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1. Iniroduction

S

A

€ A and ¢ is a positive number we
g (lev &), if and only if f— g/l e,

Tt is easy to see that f= f(leve), and if f= g (leve) and g = L (lev &),
then generally it is not true that f= h (lev ¢).

Hra,e4. (k=0,1,2 ... n) then we shall say that

Let 4 be a normed algebra. If fl g
shall say that f equals to g at ¢ level; f=

P(x) = Z ax" = 0 (lev &) (1)

is an algebraic quasi equation at ¢ level.
Denote by E(A) the set of all algebraic quasi equations (over A).

In this lecture the special e-invariants of P(x), and the structure of
E(A) are investigated.

The material of this paper is strongly related to the works [1]. [2].

2. Basic lemmas

Three simple lemmas will be given first.
Lemma l. If f, g, h€ 4 and f= g (leve), g = h (lev §), then
f=h(lev(e + &)

Proof. Since /if — g!! <~ ¢ and |lg — h{| < &, we have

W=rhi=l—a+-—NZlf—ai+lg—hlzete (2

freg=h+tk

f+e—t+Rl=[f—"h

<et e (3)
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fg = hk (lev (e].[gll

Lemma 3. If f, g, h, k€ 4 and f= h (lev¢) and g = k (lev &), then
| + &fiR1D)-
Proof. Since [|[f — k|| < &, |lg — kl| < & we get

ifg — Bkl = |[(f — Mg+ k(g — B)j| < |if — R|| -
< eligll + E{jR]]

m is a non-negative integer number

Lemma 4. If f, g€ 4 and f= g (lev ¢), then mf = mg (lev me), where

lgll =+ llg — &Il [Irf] <
(4)
Proof. From !if —gll < ¢ “e.haxe

mf — mgj} = |[m(f — )| <
Lemmsa 5. If f, g ¢
negative integer n,

m|lf — gl < me.

(5)
fe = gf and f= g (lev ¢), then for arbitrary non-

fr=g'(lev (e [Max (lifll- llglD1™™)
Proof. Since ||f — gl| < &, and fg = gf. we have
gl +

I I"“"’ Jgti 1

=gl = if -

4 gl <
from which (6) follows

(6)

oA gl
n [Max([|f]], {lg{D]"*

(7)
3. Imvarianis

Now we give an important basic definition

Definition. Let x be a one to one map of 4 onto itself, We shall say

that % is an e-invariant transformation (shortly e-invariant) of P{x) if the
following condition holds: P(ax) =

itself.

P(x)(lev &), for all x € 4
Denote by G(A4) the set of all one to one transformations of A onto

It is easy to see that G(A4) is a group.
Denote by I,(P(x)), the set of all c-invariants of P(x).
We can see that the identical map of G(4) belongs to I (P(x)), and
if « € I(P(x)) then &t € J,(P(x)).
Since
l|P(xx) — P(x)|] < ¢ holds for all x € 4
P =) —

. we have
Pla—1x)!| = |IP(z—1x) — P(x)]] <
Lemma 6. If « € I(P(x)) and B € I; (P(x)), (¢ >
€ L. :(P()).

(8)

g >0), then af ¢
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Proof. Since
|| P((@f)x) — P(x)|| = [[P((@B)x) — P(fx) + P(fx) — P(x)|| <||P(x(Bx) —
— P + [[P(3%) — P()}| < ¢ + &, ©)
we obtain «f8 € I, . ;(P(x)), from which
I(P(x)) - I(P(x)) S I, (P(x)). (10)
follows.

The structure of the set of all I (P(x)) where ¢ >0, is very simple,
because if ¢ < &, then
I(P() < L(P(). (11)
Example 1. Now we suppose that P(x) = ap -+ a,.
Consider the folllowing transformation

awx = x -- b, {x, b€ A4).

In this case

Plox) = ay(x + b) + a;, (12)
and
[P(ax) — Px)[| = |[acb|i. (13)
Therefore if llagb|| < e, then
P(xx) = P(x), lev (¢). (14)

and ¢ is an e-invariant.

Example 2.
Consider the following transformation:

x if x=£u,v,
gx = 4§ u if x =7, (15)
v if x=u,

where x, u, v€ 4 and u=wv.

If P(x) = 2* -+ b, (beA), and |[u* — +?|| < &, then

P(zx) = P(x) (lev ¢). (16)
It is easy to see that
0 if x=u,v,
Plax) — P(x) =3 v* — v if x=u,
u? — 1?2 if x = . (17)

Since |ju* — ¢?|| < ¢ and (17), we have
P(xx) = P(x) (lev ¢). (18)
Therefore « is an e-invariant of P(x). Next we give three theorems.
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Theorem 1. If P(x) = 2" 4 a,x""* + ... + a,, where

n

%, Qg Qpp oo 0, € A and u, v €A, ustv, further |[P(u) — P(v)|| < &, then

x if x==u,o,
ex =1 u if x=wv,
v i x=u,

is an e-invariant of P(x).
Proof. It is easy to see that in our case

' A 0 if x = U, v, c
1 Plee) — Plx)f = { |P(u) — P(v)ll if x = u,uv. (20)
Since [|P(u) — P(v)}! = &, we have

Plax) = P(x) (lev &). (21)

Theovem 2. If P(x) = a@" + aa™1 + ...+ q,, where
X, Qs Gy - o 0, € A and u, v, p, ¢ are different elements of A further on

[ x if x=u.v x i x=p.gq
ax =1 u if x=uv, (22) pxr=1p if axa=gq (23)
v i x=u, q it x=p,
[P(u) — P(v)] e (24) [P(p) — Plg)| =< = (25)

then {e, z, 3. x5} is a group and its elements are e-invariants.

