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Introduction 

Ideal series of semigroups [1] play au important role in the examina­
tion of semi groups ·which have proper t"wo-sided ideals. But the corresponding 
theorems cannot be used when left simple (or right simple or simple) semi­
groups are considered. So it is a natUl'al idea that we try to use the group­
theoretical methods (instead of the ring-theoretical ones) for the examination 
of these semigroups. 

The purpose of this paper is to find a suitable type of subsemigroups 
of left simple semigroups which makes possible for us to generalize some 
notions (the notion of the normal series and the composition series of groups) 
and some results concerning the groups to the left simple semigroups. WOe 
note that the subsemigroups we are looking for are the reflexive unitary 
subsemigroups of left simple semigroups. 

For notations and notions not defined here, we refer to [1] and [2]. 

1. Reflexive unitary suDsemigroups 

As it is known [1], a subset H of a semigroup S is said to be reflexive 
in S if ab E H implies ba E H for all a, bE S. 

We say that a subset U of a semigroup S is left [right] unitary in S (see 
[1]) if ab, a E U implies b E U [ab, bE U implies a E U] for all a, b E S. A suhset 
of S which is both left and right unitary in S is said to be unitary in S. 

We note that if A ~ Bare subsemigroups of a semigroup Sand B is 
unitary in S, then A is unitary in B if and only if A is unitary in S. In this 
paper we shall use this fact without comment. 

It can he easily verified that, in a group, the unitary subsemigroups 
are exactly the suhgroups, and the reflexive unitary suhsemigroups are ex­
actly the normal suhgroups. So the notion of the reflexive unitary subsemi­
group of a semigroup can he considered as a generalization of the notion of the 
normal suhgroup of a group. 
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Reflexive unitary subsemigroups are important in the description of 
the group congruences of left simple semigroups. To show this importance, we 
need the following. 

Let S be a semigroup and H a non-empty subset of S. 

Let 
H . .. a = {(s, t) E Sx S: sat E H}, a E S. 

We can define a relation PH(S) On S as follows: 

PH(S) = {(a,b)ESxS: H ... a=H ... b}. 

It can he easily verified that PH(S) is a congruence on S, such that W H = 

= {c E S: H ... c = o} is a PfI(S)-class and an ideal of S. PfI(S) is called 
the principal congruence on S determined by H (see [1]). 

If we consider and fix a semigroup S then, for a subset H of a suhsemi­

group IV of S, the principal congruence on 1V determined by H will he denoted 
by PH(N). We shall use PfI instead of PH(S). For short, we shall use N/PH 
instead of NIPfI(N). PH;l\, will denote the restriction of PH to 1\', that is 
PfliN PfI(S) n (N;cV). 

We note that if Cl. a is congruencc on a semigrou p S then we shall not 
distinguish the congruence classes of S modulo Cl. from the elements of the 
factor semi group SiCl.. 

Let S denote a left simple semigroup. Then, hy Theorem 10.34, Corol­
lary 10.35 and Exercise 17 for § 10.2 of [1], if H is a l'eflexiYe lmitary suh­
semigroup of S then the factor semigroup SI PH is a group 'with identity 
element H and, conversely, if P is a congruence on cS such that SjP is a group 
with identity H then H is a reflexive unitary subsemigroup of Sand P PH' 

The following theorem is important for the next. 
Theorem 1. Every right unitary sllbsemigroup of a left simple semigroup 

lS left simple. 
Proof. Let N he a right unitary subscmigroup of a left simple semi­

group S. Consider two arhitrary elements a and b in N. Then there is an ele­
ment s in S such that sa = b. As N is right unitaTY in cS, it follo',-5 that s E N 
which implies that N is left simple. Thus the theorem is proved. 

