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1. Introduction

In this paper we study some of the relationships between the minimal
congruences on an automaton and the structure of the automaton. In Section
2 we show there are three different types of minimal congruences that could
exist on an automaton. Analogously to the study of modules over a ring [3]
we have made assumptions that the universal congruence on the automaton
is the least upper bound of certain classes of minimal congruences. We ex-
amine some of the implications of these assumptious.

2. Preliminaries

Let S be a semigroup and A4 a set such that there is a composition map-
ping
6 : AxXS ~ 4
denoted by

(a, s) — O(a. s) = as.
The mapping 0 has the property that
(as)t = a(st)

for all @ in A and s and #in S. We shall call the triple (4, S, §) an S-autom-
aton, or, more simply, an automaton. Generally, when there is no cause for
confusion we shall refer to the automaton by the symbol A.

A congruence 7 on A4 is an equivalence relation on A4 such thatif (e, a’) €7
and s € S then (as, a’s) €.

The set of all congruences on A will be denoted by R(A) and considered
as a subset of the lattice E(A) of all equivalence relations on 4. We shall use
the same ordering on R(A4) that is commonly used on E(A), namely, set in-
clusion. The set R(A) is closed under the two operations | and U. For two
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congruences « and f§ in R(A) these operators are defined, respectively, as the
largest element of R(A) contained in both « and f and the smallest element of
R(A) containing both « and p.

There is a smallest congruence ¢ in R(A4) that is defined by

(a,a’Y€t<=a=¢a and a,a” € 4
and a largest congruence v in R(4) that is defined by
(a,a)Eve=a,a’ €A

If B is a subser of 4 that is also an S-automaton using the operation
 then B is called subautomaton of 4. The relation « defined by

(a,a)E€p=a,a €B or a=a’

is a congruence relation on 4.
A congruence T is said to be minimal if 1 == 7 and if + <7 ¢ < T implies
L= ¢ or ¢ =T
Let 7 be a congruence on 4. Let U be an equivalence class of v contain-
ing the element e. If for every d € S such that Ud € U we have ed = ¢, then
e is called a zero of 7. If U = {e} then e is called a trivial zero of 7; otherwise,
e is called a nontrivial zero of 7.
Theorem L. [1]. If 7 is a minimal congruence on A4 then either
1. Every nontrivial equivalence class of 7 has exactly two distinct elements
in it, {a, b} such that a ¢ bS and b § aS. All the nontrivial equivalence
classes are of the form {a,b}c for ¢ € 8*. For every ¢.d in S we have
ac = ad if and only if be = bd. Finally, if ac == be 5= b then there is a
d € S such that acd = a and bed = b.

Every nontrivial equivalence class has exactly one zero. If ¢ is a nonzero

[N]

of T then every nontrivial equivalence class of v is contained in S
If e is a nontrivial zero of 7 then every nontrivial zero of 7 is in eS™.
3. There are no nontrivial zeros of 7. If @ is a nonzero of 7 then every non-
trivial equivalence class of 7 is contained in aS.
[We use S* to represent S with an identity element 1 adjoined and such that
1 behaves unitarily on A.]

3. Type 1 eongruences

If Qis a set of congruences on A then U Q2 will denote the least upper
bound of Q in the lattice of congruences on A. In this section we shall assume
that Q is the set of all congruences of Type 1 and that U Q = ».

We give a generalization of a previous result, [Theorem 1, 2].
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An automaton A is strongly connected if for each a in 4 we have 4 = aS.
An automaton is cancellative if for a, b € 4 and s € S we have as = bs implies
a == b.

Theorem 2. A is an automaton such that vy = U Q if and only if 4 is the
disjoint union of two or more strongly connected, cancellative subautomata
and A4 has the additional property that for any two elements a and b in 4
we have as = at implies bs = bt for all s and #in S.

Proof: The proof follows closely to the proof in the more special case

except for minor changes in the language. Therefore we shall refer the reader
to [2].

4. Type 2 congruences

In this section we let 2 be the set of all minimal congruences of Type 2.
We assume » = U 2. We also assume A is cyclic. i.e., there exists a ¢ € 4
such that ¢S* = A.

Let U, be the set of generators of 4, and I, the set of nongenerators of
A. Clearly, I, is a subautomaton of 4. Now there must be a g € O such that

(a,b) €p, ac U, and bel,.

If w € I, then since a is a generator of 4 we must have some t € S such that
at = . But then (o, bt) € p. By [Theorem 1, 1] it follows that w = bt. There-
fore b is a generator of I, and I, is cyclic.