Proof. If x == u, v then ox = x, o®>x = x. If x = u, then «u = v and
a(eu) = av = u. If x = v, then av = u and o(or) = au = v. Therefore o = e,
(e denotes the unit element of G(4)). We can see that §* = e.

Since
x if x=uwv,pg
v if x=u,
(@P)x=<u if x=u, (26)
g i x=p,
p if x=g
and
IP@) — PO <& (27) P(p) — P@ <& (28)
we have
0 if x=u,v,p.q.
P(f)) — P = | [Pw) — P)]| if x=ur. (29)
\|[P(p) — Plgl] i x=p.g
from which
P — P(x)]| < e (30)

follows.
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From (22) and (23) we have
aff = Pa. (31)

Therefore {e, «, 3, «f} is a group and its elements are e-invariants.
Problem 1. Find all e-invariants of P(x).
Problem 2. Find all groups whose elements are e-invariants of P(x).

4, The structure of E(A)

Now we suppose that 4 is a commutative normed algebra.
Let P(x) = 0 (leve), Q(x) = 0 (lev &), and R(x) = (lev ) be elements
of E(A4). on which two operations will be defined as follows:

(P(x) = O(lev &) & (Q(x) = 0 (lev &)) = (P(x) + Qx) = 0 (lev (¢ + 7)), (32)
(P(x) = 0 (lev )) @ (Q(x) = 0 (lev &) ) = (P(x) Q(x) = 0 (lev 7). (33)

It is easy to see that the operations 4, @ are commutative and associa-
tive.

Therefore (E(4), ®), (E(4), ®) are commutative semigroups.

We get easily the following distribution law:

[(P(x) = 0 (lev £)) @ (Q(x) = 0 (lev £))] (R(x) = 0 (lev £) =

= (P(x)R(x) = 0 (lev £8)) ® (Q(x)R(x) = 0 (lev &&)). (34)
Denote by S(E(A), ¢) the :et of all P(x) = 0 (lev &) elements of E(A).
Lemma 7. F, = (S(E(4), 1), ®) is a semigroup and F,, where 0 <

< e<1lis an 1dea1 of F,.

Proof. If P(x) = 0 (lev 1) and @(x) = 0 (lev 1), then [P(x) = 0 (lev 1}] ®
® [0(x) = 0 (lev 1)] = [P(x) Q(x) = 0(lev 1)].

Since the operation ® is associative, F, is a semigroup.

If P(x) =0 (lev1) and Q(x) = 0 (leve), (0 < e < 1), then

[Plx) = 0 (lev ] @ [0(x) = 0 (lev £)] = [P(x) Q(x) = 0 (lev &)]. (35)
Therefore F, is an ideal of F,.

Theorem 3. The semigroup (E(4),®) can be represented as a union
of two disjoint subsemigroups.

Proof. Since Lemma 7. F, (0 < & <L 1) is a subsemigroup of (E(4),®).
Denote by F| the set of all elements Q(x) = 0 (lev 6) of E(A) where § > 1.

If R(x) =0 (lev 1), where 5 > 1 then (R(x) = 0 (lev 1)) € F,,
and
[Q(x) = 0 (evd)] @ [R(x) = 0 (lev )] = [Q(x)R(x) = 0 (ev nd)] e Fy; (36)

6%
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because in our case 16 >> 1. Since the operation ® is associative ﬁ'l = (Fl, ®)
is a subsemigroup of (E(4), ®.

Therefore
(E(4),®)= F, U F,. (37)
Denote by E,(A4), the set of all equations ex® = 0 (lev ) where a, x € 4,
(k=10,1,2,...) and J is an arbitrary nonnegative number.

It can be proved that Sy(4) = (E(4), ®) is a commutaiive semigroup.
If ax* = 0 (lev §), ba"(lev ) € E,(A), then

[ax* = 0 (lev 8)] @ [ba* = 0 (lev )] = [(a + b)a* = 0 (lev (6 = 8))] € E(4)

(38)
and the operation @ is commutative and associative.
Itis easy to see that
E(4) = RUOEk(A)t (39)
and
E(A) NE(4) =8 if k. (40)
If P(x) =10 (leve) €E(A) and
Plx) = apx" + a1+ ...+ a,,
then
[P(x) = 0(lev &)] = [aox” - O(Iev H @[alxn—l — (1ev[ ”@ ®
n + T
n=0llev
@[a (ev nTl” (41)
where
et = 0 |lev — EA) . 42
[kx [Vn+1J]€ w(4) (42)

Thus we have proved the following theorem:
Theorem 4. The semigroup (E(A),®) can be represented in the form

(E(4), ®) = U (E(4). ®). (43)
k=0
where

E(A)NE(d) =8 if k=]

and (E(4), ®), (k=0,1,2,...) are subsemigroups of (E(A), D).
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Finally we set up two problems:
Problem 3. Find all the substructures of (E(4), &,®).
Problem 4. Find the automorphism group of (E(4), ®.®).
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