The follo'wing theorem shows that, fixing a reflexive unitary suhsemi­
group II of a left simple semigroup S, there is a one-to-one correspondence 
hetween the set of all unitary subsemigroups of S containing H and the set of 
all suhgroups of SIP H' In this connection the reflexive unitary suhsemigroups 
correspond to the normal suhgroups of SjPH • 

Theorem 2. Let H t;;;; N be subsemigroups of a left simple semigroup 
S such that His l'eflexi1:e and unitary in 8. Then N is unitary in S if and only 
if N is saturated by PH and NIP H is a subgroup of SIP H' In this case P H( N) = 

= P H:.N. If N is unitary in S, then it is also reflexive in S if and only if Ni P J-I 
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is a normal subgroup of SIP H' IfthZ:s is the case, then (SIP H)/(N!PH~ is 7:somorphic 
with SjPN • 

Proof. Assume that N is a unitary subsemigroup of S ·with H <;:: N. 
Let a E N be arbitrary. As S is left simple, there are elements u, v in N such 
that uav EH. As H is reflexive in S, vua EH. Since N is unitary in S, vu E N. 
So, for every b ~ N, it follows that vllb ~ N from which we get llbv ~ N. Thus 
ubv ~ H and so (a, b) ~ PH which means that N is saturated by PH' Since 

the inclusion PHiN PH(N) fo11O\·;s from the definition of PHW and PH(N), 
we must only show that PH(N) <;:: PH)\[. To show this last inclusion, let a 
and b be arbitrary elements in N with (a, b) E PH(N). We prove (a, b) EPHiN. 
Assume, in an indirect way, that (a, b) ~ P HIN. Then there are elements 
x,y in S such that either xay E Hand xby E H or xay ~ Hand xby E H; 
we consider only the first case. Since H is reflexive in S, it follo"ws that yxa EH 
and yxb ~ H. As a E Nand N is unitary in S, we get yx E N. Thus, for an ar­
bitrary element h in H, it follows that yxah EH and yxbh E H. Since yx and 
h are in N, wc- haye (a, b) E PH(N) "which contradicts the assumption (a, b) E 
E PH(N). Consequently, (a, b) E P H:1V, that is P H(1V) = PH1N. 

It is evident that N/PH is a subsemigroup of SjPH. Let [h] E NIPH 
be arbitrary, "where [b] denotes the congruence class of S modulo PH con­
taining b. From [b] [b] -1 E H, it fo11o"ws that [b] -1 E N, because N is unitary in S. 
Thus NjPH is a subgroup of S/PH' Conversely, if N::::2 H is saturated by 
PH and NIPH is a subgroup \If SjPw then ]'V is a unitary subsemigroup of S. 
Next, consider t,· ... o arbitrary elements a and b in S, and let (;) denote thc 
canonical homomorphism of S onto SI PH' Then ab E lV if and 0111y if a(;)bw E 
E Nw. So N is reflexive in S if and only if IVco is a normal subgroup of S/Pw 
To prove the isomorphism hetween SjP Nand (SjP H)/(NIP H) = G, let /3 denote 
the canonical homomorphism of SjPN onto G. Then 

Sf = {s E S: sw;'J is the identity of G} 

equals .1Y and ((;)(3)-10(0)/3) = PN (see Theorem 10.34 of [1]). Thus SIPN is 
isomorphic with G. The theorem is proyed. 

Next we consider other properties of reflexive unitary subsemigroups 
of left simple semigroups. 

Theorem 3. If Hand N are subsemigrollps of an arbitrary semigroup 
S such that H is reflexive and unitary in Sand Hn TV 7'- 0, then H n N is a 
reflexive unitary sllbsemigroup of Nand (H, N)/PH is isomorphic with NIP H,·.,S. 

Proof. Let Hand N he subsemigroups of a semigroup S such that H 
is reflexive and unitary in Sand H n N .0. It can be easily proved that 
H n .N is a reflexive unitary subsemigroup of .1V. We may assume S (H, N). 
Let (a, b) E PH for some a, bEN. We note that PH is the principal congruence 
on S = (H, N) determined by H. Then, for every x, yEN, xay EH nN 
if and only if xby E Hn N as H is reflexive in Sand .N is a suhsemigroup. So 
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(a,b) EPHnN(N), that is PHiN ~ PHnN(N). Next we show thatPHnN(N)~ 
~ PH/N. Let a, bEN with (a, b) E PHnN(N). Assume, in an indirect way, 
that (a, b) ~ PHIN. Then there are elements x,y in S such that, for example, 
xay EH and xby ~ H. Since H is the identity element of SjPH and S = <H, 
N), there are elements u and v in N with (x, u) E PH and (y. v) E PH' 
Using (xay, uav) E PH and (xby, ubv) E PH several times, we have uav 
E Hand ubv ~ H. Since u, v E N, the last result contradicts (a, b) E 
E PHnN(N). Noting that, for any x E S, there exists u E N such that (x, u) E 
E PH' we can see that <H, N)jPH is isomorphic with N/PHnN . 

