GROUP AND SEMIGROUP THEORETICAL PROBLEMS IN APPROXIMATION THEORY

K. Seitz

Department of Mathematics. Faculty of Transport Engineering Technical University of Budapest and National Technical Information Center Received August 11, 1988

1. Introduction

Let A be a normed algebra. If $f, g \in A$ and ε is a positive number we shall say that f equals to g at ε level; f = g (lev ε), if and only if $||f - g|| \le \varepsilon$,

It is easy to see that $f = f(\text{lev } \varepsilon)$, and if f = g (lev ε) and g = h (lev ε), then generally it is not true that f = h (lev ε).

If $x, a_k \in A$, (k = 0, 1, 2, ..., n) then we shall say that

$$P(x) = \sum_{k=0}^{n} a_k x^k = 0 \text{ (lev } \varepsilon)$$
(1)

is an algebraic quasi equation at ε level.

Denote by E(A) the set of all algebraic quasi equations (over A).

In this lecture the special ε -invariants of P(x), and the structure of E(A) are investigated.

The material of this paper is strongly related to the works [1], [2].

2. Basic lemmas

Three simple lemmas will be given first. Lemma 1. If f, g, $h \in A$ and f = g (lev ε), g = h (lev $\tilde{\varepsilon}$), then f = h (lev($\varepsilon + \tilde{\varepsilon}$)). Proof. Since $||f - g|| \le \varepsilon$ and $||g - h|| \le \tilde{\varepsilon}$, we have $||f - h|| = ||(f - g) + (g - h)|| \le ||f - g|| + ||g - h|| \le \varepsilon + \tilde{\varepsilon}$. (2) Lemma 2. If f, g, h, $k \in A$ and f = h (lev ε) and g = k (lev $\tilde{\varepsilon}$), then f + g = h + k (lev ($\varepsilon + \tilde{\varepsilon}$)). Proof. Since $||f - h|| \le \varepsilon$, $||g - k|| \le \tilde{\varepsilon}$, we have $||(f + g) - (h + k)|| = ||(f - h) + (g - k)|| \le ||f - h|| + ||g - k|| \le \varepsilon + \tilde{\varepsilon}$. (3) Lemma 3. If f, g, h, $k \in A$ and f = h (lev ε) and g = k (lev $\tilde{\varepsilon}$), then $fg = hk \ (\text{lev} \ (\varepsilon ||g|| + \tilde{\varepsilon} ||h||)).$ *Proof.* Since $||f - h|| \le \varepsilon$, $||g - k|| \le \tilde{\varepsilon}$, we get

$$||fg - hk|| = ||(f - h)g + h(g - k)|| \le ||f - h|| \cdot ||g|| + ||g - k|| ||h|| \le \le \varepsilon ||g|| + \varepsilon ||h||.$$
(4)

Lemma 4. If $f, g \in A$ and f = g (lev ε), then mf = mg (lev $m\varepsilon$), where m is a non-negative integer number.

Proof. From $||f - g|| \leq \varepsilon$, we have

$$||mf - mg|| = ||m(f - g)|| \le m||f - g|| \le m\varepsilon.$$

$$(5)$$

Lemma 5. If $f, g \in A$, fg = gf and f = g (lev ε), then for arbitrary non-negative integer n,

$$f^{n} = g^{n} \left(\operatorname{lev} \left(\varepsilon \cdot n \cdot \left[\operatorname{Max} \left(||f||, ||g|| \right) \right]^{n-1} \right) \right).$$
(6)

Proof. Since
$$||f - g|| \leq \varepsilon$$
, and $fg = gf$, we have
 $||f^n - g^n|| \leq ||f - g||(||f||^{n-1} + ||f||^{n-2} ||g|| + \dots + ||f||^{n-j-1} \cdot ||g||^j + \dots + ||g||^{n-1}) \leq \varepsilon \cdot n [Max(||f||, ||g||)]^{n-1},$ (7)

from which (6) follows.

3. Invariants

Now we give an important basic definition.

Definition. Let α be a one to one map of A onto itself. We shall say that α is an ε -invariant transformation (shortly ε -invariant) of P(x) if the following condition holds: $P(\alpha x) = P(x)(\text{lev } \varepsilon)$, for all $x \in A$.

Denote by G(A) the set of all one to one transformations of A onto itself.

It is easy to see that G(A) is a group.

Denote by $I_{\varepsilon}(P(x))$, the set of all ε -invariants of P(x).