We can continue the process, letting U, be all the generators of I;, and

I, all the nongenerators. The same argument as above applies, so by an in-
duction argument we have sequences

U,U,...U,...

1

I,I,...1

no ot

such that U, is a nonempty set of generators of I;_;.

Lemma 3. Every subautomaton of 4 is cyclic.

Proof: Let § be the set of all subautomata of 4 that are not cyeclic
and assume § is not empty. We can partially order J by inclusion. If § is a
simply ordered subset of § we let U § be the union of all the elements of 8.
Call it M*. If M* is cyclic then it has a generator c. But for ¢ to be in M*
there must be an M € § such that ¢ € M. But then since ¢S = M* D M we
must have ¢S*'= M an M is cyclic. Since this is a contradiction, M* €8,
Therefore with the assumption that § is not empty we have maximal elements
in §. Let M be one of them.
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Define an equivalence relation o by (u,2) €p if u,v € 4 and
{sls € S* and us € M} = {sls ¢ ST and vs € M}.

It follows readily that o is a congruence on A. If ¢ intersects any minimal
congruence nontrivially then that congruence is contained in 0. If p contains
every minimal congruence then » < p and v = p. But if ¢ is a generator of
A and v is in M then (c, v) § 0. Therefore there must be a minimal congruence
u such that x# ) p==1. Now let (a,b) § 4 where a == b. Since (a, b) ¢ u there
is an s € S such that at most one of the pair as, bs is in M, Say bs € M and
as § M. But then (as)S* U M is a subautomaton that properly contains M.
Therefore (as)S* U M is not in & and hence it must have a generator o. Then
o € (as)S! or »» € M. In either case we have a contradiction. Therefore we must
have J empty and the lemma holds.

Lemma 4. The subautomata of A4 are simply ordered by inclusion.

Proof. Let M and M’ be two subautomata. Then M U M’ is a sub-
automaton which must have a generator u. But then v € M or u € M’; ie.,
M c Mor M C M.

Lemma 5. Let K be the intersection of all the nonzero I, that appear
in (1). Then K = @ or the sequence of U]s is finite and K is the last of the

sequence.
Proof. We first assume the sequences terminate at U,. This means
that I, =@ and every element of I, ;| is a generator of [,_,. Therefore

U,=1,_, = K. So assume that the sequence does not terminate and that
K is not empty. If k€ K and ks § K for some s € S then ks ¢ I, for some 1.
But then ks € U, and is a generator for I, ,. It is immediate that kisin I,_,
and a generator of I, ;. But then %k € U, which is a contradiction. Hence K is
a subautomaton of A.

There must be a p € £2 such that (a, b) € ;2 where a § K and b€ K. We
can assume a € U, for some j. Since b € I;_, there is an s ¢ S* such that as = b.
Therefore a cannot be a zero of p and it follows that b must he the zero of u.
Now if t > j we can find a u € S such that au € I,. So also is bu € I,. By [Theo-
rem 1, 1] we have a contradiction. Therefore there must be no ¢ >> j and the
sequence of U] s terminates. This is a contradiction. Therelore K = @.

We will now examine the situation in which the sequence of Uj s termi-
nate, This can be guaranteed by placing a minimal chain condition on sub-
automata of A. Therefore we shall assume

A=TU,U...UU,

In the next three results we relate minimal congruences in @ to certain
types of functions on 4.

Lemma 6. Assume i == n and fis a mapping U; — U, such that

1. If as € U, then flas) = fla)s;
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2. Masel,=U,,.,U...U U, then as = f(a)s;

3. If f(a) = f(b) then a = b or there exists an s in S such that exactly
one of bs and as is in U, ..

Let p, = {a} U {fla)} U {c fla) = f(c)} for all a« € U,. Then the p, and all
necessary singletons form a decomposition of A that relates to a minimal
congruence on A.

Proof: First assume b € p,. We wish to show if b€ U; then y, = .
Clearly, if @ = b then p, = y,. So assume b € U, and that f(a) = f(b). Then
a € {c[flc) = f(b)} and a€ y,. Therefore it folows that u, = y,. Now let
s€S. Again, if « = b we have as = bs and bs € y,,. If a € U; and b = f(a)
then either as € U; or as € I,. If the former, then bs = f(a)s = f(as) and
bs € pyse If as € U, then as = f(a)s = bs and again bs € p .. If we still assume
b € p, but assume in addition that f(a) = f(b). then as, bs ¢ U, implies as =

= fla)s = f(b)s = bs. If us € U, and bs € U,, then as = fla)s = f(b)s = f(bs)
and as € j,,, which implies bs E g Flnaﬂy, if both as and bs are in U, then
flas) = fla)s = f(b)s = f(bs). This shows that our chosen decomposition is
compatible with the operators on 4 given by S. Therefore it corresponds to
a congruence u on A.

