MINIMAL CONGRUENCES ON AUTOMATA

R. H. Oehmie
The University of Iowa, U.S.A.
Received July 7, 1988

1. Introduction

In this paper we study some of the relationships between the minimal congruences on an automaton and the structure of the automaton. In Section 2 we show there are three different types of minimal congruences that could exist on an automaton. Analogously to the study of modules over a ring [3] we have made assumptions that the universal congruence on the automaton is the least upper bound of certain classes of minimal congruences. We examine some of the implications of these assumptions.

2. Preliminaries

Let S be a semigroup and A a set such that there is a composition mapping

$$
\theta: A \times S \rightarrow A
$$

denoted by

$$
(a, s) \rightarrow \theta(a, s)=a s
$$

The mapping θ has the property that

$$
(a s) t=a(s t)
$$

for all a in A and s and t in S. We shall call the triple (A, S, θ) an S-automaton, or, more simply, an automaton. Generally, when there is no cause for confusion we shall refer to the automaton by the symbol A.

A congruence τ on A is an equivalence relation on A such that if $\left(a, a^{\prime}\right) \in \tau$ and $s \in S$ then $\left(a s, a^{\prime} s\right) \in \tau$.

The set of all congruences on A will be denoted by $R(A)$ and considered as a subset of the lattice $E(A)$ of all equivalence relations on A. We shall use the same ordering on $R(A)$ that is commonly used on $E(A)$, namely, set inclusion. The set $R(A)$ is closed under the two operations \cap and U. For two
congruences α and β in $R(A)$ these operators are defined, respectively, as the largest element of $R(A)$ contained in both α and β and the smallest element of $R(A)$ containing both α and β.

There is a smallest congruence ι in $R(A)$ that is defined by

$$
\left(a, a^{\prime}\right) \in \iota \Leftrightarrow a=a^{\prime} \text { and } a, a^{\prime} \in A
$$

and a largest congruence v in $R(A)$ that is defined by

$$
\left(a, a^{\prime}\right) \in \nu \Leftrightarrow a, a^{\prime} \in A
$$

If B is a subset of A that is also an S-automaton using the operation θ then B is called subautomaton of A. The relation μ defined by

$$
\left(a, a^{\prime}\right) \in \mu \Leftrightarrow a, a^{\prime} \in B \text { or } a=a^{\prime}
$$

is a congruence relation on A.
A congruence τ is said to be minimal if $\iota \neq \tau$ and if $\iota<\sigma<\tau$ implies $\iota=\sigma$ or $\sigma=\tau$.

Let τ be a congruence on A. Let U be an equivalence class of τ containing the element e. If for every $d \in S$ such that $U d \subseteq U$ we have $e d=e$, then e is called a zero of τ. If $U=\{e\}$ then e is called a trivial zero of τ; otherwise, e is called a nontrivial zero of τ.

Theorem 1. [1]. If τ is a minimal congruence on A then either

1. Every nontrivial equivalence class of τ has exactly two distinct elements in it, $\{a, b\}$ such that $a \notin b S$ and $b \notin a S$. All the nontrivial equivalence classes are of the form $\{a, b\} c$ for $c \in S^{1}$. For every c, d in S we have $a c=a d$ if and only if $b c=b d$. Finally, if $a c \neq b c \neq b$ then there is a $d \in S$ such that $a c d=a$ and $b c d=b$.
2. Every nontrivial equivalence class has exactly one zero. If a is a nonzero of τ then every nontrivial equivalence class of τ is contained in $a S^{1}$. If e is a nontrivial zero of τ then every nontrivial zero of τ is in $e S^{1}$.
3. There are no nontrivial zeros of τ. If a is a nonzero of τ then every nontrivial equivalence class of τ is contained in $a S^{1}$.
[We use S^{1} to represent S with an identity element 1 adjoined and such that 1 behaves unitarily on A.]

3. Type 1 congruences

If Ω is a set of congruences on A then $\cup \Omega$ will denote the least upper bound of Ω in the lattice of congruences on A. In this section we shall assume that Q is the set of all congruences of Type 1 and that $\cup \Omega=v$.

We give a generalization of a previous result. [Theorem 1, 2].

An automaton A is strongly connected if for each a in A we have $A=a S$. An automaton is cancellative if for $a, b \in A$ and $s \in S$ we have $a s=b s$ implies $a=b$.

Theorem 2. A is an automaton such that $v=U \Omega$ if and only if A is the disjoint union of two or more strongly connected, cancellative subautomata and A has the additional property that for any two elements a and b in A we have as $=a t$ implies $b s=b t$ for all s and t in S.

