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Abstract

This paper deals with elementary problems on complexes of abelian groups related
to finite geometry, in particular to arcs and blocking sets of finite projective planes. Arecs
contained in cubic curves led us to the notion of a 3-independent subset in abelian groups.
Various examples of complete arcs containing only three points outside a conic were constructed
by KorcEMiros [6] using 2 —(in, n) isolated sets. In this paper we survey the known results
and constructions concerning 3-independent and 2 — (m, n) isolated sets. Moreover we obtain
some new bounds for their size and give some new examples showing that the lower and upper
bounds are sharp regarding their order of magnitude. Finally, we will show how the methods
and constructions of the previous sections can be applied to the problem of blocking sets
contained in the union of three lines and answer a question of CaMeErow [1].

1. Introduction and geomeiric background

This paper deals with elementary problems on complexes of abelian
groups arising from finite geometry. One of the central notions of finite geo-
metry is the notion of complete arcs due to B. SEGRE (see [4], [5]. [9]. [10]).

A E-arc in a projective plane of order g is a set of k points no three of
which are collinear. A k-arc is said to be complete if there is no (k - 1)-arc
containing it. As is well known, the maximum number of points that a k-are
can have is ¢ + 1 or ¢ -+ 2 according to whether g is odd or even. A k-arc with
this maximum number of points is called an oval. Most constructions of com-
plete arcs are based on the following general idea due to B. SEGRE, first used
by LomBARDO-RADICE [7]: ‘The points of the arc, with a few exceptions, are
chosen among the points of a conic, cubic (or generally: an algebraic) curve’.
Taking about half the points of a conic and one point outside this conic, this
construction is the “classical” SEGRE-construction. A modification of the
SEGRrE-construction can be found in the paper of KorcumAros [6] in order
to construct complete arcs containing one third or one fourth of the points of
a conic and three suitably chosen extra points. His results are based on
the notion of 2—(m,n) isolated subsets of cyclic groups. Section 2 deals with
a construction of 2—(m,n) isolated sets in cyclic groups of order 2s (s even)
and of order 2s-+1,
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Another interesting family of complete ares is the ares contained in
cubic curves. Several results were proved about arcs in cubic curves by
D1 Comrre [2], [3], Sz8wvr [12], [13], [14] and Voroca [15], [16]. The last
two authors used the notion of ‘3-independent sets’ introduced in [12]. Roughly
speaking, the notion of a 3-independent set is the translation of ‘are’ to the
language of abelian groups. We also mention that the proof of the completeness
of the arcs is based on the Hasse— WEIL theorem on the number of G F(q)-
rational points of an absolutely irreducible algebraic curve defined over
GF(q). Lower and upper bounds for the size of a maximal 3-independent set
can be found in Section 3.

In Section 4 we summarize the known constructions of 3-independent
sets. The constructions come from [12], [13], [14], [16], but we present them
in a slightly more general form. Comparing the bounds of Section 3 and the
constructions of Section 4 one can say that the bounds are sharp regarding
their order of magnitude.

Another important notion in finite geometry is the notion of a blocking
set. A set B of the plane is called a bhlocking set if B contains no line but each
line meets B. Minimal blocking sets contained in the union of three lines (i.e.
blocking sets of index three) are related to certain complexes of abelian groups
(cf. CameRON [1]). For example using maximal 3-independent subsets we can
construct various minimal blocking sets of index three. In Section 5 we answer
a question of CameroN [1], and show how the methods of Section 3 can be
applied to this problem. In particular these methods yield a short proof of
a theorem of SexaTo [11].

2. 2-(m, n) isolated sets

First recall the definition of 2-(m,n) isolated sets and some bounds for
their size due to Korcamiros [6].

Definition 2.1. Given any three integers 0 <<m < n <s, a set J of
integers is called 2-(m, n) isolated if it has the following properties:

(2) each integer in J is less than s,

(3) for every jeJ: 2j # m, n (mod s); if s is even then 2j = m, n (mod s/2),

(4) for every j,j'€J: j+j 2 m,n (mod s),

(5) if s is even, j = j (mod s/2) if j == j".

