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1. Introduction 

Let A be a Hormed algebra. If f, g E A and c: is a positive number 'we 
shall say that f equals to g at c: lcvel: f = g (lev c), if and 01lly if if g. c 

It is easy to see thatf f(lcv c:), and iff= g (Iev c) and g = h (lev c:), 
then generally it is not true that f = h (ley c). 

If .1:, (/1: E A, (k 0, L 2, ... , n) then we shall say that 

n 

P(x) = .::E Clkxi: ° (lev c:) 
k=O 

is an algebraic quasi equation at c level. 
Denote by E(A) the set of all algebraic q llasi t'quations (over A). 

(1) 

In this lecture lhe special c-invariants of P(x), and the structure of 
E(A) are investigated. 

The material of this paper is strongly related to the works [1], [2]. 

2. Basic lemmas 

Three simple lemmas will be given first. 

Lemma 1. If f, g, hE A and f = g (lev c), g = h (lev 8), then 

f= h (lev(c + 8)). 
Proof. Since lif - g!1 c and lig - hl\ 8, we have 

lif hll = I!(f - g) + (g - h)11 ;; lif - gi! + Ilg - hll c c. (2) 

Lemma 2. If f, g, lz, k E A and f = h (lev c) and g = k (lev E), then 

f g = h k (lev (c + s»). 
Proof. Since Ilf - hit c, lig kl) E, we have 

Il(f + g) - (h + k):1 = I!(f h) + (g k)li Ilf - hll + Ilg kll::( 
e + S. (3) 
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Lemma 3. If f, g, h, k E A and f = h (lev .0) and g = k (le v s), then 

fg = hk (lev (sllg!1 + sllhll)). 
Proof. Since I If - h" s;: .0, Ilg - k! I s, we get 

iifg - hkll = II(f - h)g + h(g - k)il IIf - hll . Ilg" + Ilg - kllllhll ::;;: 
(4) 

Lemma 4. If 1, g E A and f = g (lev .0), then mf = mg (Iev ms), where 
m is a non-negative integer number. 

Proof. From Il!f - gll .0, we have 

Ilmf - mgll = 11m(f - g)[[ mlif - gli ms. (5) 

Lemma 5. If 1, g E A, fg = gf and f = g (Iev .0), then for arbitrary non
negative integer Tt, 

(6) 

Proof. Since Ilf - gil .0, and fg = gf, we have 

iif gl[(llfiln- 1 IlfiiTl-2 ilgll -L ... -L1'lfiiTl-j-l. Ilgllj-L 
. I1 I, ,I I I rI " J 

(7) 

from 'which (6) follows. 

3. Invariants 

Now we give an important basic definition. 
Definition. Let x be a one to one map of A onto itself. We shall say 

that x is an s-invariant transformation (shortly s-invariant) of P{x) if the 
following condition holds: P(ax) = P(x)(lev .0), for all x EA. 

Denote by G(A) the set of all one to one transformations of A onto 
itself. 

It is easy to see that G(A) is a group. 
Denote by I,(P(x», thc set of all s-invariants of P(x). 
We can see that the identical map of G(A) helongs to I,(P(x»), and 

if x E Ie(P(x» then X-I E Je(P(x»). 
Since 
liP(xx) - P(x)li .0 holds for all x E A, we have 

liP(xx-1x) - P(x- 1x)[1 = 1!P(x-1x) - P(x)[[ c. (8) 

Lemma 6. If x E Ie(P(x») and pE le (P(x», (.0 0, 8 0), then xp E 
E Ie+~(P(x»). 
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Proof. Since 

IIP«a/i)x) P(x) I1 = fiP«ap)x) - P(pX) + P(/3x) P(x)11 
- P(iix)il IIP(px) - P(X)II s + E, 

we obtain ap E I,+~(P(x)), from which 

I,(P(x» . I~(P(x» c; I,"",(P(x)), 
follows. 

81 

IIP(a(px) -

(9) 

(10) 

The structure of the set of all I,(P(x») ,,,-here s > 0, is very simple, 
because if E E, then 

and 

I.(P(x» c; I~(P(x»). 

Example 1. Now we suppose that P(x) = aox + al' 

Consider the folllowing transformation 

ax = x + b, (x, b EA). 
In this case 

Therefore if ilaobl! < s, then 

P(ax) = P(x), lev ( s), 

and a is an s-invariant. 

Example 2. 
Consider the following transformation: 

where x, u, v E A and 1,£ " v. 

If P(x) = x2 + b, (b E A), and IIu2 v2 !1 s, then 

P(ax) = P(x) (le v s). 

It is easy to see that 

[

0 if x -;-'- u, v, 
P(ax) - P(x) = v2 - u2 if x = u, 

u2 v2 if x = v. 

Since I iU2 v2 11 sand (17), we have 

P(ax) = P(x) (ley s). 

Therefore a is an s-invariant of P(x). Next we give three theorems. 

6 

(ll) 

(12) 

(13) 

(14) 

(15) 

(l6) 

(17) 

(18) 
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Theorem 1. If P(X) = aOx'l a1,t:"-1 + ... + an' where 
x, ao, aI' ... , an E A and u, v EA, u " v, further "P(u) - P(v)" < e, then 

Ix 

ax = : 

if x u, v, 
if x = v, 
if x = u, 

is an e-invariant of P(x). 
Proof. It is easy to see that in our case 

iW(ax) - P(x)// = { ~P(!l) 
Since I!P(u) - P(v) ! e, we have 

if 
P(v)11 if 

P(ax) P(x) (Iev c). 

x = !l,V, 

X = !l,v. 