Proof: The proof follows closely to the proof in the more special case except for minor changes in the language. Therefore we shall refer the reader to [2].

4. Type 2 congruences

In this section we let Ω be the set of all minimal congruences of Type 2 . We assume $v=\cup \Omega$. We also assume A is cyclic, i.e., there exists a $c \in A$ such that $c S^{1}=A$.

Let U_{1} be the set of generators of A_{0} and I_{1} the set of nongenerators of A. Clearly, I_{1} is a subautomaton of A. Now there must be a $\mu \in \Omega$ such that

$$
(a, b) \in \mu, a \in U_{1}, \text { and } b \in I_{1}
$$

If $\omega \in I_{1}$ then since a is a generator of A we must have some $t \in S$ such that $a t=\omega$. But then $(\omega, b t) \in \mu$. By [Theorem 1, 1] it follows that $\omega=b t$. Therefore b is a generator of I_{1} and I_{1} is cyclic.

We can continue the process, letting U_{2} be all the generators of I_{1}, and I_{2} all the nongenerators. The same argument as above applies, so by an induction argument. we have sequences

$$
\begin{gather*}
U_{1}, U_{2}, \ldots, U_{n}, \ldots \\
I_{1}, I_{2}, \ldots, I_{n}, \ldots \tag{1}
\end{gather*}
$$

such that U_{i} is a nonempty set of generators of I_{i-1}.
Lemma 3. Every subautomaton of A is cyclic.
Proof: Let \mathscr{J} be the set of all subautomata of A that are not cyclic and assume \mathscr{g} is not empty. We can partially order \mathscr{I} by inclusion. If \mathscr{E} is a simply ordered subset of \mathscr{I} we let $\cup \mathscr{S}$ be the union of all the elements of \mathfrak{S}. Call it M^{*}. If M^{*} is cyclic then it has a generator c. But for c to be in M^{*} there must be an $M \in \mathscr{S}$ such that $c \in M$. But then since $c S^{1}=M^{*} \supseteq M$ we must have $c S^{1}=M$ an M is cyclic. Since this is a contradiction, $M^{*} \in \tilde{d}$. Therefore with the assumption that \mathfrak{I} is not empty we have maximal elements in $\mathfrak{\Sigma}$. Let M be one of them.

Define an equivalence relation ϱ by $(u, v) \in \varrho$ if $u, v \in A$ and

$$
\left\{s \mid s \in S^{1} \text { and } u s \in M\right\}=\left\{s \mid s \in S^{1} \text { and } v s \in M\right\}
$$

It follows readily that ϱ is a congruence on A. If ϱ intersects any minimal congruence nontrivially then that congruence is contained in ϱ. If ϱ contains every minimal congruence then $v \leq Q$ and $v=\varrho$. But if c is a generator of A and v is in M then $(c, v) \in 0$. Therefore there must be a minimal congruence μ such that $\mu \cap \varrho=t$. Now let $(a, b) \notin \mu$ where $a \neq b$. Since $(a, b) \ddagger \mu$ there is an $s \in S$ such that at most one of the pair as, $b s$ is in M. Say $b s \in M$ and as $\ddagger M$. But then $(a s) S^{1} \cup M$ is a subautomaton that properly contains M. Therefore $(a s) S^{1} \cup M$ is not in \mathcal{D}^{1} and hence it must have a generator ω. Then $\omega \in(a s) S^{1}$ or $\omega \in M$. In either case we have a contradiction. Therefore we must have \mathfrak{f} empty and the lemma holds.

Lemma 4. The subautomata of A are simply ordered by inclusion.
Proof. Let M and M^{\prime} be two subautomata. Then $M \cup M^{\prime}$ is a subautomaton which must have a generator u. But then $u \in M$ or $u \in M^{\prime}$; i.c., $M^{\prime} \subseteq M$ ои $M \subseteq M^{\prime}$.

Lemma §. Let K be the intersection of all the nonzero I_{i} that appear in (1). Then $K=\Phi$ or the sequence of $U_{i}^{\prime} s$ is finite and K is the last of the sequence.

Proof. We first assume the sequences terminate at U_{n}. This means that $I_{n}=\Phi$ and every element of I_{n-1} is a generator of I_{n-1}. Therefore $U_{n}=I_{n-1}=K$. So assume that the sequence does not terminate and that K is not empty. If $k \in K$ and $k s \notin K$ for some $s \in S$ then $k s \notin I_{i}$ for some i. But then $k s \in U_{i}$ and is a generator for I_{i-1}. It is immediate that k is in I_{i-1} and a generator of I_{i-1}. But then $k \in U_{i}$ which is a contradiction. Hence K is a subautomaton of A.