Definition 2.2. A 2-(m, n) isolated set J is called complete with respect
to (4) and (5) if there is no ¢ € J such that for J U{e} both (4) and (5) hold.
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Remark 2.1. If we consider J as a subset of the cyclic group (mod
s, ) then (3) is equivalent to

(3') for every j€J: 45 == 2m, 2n
and (5) to

(57) foreveryj =j €J: 2j = 2j’.
Therefore using (1), (3"), (4), (5) one can define 2-(m. n) isolated sets in an
arbitrary abelian group.
Define U(s) = {u: there are 0 << m << n <_s and a 2-(m, n) isolated set J

complete with respect to (4) and (5) such that [J| = u}.

Theorem 2.1. [6] For any u € U(s)
s/4 << u < s/2 for s even and s/3 < u < 5/2 for s odd.

In the above cited paper KorcamAros posed the problem of constructing
2-(m, n) isolated sets which are complete with respect to (4) and (5). For
small values of s he found U(3) = {1}, U(4) = {1, 2}, U(5) = {2}, U(6) =
= {2.3}, U(7) = {3}.

Theorem 2.2, Lets = 2t,teven and (¢/2) — 1 <k < t — 1 be fixed.
Put m=2k+1, n=2t—1 and J={0,1,...,k}. Then J is a 2-(m, n)
isolated set which is complete with respect to (4) and (5).

Proof. We have to show that J is 2-(m, n) isolated and for each a € J
(ie. k-4 1 < a<2t) there exists a j€J such that either

(%) e +j=m (mod s) or
(*%) a+j=n (mod s) or

(% % %) a=j (mod t) holds.
The validity of the properties (1), (2), (4). (5) are obvious and 2j & m,

n (mod t) is a consequence of the fact that ¢ is even since 2j == m, n, 2m, Zn
regarding them as integers because the numbers m, n are odd numbers. For
proving the completeness of Jif k + 1 << a <t — 1, then 0 <j=t— 1 —
— a < k satisfies (¥). If t <a<t+ kthen 0 <{j=a —t <k satisfies
(% % %), Finally,iff t +k<a <2t—1,then 0<{2t —1 —a=7j<t—1~—
— k < E satisfies (% %).

A similar theorem can be stated for s odd. As the proof is the same as
the proof of Theorem 2.2 we omit it.

Theorem 2.3, Let s=2t+ 1 and (2t 4+ 1)/3 << E <t — 1 be fixed.
Putm=2k+1,n=2tand J={0,1,...,k}. Then J is a 2-(m, n) isolated
set which is complete with respect to (4) and (5).

This construction was used in [13] but was not stated explicitly.

Remark 2.2. Actually, our Theorems 2.2 and 2.3 show that U(41l) 2
2{1,...21 — 1} and U1 +1) 2 {(21 4+ 1)/3, ..., 1}.
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3. Bounds for the size of a maximal 3-independent subset

First we recall the definition of 3-independence.

Definition 3.1. Let G be an abelian group written additively. A subset
T < G is called 3-independent if
() t4+t + 1t =0 for every £, ', t" ¢ T.

A 3-independent subset T C G is maximal if it is not a proper subset of an
other 3-independent set.
We remark that T is 3-independent if and only if

(%) (TLT)N(—T)y=0., where T + T = {t -+~ t": t.t' ¢ T} holds.
Before obtaining bounds for the size of a maximal 3-independent subset we

mention that in elementary abelian 3-groups there are no 3-independent sub-
sets at all (as @ + a 4+ a = 0 for every a € G in such groups).