Theorem 4. If Hand N are unitary sllbsemigroups of a left simple 
semigroup S sllch that H is reflexive in S, then <H, N) is a unitary subsemigrollp 
of Sand <H, N) = HN. If N is also reflexive in S, then HN is reflexive in S. 
In this case HN = NH. 

Proof. Let Hand N be unitary subsemigroups of a left simple semigroup 
S. Assume that H is reflexive in S. Consider two elements bl and b2, in N with 
(b I , bz) E PH' By Theorem 1, N is left simple. Thus there is an element x 
in N such that xb I = bz• So (xb l , ub2 ) E PH> for every II E H. Since PH is a 
group congruence on S, 'we have (x, u) E PH which means that H n N g. 
Evidently H n N is a unitary and reflexive subsemigroup of N. Let 

K {s E S: (s, n) E PH for some nE N}. 

Then K is a subsemigroup of S. We show that K is unitary in S. Let a, b he 
arbitrary elements in S. Assume a, ab E K. Then there is an element aI in N 
such that (a, a1) E PH' Since H n N is a reflexive unitary suhsemigroup of 
Nand N is left simple, PHnN(N) is a group congruence on N. Thus there is 
an element l' in N such that ra l E H n N. Then ra EH which implies (rab, b) E 
E PH' Since rab = r( ab) E NK ~ K, it follows that b E K. Thus K is left 
unitary in S. To show that K is right unitary in S, assume a, ba E K. Let k 
denote the product ba. Then there are elements a2, kl E N such that (a z' a) E 
E PH and (kp k) E PH' Since N is left simple, there is an element q in N such 
that qa2 = k l • Then (ba, qa) E PH' Since PH is a group congruence on S, it 
follows that (b, q) E PH' that is b E K. Thus K is right unitary in S. So K is 
unitary in S. The proof of the first assertion will be complete if we show that 
HN = K. Since H, N ~ K, it follows that HN ~ K. Let k he an arbitrary 
element of K. Fix an element v of N such that (v, k) E PH' Since S is left 
simple, there is an element s in S such that sv = k which means that s E H 
and so k E HN. Thus K ~ HN, that is K = HN. Assume that N is also re­
flexive in S. Then H n N is a reflexive unitary suhsemigroup of S and both 
Hand N are saturated by P HnN. Let 0) denote the canonical homomorphism 
of S onto SjPHnN . Then Hw and Nw are normal suhgroups of SjPHnN 
and so NwHw NHw is a normal suhgroup of SjPHnN . Let L = {s E S: 
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sw E NHw}. Then, by Theorem 2, L is a reflexive unitary subsemigroup of 
Sand L = HN = NH. 

Theorem 5. (Zassenhaus lemma). Let S be a left simple semigroup 
and A, B, 2\1, N subsemigroups of S. Assume that A and B are unitary in S 
and A n B ,/ 0. If Nand 111 are reflexive unitary subsemigroups in A and B, 
respectively, then N(A n M) and J\I(B n N) are reflexive unitary subsemigroups 
in N(A n B) and M(B n A), respectively, such that N(A n B)/PN(AnM) is 
isomorphic with _il.1(A n B)/PAf(BnN)' 

Proof. First we prove that A n lVI 0. By the assumption for A and 
B, A n B is a unitary subsemigroup in B. Since i1-1 is a reflexive unitary 
subsemigroup in B, we get that 111(A n B) is a unitary subsemigroup in B 
and so in S such that (M, A n B) = lvI(A n B). So, for every element x 
in iVI, there are elements y E .:1[ and C E A n B such that x = yc. Since 111 
is unitary in B, it follows that c E kI and so A n kI A n B n lH .' / 0. 
We can prove B n N " 0, in a similar way. By the assumption for 1vI and N, 
A n lVI and B n N are reflexive unitary subsemigroups in A n B. Then, by 
Theorem 4, (A n lvI, B n N) = (A n lvI)(B n N) is a reflexive unitary sub­
semigroup in A n B. 

