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Rees factors of a lattice have been defined and discussed in [4]. In
this paper distributive lattices will be characterized by their Rees factors
and the analogous problem will be examined for modular lattices.

We use the notations and definitions of the books [1] and [3].

Definition 1. Let L be a lattice with respect to the meet operation —
and join operation . Let, further, I be an ideal of L and 6, the equivalence
of I defined as follows: For any elements a and & of L, let a = b(f;) mean
that either a = b or else both a and b belong to I. For convenience, let any
one-element 6 -class {a} (a € L) be identified with the element a of L. Then
the set of all A -classes forms a lattice with respect to the operations A and

v defined by

@ A b= c;r\b if a=Il.bs=Tand a~bdl,

otherwise
and

awb if a=I and b=1,
aVb=34a if b=1
b if a=1

(see [4]); this lattice is called the Rees factor (lattice) of L modulo I and is
denoted by L/I.

Definitien 2. Let L be a lattice with the least element o. If, for any
elements x, v,z of L.

xs=o0and y ~nz=o0 imply (x Uy) ~nz=o0,

then L is called 0-disiributive [5. p. 41].
Definition 3. Let L be a lattice with the least element o. If, for any
elements x, v, z of L,

- zand y nz=o0 imply (s U y) "z =mum,

then L is called 0-modular [5, p. 28].
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In other words, the 0-modularity of L means thatx m~z = xandy ™z =
=0 imply (x Uy Nz=(x"z)w(ynz).

Theorem 1. A lattice is distributive if and only if every Rees factor
of it is 0-distributive.

Proof. Assume that L is distributive and consider an ideal I of L. Let
%, ¥, 5 € LI such that

that is,
Mz ymsel (1)

If at least one of the elements x, y, zis equalto I (in L/I), then (x v ¥) Az =1
trivially. In the opposite case we have, by the distributivity of L and by the
relation (1),

xwy)nz={(xnz)U(yz€l

Thus (x v ¥) A 5= I also in this case. This means that L/I is 0-distributive,
indeed.
Assume that L/I is 0-distributive for any ideal I of L. Let a, x. v, =
be any elements of L. Then, by the 0-distributivity of the Rees factor L/(a],
the inequalities
xz<a and yz<a
imply

(xwy)nz<a

It follows, by a result of [2] (see also [5, p. 42]) that L is distributive.
Thus Theorem 1 is proved.

For modular lattices only the following weaker assertion is true:

Theorem 2. If any Rees factor of a lattice is O-modular, then the lattice is
modular.

Proof. Let x, y, = be any elements of the lattice L such that x < =.
Let us denote by m and u the operations in L, by A and v the operations
in the Rees factor R = L/(y ~ z]. Then y A z is equal to the least element of
R and x < z also in R. Assume R to be 0-modular. Then we have

(xyy) Az=x

which means that either

uyynz<yz and x<LymMz (2)

or

(xwy)~zs= = 3)
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In case (2) we have
ynz<(awy)ns<ynz and ynz<xu(ynzd)=yz
whence
xwuyymnz=ynnz resp. Uy z)=y Nz
In case (3) we have (by x < 2)
yr<r v (yns) < (xuy) Nz =x

In both cases we have the result that x <z implies (x Wy) "z ==z
(¥ m 5) in L. This means that L is modular, indeed.

Remark. Unfortunately, the converse statement is false. Consider, for
example, the lattice L given by the diagram: L is modular (even distributive)
but the Rees factor S = L/(u] is not O-modular (see the elements x, y, z).
Since S is 0-distributive (in accordance with our Theorem 1), this example
shows also that 0-distributivity does not imply 0-modularity.
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