v be arbitrary elements in €. As v and v
are in A4, taking into consideration that (c¢,, c¢3) € Py(4), we get
(weycov, ucgr) € Py(A) and uc,cov, ucgy are in C. Thus both weyic,v and uecgw
are either in D or in € — D. Consequently (ci¢,, ¢;) € Pp(C) which means that
p is a homomorphism of NC onto H. Let ¥ = {y ¢ NC: yp = D}. We
prove that ¥ = N(A N A). Since 4 N M < B, we have N(4A N M) < Y.
To prove Y < N(4 N M), let v be an arbitrary element in Y. Then there are
elements a «1 dc D with v = ad. Then y ¢ ND = N(4 N M) (B N N) =
o N(A N fvf)z"\’ NAA NM)=NHANM) as (N, ANM>= N4 NM)
and N is left s unpl Thus ‘_3/ C N(4 N M). Consequently Y = N(4 N M).

Let ¢ = p~lop. Then a group congruence on NC and NClg= H,
Sinee N(4 N 1[) = Y is the 1dent1tv element of NCfg, we get that N(4 N i)
is a reflexive unitary subsemigroup of NC = N(A N B) and the factor group
N(A N B)| Py ar a1 1s isomorphic with H. We can prove,in asimilar way, that
M(N N B) is a reflexive unitary subsemigroup of M(A4 N B) and that M(4 N
N B)P,;p-x, is isomorphic with H. By the transitivity of the isomor-
phism, the theorem is completely proved.

2. Normal series and composition series

Definition 6. Let S be a left simple semigroup. By a normal series of S
we mean a finite sequence

S§S=8,28>2...085, (1)

of subsemigroups S, of S with the properiy that S; is a reflexive unitary subsemi-
group of S,_q. for i =1, ..., k. The integer k is called the length of the normal
series (1). The factors of (1) are S;_|Pg. i=1.... k.

We say that the normal series (1) and

S=H,DH 2...2H, )

are isomorphic if n =k and there exists a permutation i —i* of the integers
1,2, ... ksuch that S;_,/Ps and H__,[Py, are isomorphic, fori =1,..., k.
Moreover, we say that (2) is a refinement of (1) if n > k and every H, equals
some Sj, i=1...,nj=1...4%

Theorem 7. In a left simple semigroup S, every two normal series
have refinements ending with the same subsemigroup of S.
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Proof. Let
S=8,252...085, (3)
and

S=H,DH D2...0H, (4)

be two normal series of a left simple semigroup S. It is evident that S; N Hj
is a reflexive unitary subsemigroup of S; 1 H;_, and S; N H; is a reflexive
unitary subsemigroup of S, N Hj, i=1 ...k and j=1,....n So

S=8,28>2...5.28.NMH 25, NH,2...25,NH, (5)
and

S=H,2HD...0H HNS, 2HNS,2...2HNS, (6

1 o=

T

b

are two normal series of S such that (5) and (6) are refinements of (3) and (4),
respectively.
Theorem 8. (Schreier refinement theorem) In a left simple semigroup,
every two normal series have isomorphic refinements.
Proof. Let
$S=5,252...25 (M

and

S=H,2H >...2H, ®)

be two normal series of a left simple semigroup S. By Theorem 7, we may
assume S, = H .

For every i=1,..,k and j=0,1,..., 1 let
Sji = Si(Si—l n Hj)
and, for every i=0,1,.. ,kand j==1,...,n, let
Hji == Hj(Hj—1 N Si)'

By Theorem 5. S;; and H; are reflexive unitary subsemigroups of S;_,; and
H;, ;. respectively, such that S, ,,/Ps is isomorphic with S;; ,/Pp..
Since

Hj—l = HJOQHJ’,_lgHJl_D_HJ[‘ — Hj

and

Sii=38u251,25:;23,;=S.

i

i=1,...,k and j=1,..., n, it follows that

S=8,28:285:2...285=58,28,2...25 ©)

(o))
#*
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and
S=H,oDH,DH,D>...0H =H,,DH, o...0H, (10

are isomorphic normal series of S such that (9) and (10) are refinements of
(7) and (8), respectively.
Definition. 9. 4 normal series

S=5=282...25

of a left simple semigroup S will be called a composition series of S if S;_; = S,
and S,_ has no reflexive unitary subsemigroup Twith S, DT> S8, i=1,...,
k -+ 1. Here S,..1 denotes the empty sel.

Remark. It can be easily verified that a normal series of a left simple
semigroup is a composition series if and only if 5, ;== §,, every factor
S;-1|Ps, is a simple group, i=1,....k and S, has no proper reflexive
unitary subsemigroups.

Theorem 10. (Jordan—Hélder theorvem). If a left simple semigroup
S has a composition series, then every two composition series of S are isomorphic
with each other.

Proof. By Theorem 8, it is trivial.

Example. Let (Sy;30) and (S,; +) be left simple semigroups such
that S; N S, = @ and there is an isomorphism « of S, onto S,. On the set
F =8, US,. define an operation as follows

eof if e, fe S,
of = e -+ fx if egS, and f¢S,;
T jext+f if ec S, and f¢S,

ex~tofz—l  if e, f€S,

for every e, f€F. It can be shown that F is a left simple semigroup such that
S; is a reflexive unitary subsemigroup of F.
Remarks. If
§=8,282...205 *)

is a normal series of a left simple semigroup S, then every S,,i=0,1,...,k,
is a unitary subsemigroup of S and so they arve left simple semigroups (see
Theorem 1). If (*) is a composition series, then S, has no proper reflexive
unitary subsemigroups. So it is a natural problem to describe the structure of
left simple semigroups which have no proper reflexive unitary subsemigroups.

By Theorem 1.27 of [1], a semigroup is left simple and contains an idem-
potent if and only if it is a direct product of a left zero semigroup and a group.
So we can prove easily that a left simple semigroup with idempotenis has no
proper reflexive unitary subsemigroups if and only if it is a left zero semigroup.

Problem. Find oll left simple semigroups without idempotents which have
no proper reflexive unitary subsemigroups.
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