Let C, D and H denote the semigroups A n B, (A n llf)(B n N) and 
CfPD , respectively. Since C is left simple (Theorem 1), H is a group. We give 
a homomorphism p of NC onto H. Let x be an arbitrary element in NC. Then 
there exist elements a E Nand c E C such that x = ac. Let xp be equal to the 
congruence class of C modulo PD(C) containing the element c. We prove that 
p is uniquely determined. Let al E N and Cl E C be arbitrary elements with 
alcl = x. We prove that (c, Cl) E PD(C). Since His a group, there is an element 
c' in C such that clc' E D. Thus acc' = alclc' END. Since D is unitary in 
A n B, it is unitary in A. Consequently (N, D) ND is a unitary subsemi­
group of A and so of S. Since acc' END and a E (N, D) = ND, it follows 
that cc' END. This implies that cc' E D, because Nand C are unitary subsemi­
groups of Sand 

ND n C = (((N n D) U (N D))D) n C = (((N n D)D) n C) U 

(((N - D)D) n C) = ((N n D) D) n C = D n C = D. 

Consequently (c, Cl) E PD' Thus P is uniquely determined. It can be 
easily verified that p maps NC onto H. To prove that p is a homomorphism, 
let x and y he arbitrary elements of NC. Then xy ENC. Thus there are elements 
Cl' c2 , c 3 in C and al , a2 , a3 in lV such that x = alcl , Y = aZc2 and xy = a3c3• 

We show that (c1C Z' c3) E PD(C). Since alc1a2cZ = a3c3, we have (a lclaZc2, a3c3) E 
E PN(A). Since N is the identity element of AI PN' it follows that (C 1C2, c3) E 
E PN(A). To prove (clC Z' c3) E PD(C), we must sho'w that, for every u, v EA n B, 
both uc1czv and llC 3V are either in D or in C - D. First 'we show that, for 

5 



66 A. XAGY 

every t, sEC, the condition (t, s) E P]V(A) implies that both t and s are either 
in D or in C D. Since N c <N, D) = ND and J.VD is a unitary suhsemi­
group of S, 'we get that ND is saturated by P]V(A). Since ND n C D (as 
we have shown ahove), it follows that (t, s) E PN(A) implies either t, sED or 
t, sED, for every t, sEC. Let 1I and v be arhitrary elements in C. As II and v 
are in A, taking into consideration that (c l C2, C3) E PdA), we get 
(UC 1C2V, uc3v) E Px(.A) and UC1C2u, HC 3V are in C. Thus both llC l C2V and llC3V 

are either in D or in C D. Consequently (C l C2, c3) E PD(C) 'which means that 
p is a homomorphism of NC onto H. Let Y = {y E NC: yp = D}. We 
prove that Y = N(A n .M). Since A n -,v! R we have N(A n NI) c Y. 
To prove Y ~ N(A n IV!), let y be an arbitrary element in Y. Then there are 
dements a EA, dE D with y = ad. Then Y E ND = N(A n .JJ) (B n N) c:::;; 

~ N(A n Ji)iV c:::;; l\!2(A n J1) N(A n J1) as <iV, A n lv1) = N(A n Jf) 
and N is left simple. Thus Y c:::;; 1V(A n J1). Consequently y~ = N(A n J1). 

Let q p-lop . Then q is a group congruence on NC and NCjq = H. 
Since N(A n -"VI) = Y is the identity element of NCjq, we get that N(A n M) 
is a reflexive unitary suhsemigroup of Ne = N(A n B) and the factor group 
N(A n B)f P NCA .\l) is isomorphic ,"ith H. \,,"i e can prove, in a similar way, that 
.l"H(N n B) is a reflexive unitary sulJsemigroup of Jl(A n B) and that .lvl(A n 
n B)PM(Bi N) is isomorphic with H. By the transitivity of the isomor­
phism, the theorem is completely proved. 

2. Normal series and composition series 

Definition 6. Let .5 be a left simple semigrollp. By a normal series of S 
u:e mean a finite sequence 

s (1) 

of subsemigrollps Si of S with the property that Si is a reflexive unitary subsemi­
group of Si-I' for i 1, ... , k. The integer k is called the length of the normal 
series (1). The factors of (1) are Si-liPs" i = 1, ... , k. 
We say that the normal series (1) and 

S (2) 

are isomorphic if n = k and there exists a permutation i -. i* of the integers 

1,2, ... , k such that Si-liPs, and H,*-l/PIii* are isomorphic, for i = 1, ... , k. 
Moreover, we say that (2) is a refinement of (1) if n k and every Hi equals 
some Sj' i = 1, ... , 71; j = 1, ... , k. 