Theorem 3.1. Let & he an abelian group which is not an elementary
abelian 3-group and T < G be a maximal 3-independent subset. Then

e V6l < [T 162,

Moreover if T! = /2 then there is a subgroup H of index two such that
T=G\H.
Proof. First we prove the uppel‘ })o 1d. By ( % %) T+ T and — T

are disjoint. Obviously [T - T > T| so 4\ — T+ T+ T >2T yield-
ing TI<GR2. T = G/Z imphes T =T+ T xhlch means that T is a
coset of a =ubcr0up H As T = H|= i}'G‘,2 Im 3- independence of T implies

T=G"'H. If 6G=C,xH. H=Cj, then everv 3-independert subset is conta-
ined in G H.

To prove the lower bound observe that the maximality of T means
that for every g €6\ T either g € —(T' -+ T)or — 2g €T or 3g == 0 holds. In
other words G=TU(—(T+T)) U{geCG: — ZgE T) U{geG: 3g = 0}.
As G is mot C3 or C, X C3, [{g € G: 3g = 0}] <Z |G|/3. In order to
estimate }{c €G: — 2g €T} consider the subgroups I = {x€6G: 2z = 0}
and D = {y € G: there is an x such that y = 2x}. Obviously, [D|= G:1I
If —2¢g=1¢T, then t € D NT. The previously proved upper bound of thls
themem appl}mg to T"=T N D and D instead of T and G, yields that

| < iD}j2, thus Hg €G: —2g¢€ T}’ < D NTj - |I} < |G|2. Therefore from
L (T + 1)+ IG /7 Gij3 it follows that [G/6 < [T -

i

T4+ T| < IT - T2), hence T| < ¢, - V]Gl Herec, = 1/I/3 — «.

| == [G}/2 and T is a maximal 3- mdependent set, then the upper
bound of Theorem 3.1. can be improved using the following famous the-

orem of KNESER (see [8, p. 6., Thm. 1.5])
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Result 3.1. (the theorem of KxNEser) Let A4, B be two complexes
of the abelian group G. Then there is a subgroup H of G such that

iy4d+-B=A+ B+ H

) 4+ Bl > |4+ Hl + B+ H — |H|.

Theorem 3.2. Let T be a maximal 3-independent subset of the
abeh'an group G with |T] <7 |Gl/2. Then Tl < 2|G/[5. Moreover if |T| > (|G| +

- 1)/3, then there exists a subgroup 0 =< H <G cuch that T =T Hand

]T{ (|G| + H)/3 where 3 is a divisor of |G: H| +

Proof By the theorem of KNESER there is a H < G such that T + T =
=T+T-+H and T+ T|>2{T+ Hl — |H. By (-;;'-) T4+ T=0,
thus H == G. Since we can cuppme fT’ > (G| + 1)/3, H =0 by (= ««) again,
From G >T+ T +[-T|>2 T H — H + T > 35T[ |H| it fol-
lows that |T| < (|G| + [H))/3. As g T H=T4+Tand(— T)N (T +T)
=0, (—T+H NT-+T)=06, i.e. T + H satisfies (3 ). The maximality
of T implies that T = T -+ H. If |H| = |G|/2, then |T| = |G!/2 contrary to our
assumption. The case |H| = !GI[3 may not occur, and snmlarly in case of
|H| = |G|[4 the condﬂ:lon\ T, < G2 and T=T -+ H imply that T is a
coset of H, thus |T| < 1G4 contracuctmc T > (;G: - 1)/3. So if |H| = [G|/2,
then |G: H| > 5. Hence T < (IGI 4 [H)[3 < (G| + [G]]5)]3 = ZLG‘/S To

prove the second assertion of our Themem 3.2 recall that T=T L+ H and

\T + T >2T|— H\. If IT] > (|G, + 1)/3, then in this 1uequahtv we h'ne
equality, because mhenu:e T - T > 2Tl holds and, by (% %), |G
>IT T+ |—T >2|T + 1T: would foﬂox«, whlch is a contradiction.
Simﬂaﬂv (T + T) U (— T) implies that |G| > [T -+ T} -+ -+ |H
> 2|T| — ’H IT| + |H| = 3T, which is the same «,ontradmtlon Thele-

fOIe“ehaxe]T T/=2T - H.T=T+ Han&G—(T—,—T)U(
Hence T = (,G} |H!)/3 and as [T is an integer |G: H| - 1 is divisible by 3

Remark 3.1. One can easily check wsing T =T -+ H, that from
T| = 2/G|/5 it follows that T' = (u + H) U (—u + H), where u ¢ H.