Next assume 0 is a congruence not equal to : and such that 6 <7 p.
Assume (a. b) € 4 and a s= b. If both a and b are in U, then select an s such
that as € U, and bs § U, (or vice versa). We still have (as, bs) € 6. Also, there
is an m such that asm = a. Therefore (a, bsm) € 6 where bsm € U,. , and hence

equal to f(a). Now if d € {c|f(c) = f(a)} and at = d then

bsmt = fla)t = f(at) = f(d) = f(a) = bsm.
Therefore (at, bsmt) € 6 and (d, a) € §. This means o, = p, and 0 = p.

Lemma 7. Let y be a minimal congruence on 4. Then there exists an i
such that the nonzeros of y are in U; and the nontrivial zeros of g are in U, ,.

Proof: Let b be a nontrivial zero of u and b ¢ U, ;. Let 6 be the con-
gruence defined by the subautomata I,. If 1 < 6 then every nontrivial element
of isin I, But bis a generator of I,. Therefore for every nontrivial element
¢ of u there is an s such that bs = ¢. But this contradicts b being a nontrivial
zero. Therefore we must assume y is not less than 6 and p N 6 = t. Therefore
it follows that every nontrivial equivalence class of u contains exactly one
element of I; which must be a nontrivial zero. Now every nontrivial zero is
generated by any other nontrivial zero. Thus all nontrivial zeros are in U, ;.
Still assume b is a nontrivial zero in U,.;. Assume (¢, b) € u where ¢ € I; and
J < t.Thereis an s such that ¢s € U,. We of course have (cs, bs) € yand as == bs.
If 5 is the congruence related to the subautomaton I,_; then u < f§ and
every nonzero of p is in U,

Theorem 8. Let y be a minimal congruence in 2. Then p is defined by
a function f as in Lemma 6.
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Proof: Let a be a nonzero of u. Therefore there is a unique b in U, ,
such that (a, b) € p by Lemma 7. Let f(a) = b. Clearly, 1) and 2) of Lemma 6
hold for this choice of f. Define a relation ¢ on A by (¢, d) €« if and only if

{sleseI,} = {slds € I,}.

Assume (¢, d) €y, cs=d, ¢,d € U; and (¢, d) € 2. Then p < o. Therefore if b
is the unique zero such that (c, b) € u we also have (¢, b) € «. But this says
¢S C I, and ¢ is not in U,. This is a contradiction. Therefore we can assume
there is an s in S such that as € U; and ds ¢ U,. But thends¢ U, , and 3)
of Lemma 6 holds.

We will conclude this section with a result on the semigroup S. We will
continue to assume that the universal congruence, », is the union of the
congruence in Q.

In addition, we shall assume that S has a minimal right ideal, J. For
any ¢ in 4 we have aJ a snbautomaton of S. Therefore e¢J = I, for some 1.
If i == n then let K = {s|s €3 and as € U,}. Clearly, K is a right ideal of S
and we must have K = J. Therefore aJ = U, for all a € 4. We also have that
sJ is a minimal right ideal for each s € Sand L = U sJis a minimal two-sided
ideal of S. Then al = U, for every a in 4. Let a == b be two elements of 4.
There exist sequences a = ¢, €y .. ¢y=10 in A4 and pu; ..., g, ; in @2
such that (c;, ¢;.,) € y;- Now let I be an element of L and consider the sequence
c,l, el ..., ¢, l. All of these elements are in U,. But by Lemma 7 ne equivalence
class of any ; contains more than one element of U,,. Therefore since (¢/l, ¢;.4l) €
€ p; we must have ¢l = ¢, for all {. Therefore 4] is a singleton for all I in L.

Theorem 9. If S has a minimal two-sided ideal L then Al is a singleton.

3. Type 3 eongruences

In this section we assume v is the least upper bound of the congruence
of Type 3.

Theorem 10. 4 is a strongly connected S-automaton.

Proof: If yis a minimal congruence of Type 3 then every nonzero of u
generates a subautomaton that contains every other nonzero of 4. Now if a

and b are two distinct elements of 4 then they are sequences « = ¢y, .. .. ¢, =
= b of elements of 4 and u,, ..., g, ; of minimal congruences of Type 3
such that

(€5 €141) € 14

But then ¢; is in the subautomaton generated by ¢;., and ¢, is in the sub-
automaton generated by c;. Hence it follows that @ € bS and b € aS. Therefore
A is strongly connected.
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