We can see that the identical map of G(A) belongs to $I_{\varepsilon}(P(x))$, and if $\alpha \in I_{\varepsilon}(P(x))$ then $\alpha^{-1} \in J_{\varepsilon}(P(x))$.

Since

 $||P(\alpha x) - P(x)|| \leq \varepsilon$ holds for all $x \in A$, we have

$$||P(\alpha z^{-1}x) - P(z^{-1}x)|| = ||P(\alpha^{-1}x) - P(x)|| \leq \varepsilon.$$
(8)

Lemma 6. If $\alpha \in I_{\varepsilon}(P(x))$ and $\beta \in I_{\varepsilon}(P(x))$, $(\varepsilon \ge 0, \varepsilon \ge 0)$, then $\alpha\beta \in I_{\varepsilon+\varepsilon}(P(x))$.

Proof. Since

$$||P((\alpha\beta)x) - P(x)|| = ||P((\alpha\beta)x) - P(\beta x) + P(\beta x) - P(x)|| \le ||P(\alpha(\beta x) - P(\beta x))|| + ||P(\beta x) - P(x)|| \le \varepsilon + \tilde{\varepsilon},$$
(9)

we obtain $\alpha\beta \in I_{\epsilon+\tilde{\epsilon}}(P(x))$, from which

$$I_{\varepsilon}(P(x)) \cdot I_{\widetilde{\varepsilon}}(P(x)) \subseteq I_{\varepsilon+\varepsilon}(P(x)), \qquad (10)$$

follows.

The structure of the set of all $I_{\varepsilon}(P(x))$ where $\varepsilon \geq 0$, is very simple, because if $\varepsilon \leq \tilde{\varepsilon}$, then

$$I_{\varepsilon}(P(x)) \subseteq I_{\tilde{\varepsilon}}(P(x)).$$
(11)

Example 1. Now we suppose that $P(x) = a_0 x + a_1$. Consider the following transformation

 $\alpha x = x + b, \ (x, b \in A).$

In this case

$$P(\alpha x) = a_0(x+b) + a_1,$$
(12)

and

$$||P(\alpha x) - P(x)|| = ||a_0b||.$$
 (13)

Therefore if $||a_0b|| \leq \varepsilon$, then

$$P(\alpha x) = P(x), \text{ lev } (\varepsilon), \qquad (14)$$

and α is an ε -invariant.

Example 2.

Consider the following transformation:

$$\alpha x = \begin{cases} x & \text{if } x \neq u, v, \\ u & \text{if } x = v, \\ v & \text{if } x = u, \end{cases}$$
(15)

where $x, u, v \in A$ and $u \neq v$.

If
$$P(x) = x^2 + b$$
, $(b \in A)$, and $||u^2 - v^2|| \le \varepsilon$, then
 $P(\alpha x) = P(x)$ (lev ε). (16)

It is easy to see that

$$P(\alpha x) - P(x) = \begin{cases} 0 & \text{if } x \neq u, v, \\ v^2 - u^2 & \text{if } x = u, \\ u^2 - v^2 & \text{if } x = v. \end{cases}$$
(17)

Since $||u^2 - v^2|| \leq \varepsilon$ and (17), we have

$$P(\alpha x) = P(x) (\text{lev } \varepsilon).$$
(18)

Therefore α is an ε -invariant of P(x). Next we give three theorems.

6

Theorem 1. If $P(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$, where $x, a_0, a_1, \ldots, a_n \in A$ and $u, v \in A, u \neq v$, further $||P(u) - P(v)|| \leq \varepsilon$, then

$$lpha x = \left\{egin{array}{ll} x & ext{if} & x
eq u, v \ u & ext{if} & x = v, \ v & ext{if} & x = u, \end{array}
ight.$$

is an ε -invariant of P(x).