Remark 3.2. The second assertion of Theorem 3.2 states that from
iT| > ({G; -+ 1)/3 it follows that T/Gf €1/2,2/5, .. L E@Bk —1),...} . The
examples of the next section will show that these values can actuaﬂy occur

for T/ G].

4. Constructions of maximal 3-independent subsets

In this section we collect the known constructions of maximal 3-inde-
pendent sets. For the sake of completeness after a construction we mention
its geometric consequences. Let us start with the extreme cases regarding
the upper bounds mentioned in Theorems 3.1 and 3.2.
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Example 4.1. Let G be even and H be a subgroup of G with [G: H| =
= 2. Then T = G\H is a maximal 3-independent subset of G.

Remark 4.1. The arcs corresponding to T = G\H were investigated
by Zirirri [17] and Vorocr [15] if G is the group of an elliptic cubie.

Before proving that the possible values of IT|/|G| mentioned in Remark
3.2 and in Theorem 3.2 can actually occur, recall a definition and an obser-
vation from Vorocs [16].

Definition 4.1. A 3-independent set T < G is called complete if
for every y € G\T there are t,t' ¢ T such that y -+ ¢+ ¢t"=0. A complete
3-independent set is said to be good if £ == ¢’ can be supposed in the previous
condition.

(In Vorocr’s paper this was the definition of the ‘maximal 3-independent
set’.) Obviously, a complete 3-independent set is maximal.

Proposition 4.1. (Voroca) Let f: G, — G, be a subjective homo-
morphism of finite abelian groups, and X < G, be a complete 3-independent
set. Then f~3X) G, is a complete 3-independent set.

Proof. This is Lemma 1 of Vorocs [16].

Example 4.2. (Vorocr) Take 1 prime 1=2 (mod 3), 12, G =
= (mod 1,-4), T = {41,+3,...,+(2r — 1)}, where r = (1 + 1)/6. Then
|T| = 2r and T is a complete 3-independent subset of G.

Proof. This is §. 1. (2) of Vorocr [16].

Proposition 4.1 shows that the groups having a subgroup of index 1
admit complete 3-independent sets with cardinality (1 -+ 1)|G|/31, i.e. the
values 2/5, 4/11,...,(1 4+ 1)/31,...do occur for 1 prime, as |T|/|G.

Example 4.3. (VorocE) Let 1 be a prime 1=1 (mod 3), 1>13
and G = (mod 1, +). Then T = {— 1, 1, 3, 4, ..., (1 — 1)/3} is a complete
3-independent set with |T| = (1 — 1)/3.

Proof. This is §. 1. (3) of VorocH [16].

Proposition 4.2. The examples of Example 4.2 are unique up to
group isomorphism.