There must be a $\| \in \Omega$ such that $(a, b) \in \mu$ where $a \notin K$ and $b \in K$. We can assume $a \in U_{j}$ for some j. Since $b \in I_{j-1}$ there is an $s \in S^{1}$ such that $a s=b$. Therefore a cannot be a zero of μ and it follows that b must be the zero of μ. Now if $t>j$ we can find a $u \in S$ such that $a u \in I_{i}$. So also is $b u \in I_{i}$. By [Theorem 1, 1] we have a contradiction. Therefore there must be no $t>j$ and the sequence of U_{i}^{\prime} s terminates. This is a contradiction. Therefore $K=\Phi$.

We will now examine the situation in which the sequence of U_{i}^{\prime} sterminate. This can be guaranteed by placing a minimal chain condition on subautomata of A. Therefore we shall assume

$$
A=U_{1} \cup \ldots \cup U_{n}
$$

In the next three results we relate minimal congruences in Q to certain types of functions on A.

Lemma 6. Assume $i \neq n$ and f is a mapping $U_{i} \rightarrow U_{i+1}$ such that

1. If as $\in U_{i}$ then $f(a s)=f(a) s$;
2. If $a s \in I_{i}=U_{i+1} \cup \ldots \cup U_{n}$ then $a s=f(a) s$;
3. If $f(a)=f(b)$ then $a=b$ or there exists an s in S such that exactly one of $b s$ and as is in U_{i+1}.
Let $\mu_{a}=\{a\} \cup\{f(a)\} \cup\{c f(a)=f(c)\}$ for all $a \in U_{i}$. Then the μ_{a} and all necessary singletons form a decomposition of A that relates to a minimal congruence on A.

Proof: First assume $b \in \mu_{a}$. We wish to show if $b \in U_{i}$ then $\mu_{b}=\mu_{a}$. Clearly, if $a=b$ then $\mu_{a}=\mu_{b}$. So assume $b \in U_{i}$ and that $f(a)=f(b)$. Then $a \in\{c \mid f(c)=f(b)\}$ and $a \in \mu_{b}$. Therefore it follows that $\mu_{a}=\mu_{b}$. Now let $s \in S$. Again, if $a=b$ we have $a s=b s$ and $b s \in \mu_{a s}$. If $a \in U_{i}$ and $b=f(a)$ then either as $\in U_{i}$ or as $\in I_{i}$. If the former, then $b s=f(a) s=f(a s)$ and $b s \in \mu_{a s}$. If $a s \in U_{i}$ then $a s=f(a) s=b s$ and again $b s \in \mu_{a s}$. If we still assume $b \in \mu_{a}$ but assume in addition that $f(a)=f(b)$, then $a s, b s \notin U_{i}$ implies $a s=$ $=f(a) s=f(b) s=b s$. If $a s \notin U_{i}$ and $b s \in U_{i}$, then $a s=f(a) s=f(b) s=f(b s)$ and as $\in \mu_{t s}$, which implies $b s \in \mu_{a s}$. Finally, if both as and $b s$ are in U_{i} then $f(a s)=f(a) s=f(b) s=f(b s)$. This shows that our chosen decomposition is compatible with the operators on A given by S. Therefore it corresponds to a congruence μ on A.

Next assume δ is a congruence not equal to ι and such that $\delta \leq \mu$. Assume $(a, b) \in \delta$ and $a \neq b$. If both a and b are in U_{i} then select an s such that $a s \in U_{i}$ and $b s ¢ U_{i}$ (or vice versa). We still have $(a s, b s) \in \delta$. Also, there is an m such that $a s m=a$. Therefore $(a, b s m) \in \delta$ where $b s m \in U_{i+1}$ and hence equal to $f(a)$. Now if $d \in\{c \mid f(c)=f(a)\}$ and $a t=d$ then

$$
b s m t=f(a) t=f(a t)=f(d)=f(a)=b s m .
$$

Therefore $(a t, b s m t) \in \delta$ and $(d, a) \in \delta$. This means $\delta_{a}=\mu_{a}$ and $\delta=\mu$.
Lemma 7. Let μ be a minimal congruence on A. Then there exists an i such that the nonzeros of μ are in U_{i} and the nontrivial zeros of μ are in U_{i+1}.