Proof. It is easy to see that in our case

$$||P(\alpha x) - P(x)|| = \begin{cases} 0 & \text{if } x = u, v, \\ ||P(u) - P(v)|| & \text{if } x = u, v. \end{cases}$$
(20)

Since $||P(u) - P(v)|| \leq \varepsilon$, we have

$$P(\alpha x) = P(x) \text{ (lev } \varepsilon). \tag{21}$$

Theorem 2. If $P(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$, where $x, a_0, a_1, \ldots, a_n \in A$ and u, v, p, q are different elements of A further on

$$\alpha x = \begin{cases} x & \text{if } x \neq u, v \\ u & \text{if } x = v, \\ v & \text{if } x = u, \end{cases} \qquad (22) \qquad \beta x = \begin{cases} x & \text{if } x \neq p, q \\ p & \text{if } x = q, \\ q & \text{if } x = p, \end{cases} \qquad (23)$$

$$||P(u) - P(v)|| \leq \varepsilon, \qquad (24) \qquad \qquad ||P(p) - P(q)|| \leq \varepsilon, \qquad (25)$$

then $\{e, \alpha, \beta, \alpha\beta\}$ is a group and its elements are ε -invariants.

Proof. If $x \neq u, v$ then $\alpha x = x$, $\alpha^2 x = x$. If x = u, then $\alpha u = v$ and $\alpha(\alpha u) = \alpha v = u$. If x = v, then $\alpha v = u$ and $\alpha(\alpha v) = \alpha u = v$. Therefore $\alpha^2 = e$, (e denotes the unit element of G(A)). We can see that $\beta^2 = e$.

Since

$$(\alpha\beta) x = \begin{cases} x & \text{if } x \neq u, v, p, g, \\ v & \text{if } x = u, \\ u & \text{if } x = v, \\ q & \text{if } x = p, \\ p & \text{if } x = g, \end{cases}$$
(26)

and

$$||P(u) - P(v)|| \le \varepsilon, \quad (27) \qquad ||P(p) - P(q)|| \le \varepsilon, \quad (28)$$

we have

$$||P((\alpha\beta)x) - P(x)|| = \begin{cases} 0 & \text{if } x \neq u, v, p, q, \\ ||P(u) - P(v)|| & \text{if } x = u, v, \\ ||P(p) - P(q)|| & \text{if } x = p, q. \end{cases}$$
(29)

from which

$$||P((\alpha\beta)x - P(x))|| \leq \varepsilon, \qquad (30)$$

follows.

From (22) and (23) we have

$$\alpha\beta = \beta\alpha . \tag{31}$$

Therefore $\{e, \alpha, \beta, \alpha\beta\}$ is a group and its elements are ε -invariants. *Problem 1.* Find all ε -invariants of P(x).

Problem 2. Find all groups whose elements are ε -invariants of P(x).

4. The structure of E(A)

Now we suppose that A is a commutative normed algebra.

Let P(x) = 0 (lev ε), Q(x) = 0 (lev $\hat{\varepsilon}$), and $R(x) = (\text{lev }\hat{\varepsilon})$ be elements of E(A), on which two operations will be defined as follows:

$$(P(x) = 0(\text{lev }\varepsilon)) \oplus (Q(x) = 0 (\text{lev }\tilde{\varepsilon})) = (P(x) + Q(x) = 0 (\text{lev }(\varepsilon + \tilde{\varepsilon}))), (32)$$

$$(P(x) = 0 (\operatorname{lev} \varepsilon)) \odot (Q(x) = 0 (\operatorname{lev} \tilde{\varepsilon})) = (P(x)Q(x) = 0 (\operatorname{lev} \varepsilon \tilde{\varepsilon})).$$
(33)

It is easy to see that the operations \oplus, \odot are commutative and associative.

Therefore $(E(A), \oplus)$, $(E(A), \odot)$ are commutative semigroups.

We get easily the following distribution law:

$$[(P(x) = 0 (\operatorname{lev} \varepsilon)) \oplus (Q(x) = 0 (\operatorname{lev} \overline{\varepsilon}))] \odot (R(x) = 0 (\operatorname{lev} \widehat{\varepsilon})) = = (P(x)R(x) = 0 (\operatorname{lev} \varepsilon\widehat{\varepsilon})) \oplus (Q(x)R(x) = 0 (\operatorname{lev} \overline{\varepsilon}\widehat{\varepsilon})).$$
(34)

Denote by $S(E(A), \varepsilon)$ the set of all P(x) = 0 (lev ε) elements of E(A). Lemma 7. $F_1 = (S(E(A), 1), \odot)$ is a semigroup and F_{ε} , where $0 \leq \varepsilon \leq 1$ is an ideal of F_1 .

Proof. If P(x) = 0 (lev 1) and Q(x) = 0 (lev 1), then [P(x) = 0 (lev 1)] \odot $\odot [Q(x) = 0$ (lev 1)] = [P(x) Q(x) = 0 (lev 1)].

Since the operation \odot is associative, F_1 is a semigroup.