Theorem 2. If P(x) = aoXTl (l1Xi
-

1 + ... + (In' where 
x, ao' aI' ... , an E A and 1I, v, p, q are different elements of A further on 

r x if x ~- ll, V 

U 
if x "' p, q 

ax = i u if x- v, (22) /3x = if x = q, 
v if X= H. if x p, 

lIP(Il) P(v) I 

:::: c ~ (24) : [P(p) - P(q) ! F ~ 

then {e, x, p, x£)} is a group and its elements are e-invariants. 

(20) 

(21) 

(23) 

(25) 

Proof. If x Zl, v then xx = x, a2x = x. If x u, then Xll = v and 
X(CCll) =av = ll. If x = v, then xv = II and a(a17) = all = r. Therefore cc2 = e, 
(e denotes the unit element of G(A»). We can see that /32 = e. 

Since 

x if x ~ ~ It, v, p, g, 
v if x- lI, 

(:.x/3) x u if x - v , 
q if x =p, 
p if X= g, 

and 

I!P(u) - P(v)" 8, (27) IIP(p) - P(q)!1 c, 

we have 

i W( (ap)x) P(x) , = ! ~.P(ll) P(v)11 
I!P(p) - P(q)" 

if x, ' ll, v, p, q, 
if x = u, v, 
if x = p, q, 

from whieh 

'IP((:.xp)x P(x) I I 8, 

follows. 

(26) 

(28) 

(29) 

(30) 



GROUP AND SEMIGROUP THEORETICAL PROBLEMS 83 

From (22) and (23) we have 

rx{3 = {3rx . (31) 

Therefore {e, rx, {3, rx{3} is a group and its elements are e-invariants. 
Problem 1. Find all e-invariants of P(x). 
Problem 2. Find all groups whose elements are e-invariants of P(x). 

4. The structure of E(A) 

Now we suppose that A is a commutative normed algebra. 
Let P(x) = 0 (lev e), Q(x) = 0 (lev 8), and R(x) = (lev s) be elements 

of E(A), on which two operations will he defined as foHows: 

(P(x) = O(lev c)) EB (Q(x) = 0 (lev 8») = (P(x) + Q(x) 0 (lev (e + 8)), (32) 

tive. 

(P(x) = 0 (lev c») ® (Q(x) = 0 (lev E)) = (P(x) Q(x) = 0 (lev e8)). (33) 

It is easy to see that the operations EEl, ® are commutative and associa-

Therefore (E(A), EEl), (E(A), ®) are commutative semigroups. 
We get easily the following distribution law: 

[(P(x) = 0 (le v e») EEl (Q(x) = 0 (lev 8))] ® (R(x) = 0 (lev s») = 

= (P(x)R(x) = 0 (lev es») EB (Q(x)R(x) = 0 (le v es»). (34) 

Denote by S(E(A), e) the set of all P(x) = 0 (leve) elements of E(A). 
Lemma 7. Fl = (S(E(A), 1), ®) is a semigroup and Fe' where 0 

e 1 is an ideal of F 1• 

Proof. If P(x) = 0 (lev 1) and Q(x) = 0 (lev 1), then [P(x) = 0 (lev 1)] ® 

® [Q(x) = 0 (lev 1)] = [P(x) Q(x) = O(lev 1)]. 
Since the operation ® is associative, Fl is a semigroup. 
If P(x) = 0 (lev 1) and Q(x) = 0 (lev e), (0 e 1), then 

[P(x) = 0 (lev 1)] ® [Q(x) = 0 (leve)] = [P(x) Q(x) = 0 (lev e)]. (35) 

Therefore Fe is an ideal of F 1 • 

Theorem 3. The semigroup (E(A), ®) can be represented as a union 
of two disjoint subsemigroups. 

Proof. Since Lemma 7. F 1, (0 :=:; e 1) is a subsemigroup of (E(A), ®). 
Denote by F\ the set of all elements Q(x) = 0 (lev 0) of E(A) where 0 > 1. 

If R(x) = 0 (lev Yj), where 17 > 1 then (R(x) = 0 (lev Yj») E F\, 

and 

[Q(x) = 0 (lev 6)] ® [R(x) = 0 (lev Yj)] = [Q(x)R(x) = 0 (lev Yjo)] E PI' (36) 

6* 
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because in our case 'l}0 > 1. Since the operation 0 is associative PI = (F\, 0) 
is a suhsemigroup of (E(A), 0. 

Therefore 

(37) 

Denote hy EiA), the set of all equations ax" = 0 (Iev 0) where a, x EA, 
(k = 0,1,2, ... ) and 6 is an arbitrary nonnegative number. 

It can he proved that Sk(AL = (Ek(A), EB) is a commutative semigroup. 
Ifaxk = 0 (Iev 6), bxk(lev 0) E Ek(A), then 

[axk = 0 (Iev 0)] EB [bxk = 0 (Iev b)] = [(a + b)xk 0 (Iev (0 b»] E Ek(A) , 

(38) 

and the operation e is commutative and associative. 
It is easy to see that 

E(A) = u Ek(A), (39) 
k=O 

and 

Ek(A) nE/A) = 0 if k, 'j. (40) 

If P(x) = 0 (Iev s) E E(A) and 

then 

(41) 

where 

(42) 

Thus we have proved the follo"ling theorem: 
Theorem 4. The semigroup (E(A), EB) can be represented in the form 

00 

(E(A), EB) = U (Ek(A), EB). (43) 
k=O 

where 

Ek(A) nE/A) = 0 if k # j. 

and (Ek(A), EB), (k = 0, 1,2, ... ) are subsemigroups of (E(A), EB). 
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Finally we set up two problems: 
Problem 3. Find all the substructures of (E(A), EEl, ®). 
Problem 4. Find the automorphism group of (E(A), $, ®). 
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