Theorem 7. In a left simple semigroup S, every two normal series 
have refinements ending with the same subsemigrollp of S. 
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Proof. Let 

(3) 

and 

(4) 

be two normal series of a left simple semigroup S. It is evident that Si n Hj 

is a reflexive unitary suhsemigroup of Si n H j _ 1 and Si n H j is a reflexive 
unitary subsemigroup of Si-1 n Hr i 1, ... , k and j 1, ... , n. So 

s (5) 

and 

s 

are two normal series of S such that (5) and (6) are refinements of (3) and (4), 

respectively. 
Theorem It (Schreier refinement theorem) In a left simple semigroup, 

every two normal series hare isomorphic refinements. 
Proof. Let 

(7) 

and 

(8) 

be two normal series of a left simple semigroup S. By Theorem 7, we may 

assume SIc = JIn' 
For every i = 1, ... , k and j = 0, 1, ... , n, let 

Sji = S;(Si-1 n H j) 

and, for every i = 0, 1, ... , k and j = 1, ... , n, let 

Hji H/Hj_ 1 n S;). 

By Theorem 5, Sji and Hji are reflexive unitary suhsemigroups of Sj-l,i and 
Hj ,i-1' respectively, such that Sj-1,;/PSji is isomorphic with Sj,i-l/PHji 

Since 

H. 1 = H·o ::) H .. 1::) H .. ::) H.! = H. 
)- ) - ),1- - )1 - ) , ) 

and 

S. I=SO·::)S. l·::)S .. ::)S.=SI··' 1- 1 - )-,1 - )1 - nz 

i = 1, ... , k and j = 1, ... , n, it follows that 

5* 
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and 
S = H 10 :::) Hn ;;;2 H12 ;;;2 ••• :::) HI = H 2o :::) H2l ;;;2 ••• :::) Hn (10) 

are isomorphic normal series of S such that (9) and (10) are refinements of 
(7) and (8), respectively. 

Definition. 9. A normal series 

s = So 2 SI 2 ... ;:;2 SI: 

of a left simple semigrollp S will be called a composition series of S if Si-l 7- Si 
and S'_l has no reflexive unitary sllbsemigrollp T with Si-I:::) T:::) Si' i = 1, ... , 
k + i. Here S k+ 1 denotes the empty set. 

Remark. It can be easily verified that a normal series of a left simple 
semigroup is a composItIOn series if and only if S,_l . ' Si' every factor 
Si-liPs, is a simple group, i 1, ... , k, and Sk has no proper reflexive 
unitary subsemigroups. 

Theorem 10. (J ordan- Holder theorem). If a left simple semigroup 
S has a composition series, then every two composition series of S are isomorphic 
with each other. 

Proof. By Theorem 8, it is trivial. 
Example. Let (Sl;O) and (S2; +) be left simple semigroups such 

that SI n S2 = £) and there is an isomorphism et; of SI onto S2' On the set 
F = SI U S2' define an operation as follows 

I 
eof 
e fx 

eif-
- ex +f 

ex-lofx- 1 

if e,fESl 
if e E S2 
if e E SI 
if e,jES2 

and fESl 
and fESz 

for every e,fEF. It can be shown that F is a left simple semigroup such that 
Sj is a reflexive unitary subsemigroup of F. 

Remarks. If 
(*) 

is a normal series of a left simple semigroup S, then every Si' i = 0, 1, ... , k, 
is a unitary subsemigroup of S and so thcy are left simple semigroups (see 
Theorem 1). If (*) is a composition series, then Sk has no proper reflexive 
unitary subsemigroups. So it is a natural problem to describe the structure of 
left simple semigroups which have no proper reflexive unitary suhsemigroups. 

By Theorem 1.27 of [1], a semigroup is left simple and contains an idem­
potent if and only if it is a direct product of a left zero semigroup and a group. 
So we can prove easily that a left simple semigroup with idempotents has no 
proper reflexive unitary subsemigroups if and only if it is a left zero semigrollp. 

Problem. Find all left simple semigroups without idempotents which have 
no proper reflexive unitary subsemigroups. 
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