If P(x) = 0 (lev 1) and Q(x) = 0 (lev ε), $(0 \le \varepsilon \le 1)$, then

$$[P(x) = 0 \ (\text{lev } 1)] \odot [Q(x) = 0 \ (\text{lev } \varepsilon)] = [P(x) Q(x) = 0 \ (\text{lev } \varepsilon)].$$
(35)

Therefore F_{ε} is an ideal of F_1 .

Theorem 3. The semigroup $(E(A), \odot)$ can be represented as a union of two disjoint subsemigroups.

Proof. Since Lemma 7. F_1 , $(0 \le \varepsilon \le 1)$ is a subsemigroup of $(E(A), \odot)$. Denote by \widetilde{F}_1 the set of all elements Q(x) = 0 (lev δ) of E(A) where $\delta > 1$. If R(x) = 0 (lev η), where $\eta > 1$ then $(R(x) = 0 \ (\text{lev } \eta)) \in \widetilde{F}_1$,

and

$$[Q(x) = 0 \ (\text{lev } \delta)] \odot [R(x) = 0 \ (\text{lev } \eta)] = [Q(x)R(x) = 0 \ (\text{lev } \eta\delta)] \in \widetilde{F}_1, \quad (36)$$

because in our case $\eta \delta > 1$. Since the operation \odot is associative $\widehat{F}_1 = (\widetilde{F}_1, \odot)$ is a subsemigroup of $(E(A), \odot$.

Therefore

$$(E(A), \odot) = F_1 \cup \widehat{F}_1. \tag{37}$$

Denote by $E_k(A)$, the set of all equations $ax^k = 0$ (lev δ) where $a, x \in A$, (k = 0, 1, 2, ...) and δ is an arbitrary nonnegative number.

It can be proved that $S_k(A) = (E_k(A), \oplus)$ is a commutative semigroup. If $ax^k = 0$ (lev δ), $bx^k(\text{lev }\tilde{\delta}) \in E_k(A)$, then

$$[ax^{k} = 0 (\operatorname{lev} \delta)] \oplus [bx^{k} = 0 (\operatorname{lev} \tilde{\delta})] = [(a+b)x^{k} = 0 (\operatorname{lev} (\delta + \tilde{\delta}))] \in E_{k}(A) ,$$
(38)

and the operation \oplus is commutative and associative.

It is easy to see that

$$E(A) = \bigcup_{k=0}^{\infty} E_k(A), \tag{39}$$

and

$$E_k(A) \cap E_j(A) = \emptyset \quad \text{if} \quad k \neq j.$$
 (40)

If
$$P(x) = 0$$
 (lev ε) $\in E(A)$ and

$$P(\mathbf{x}) = a_0 \mathbf{x}^n + a_1 \mathbf{x}^{n-1} + \ldots + a_n,$$

then

$$[P(x) = 0(\text{lev } \varepsilon)] = \left[a_0 x^n = 0\left(\text{lev } \frac{\varepsilon}{n+1}\right)\right] \oplus \left[a_1 x^{n-1} = 0\left(\text{lev } \left(\frac{\varepsilon}{n+1}\right)\right) \oplus \dots \oplus \left[a_n = 0\left(\text{lev } \frac{\varepsilon}{n+1}\right)\right]$$
(41)

where

$$\left[a_k x^k = 0\left(\operatorname{lev} \frac{\varepsilon}{n+1}\right)\right] \in E_k(A) .$$
(42)

Thus we have proved the following theorem: **Theorem 4.** The semigroup $(E(A), \oplus)$ can be represented in the form

$$(E(A), \oplus) = \bigcup_{k=0}^{\infty} (E_k(A), \oplus).$$
(43)

where

$$E_k(A) \cap E_j(A) = \emptyset$$
 if $k \neq j$.

and $(E_k(A), \oplus)$, (k = 0, 1, 2, ...) are subsemigroups of $(E(A), \oplus)$.

Finally we set up two problems: **Problem** 3. Find all the substructures of $(E(A), \oplus, \odot)$. Problem 4. Find the automorphism group of $(E(A), \oplus, \odot)$.

References

- Сони, Р. М.: Universal algebra, D. Reidel Publishing Company, Boston, USA, 1981.
 NEUMARK, M. A.: Normierte Algebren, VEB Deutscher Verlag der Wissenschaften; Berlin 1959.

Károly SEITZ H-1521, Budapest