Proof: Let b be a nontrivial zero of μ and $b \in U_{i+1}$. Let δ be the congruence defined by the subautomata I_{i}. If $\mu \leq \delta$ then every nontrivial element of μ is in I_{i}. But b is a generator of I_{i}. Therefore for every nontrivial element c of μ there is an s such that $b s=c$. But this contradicts b being a nontrivial zero. Therefore we must assume μ is not less than δ and $\mu \cap \delta=\iota$. Therefore it follows that every nontrivial equivalence class of μ contains exactly one element of I_{i} which must be a nontrivial zero. Now every nontrivial zero is generated by any other nontrivial zero. Thus all nontrivial zeros are in U_{i+1}. Still assume b is a nontrivial zero in U_{i+1}. Assume ($\left.c, b\right) \in \mu$ where $c \in I_{j}$ and $j \leq i$. There is an s such that $c s \in U_{i}$. We of course have $(c s, b s) \in \mu$ and $a s \neq b s$. If β is the congruence related to the subautomaton I_{s-1} then $\mu \leq \beta$ and every nonzero of μ is in U_{i}.

Theorem 8. Let μ be a minimal congruence in Ω. Then μ is defined by a function f as in Lemma 6 .

Proof: Let a be a nonzero of μ. Therefore there is a unique b in U_{i+1} such that $(a, b) \in \mu$ by Lemma 7. Let $f(a)=b$. Clearly, 1) and 2) of Lemma 6 hold for this choice of f. Define a relation α on A by $(c, d) \in \alpha$ if and only if

$$
\left\{s \mid c s \in I_{i}\right\}=\left\{s \mid d s \in I_{i}\right\}
$$

Assume $(c, d) \in \mu, c \neq d, c, d \in U_{i}$ and $(c, d) \in \alpha$. Then $\mu \leq \alpha$. Therefore if b is the unique zero such that $(c, b) \in \mu$ we also have $(c, b) \in \alpha$. But this says $c S \subseteq I_{i}$ and c is not in U_{i}. This is a contradiction. Therefore we can assume there is an s in S such that as $\in U_{i}$ and $d s \notin U_{i}$. But then $d s \in U_{i+1}$ and 3) of Lemma 6 holds.

We will conclude this section with a result on the semigroup S. We will continue to assume that the universal congruence, v, is the union of the congruence in Ω.

In addition, we shall assume that S has a minimal right ideal, J. For any a in A we have $a J$ a subautomaton of S. Therefore $a J=I_{i}$ for some i. If $i \neq n$ then let $K=\left\{s \mid s \in \mathscr{J}\right.$ and $\left.a s \in U_{n}\right\}$. Clearly, K is a right ideal of S and we must have $K=J$. Therefore $a J=U_{n}$ for all $a \in A$. We also have that $s J$ is a minimal right ideal for each $s \in S$ and $L=U s J$ is a minimal two-sided ideal of S. Then $a L=U_{n}$ for every a in A. Let $a \neq b$ be two elements of A. There exist sequences $a=c_{1}, c_{2}, \ldots, c_{n}=\dot{b}$ in A and $\mu_{1}, \ldots, \mu_{n-1}$ in Q such that $\left(c_{i}, c_{i+1}\right) \in \mu_{i}$. Now let l be an element of L and consider the sequence $c_{1} l_{,} c_{2} l_{,} \ldots, c_{n} l$. All of these elements are in U_{n}. But by Lemma 7 no equivalence class of any μ_{i} contains more than one element of U_{n}. Therefore since $\left(c_{i} l, c_{i+1} l\right) \in$ $\in \mu_{i}$ we must have $c_{i} l=c_{i+1} l$ for all i. Therefore $A l$ is a singleton for all l in L.

Theorem 9. If S has a minimal two-sided ideal L then $A l$ is a singleton.

5. Type 3 congruences

In this section we assume v is the least upper bound of the congruence of Type 3 .

Theorem 10. A is a strongly connected S-automaton.
Proof: If μ is a minimal congruence of Type 3 then every nonzero of μ generates a subautomaton that contains every other nonzero of A. Now if a and b are two distinct elements of A then they are sequences $a=c_{1}, \ldots, c_{n}=$ $=b$ of elements of A and $\mu_{1}, \ldots, \mu_{n-1}$ of minimal congruences of Type 3 such that

$$
\left(c_{i}, c_{i+1}\right) \in \mu_{i} .
$$

But then c_{i} is in the subautomaton generated by c_{i+1} and c_{i+1} is in the subautomaton generated by c_{i}. Hence it follows that $a \in b S$ and $b \in a S$. Therefore A is strongly connected.

References

1. Oefmie, R. H.: On minimal right congruences of a semigroup, Tamkang J. Math. 16 (1985) 29-35.
2. Oefmie, R. H.: Some semisimplicity conditions for semigroups, Tamkang J. Math. 16 (1985) $105-116$.
3. Stenström, B.: Rings of Quotients, Springer-Verlag, 1970, Berlin.

Robert H. Oehmee The University of Iowa;
Iowa City, Iowa 52242