Proof. For the proof let G = (mod p, +) and T be a maximal 3-inde-
pendent set of size |T| = (p -+~ 1)/3. As in the theorem of KNESER (see Result
3.1) we have necessarily H =0, and by § 3. (%) |G| >|T+ T+ |T|
and |T -+ T| > 2|T| — 1, in these inequalities we have equalities if [T]| =
= (p + 1)/3. (The special case of the theorem of KNESER for (mod p, +) is
usually called the theorem of CAucHY-DAVENPORT, see MANN [8, p. 3, Corol-
lary 1.2.3]). In particular, [T 4 T| = 2|T|— 1. But in this case T is an arith-
metic progression, by a theorem of VosPER (see MaNN [8, p. 3, Theorem 1.3]).
Solet T = {ay, ay, ..., a,= a, + (k— 1)d}, £ = (p + 1)/3. Since the map-
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pings m,: x — ux are group iaomorphicm we may suppose that d =1, i.e.
T={t,.t, + 1, Lt -+ (p — 2)/3}. T is 3-independent, hence 0 ¢ T giving
(p-+1)3 < tl <p—(p— 7),3 1=(2p — 1)/3. Now the ounly pos-
sﬂnht} for t; is t; = (p + 1)/3, because otherwise (2p — 1)/3 and (2p -+ 2)/3
are hoth eclements of T and this is a contradiction, because (2p — 1)/3 -
L 2p— 13+ (2p+2)3=2p =0 (mod p).
Therefme T={(p-+1)3.....2p — 1)/3}. Multiplying T by 2 we get the
3-independent sets mentioned in Example 3.2.
Using the idea of the previous proof we are able to generalize Example
3.2. This generalization shows that for every value k/(3k—1) there are infinitely
many groups G admitting complete 3-independent subsets of size A‘G’/’(Bk — 1)
Example 4.4, Let 1 =3k 4+ 2. Theset T = {k 4 1...., .2k + 1} is a
complete 3-independent subset in (mod 1, ).

Proof. We have to prove that (T-+-TYN(—T)=¢ and (T - THU

U(—T)=6.As — (k+1)=2k+1(mod 1). T = — T. T is an arithmetic
progression, so T - T is also an authmetlc progression, namely {2k 4
+2,...2(2k + 1)}. Here 4k - 2 =k (mod 1) proving that T is a complete

3-independent set.

Now we turn to the investigation of the lower bound. The first result
shows, by taking G = (mod p. )< (mod p, ), that the lower bound of
Theorem 3.1 is sharp regarding its order of magnitude.

Example 4.5. Let G = AX B, [4], |[B} >4 and suppose that neither
A nor B is elementary abelian 3-group. Choose a € 4 and b € B whose order
is not 3. Put

T={(a.y):y==—2b} U{(x,b) : x = — 2a}.

Then T is a complete 3-independent subset in G.

Proof. As the proof of Theorem 1 of [12] can be followed step by step,
we omit it,

Remark 4.2. The smallest known complete arcs of PG(2, g) have
cardinality Cg%* and come from the complete 3-independent subsets construct-
ed in Example 4.5 (see [12], [14], [16]).

Example 4.6. Let G = (modm, +)x(modn,+) and k be an arbitrary
integer between 1 and m/3, where m,n > 4. The gset T=T, U T, UT,”
is a complete 3-independent set of G, where

Ti={xy):1<a<hk and y=—2},

Ty={(u.1): u€U={—2 —3,....— 2k}

T] = {(x. — 2): 1 < x < kand x + u; -+ uy = 0 for every uy, u, € U
Moreover k(n — 1) < |T| < kn = m.

7
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Proof. This is a slight modification of Lemma 4 in Széwvyr [13].
In the previous examples the direct decomposability of G played an important
role. The following class of 3-independent sets shows that even in groups of
prime order there are small maximal 3-independent subsets.

Example 4.7. Let 1/2 <T % < 1 be fixed. Choose a prime q hetween p*/2
and p*/4 and let m, be the maximal integer which is relatively prime to g
and satisfies m,q < p/2. Now m, -+ 2q > p/2. Suppose that p = k (mod m),
m = m,q and let k = a,9 - a,m, (mod m). (Here a;, a, are uniquely deter-
mined.) Put
A, = {cg: 0 < ¢ < mybut ¢ == ap. 2a; } U {dm,;: 0 < d < qbutd=a, 2a,}
and finally let 4 = 4, U {a; 4+ m: a, € 4,}.
Then A is a 3-independent subset of G = (mod p, ). Moreover 4| < 2(g —
-+ m,) < 10p%, and |G' (A4 + A)| < 10g + 6m,; < 20p*. Therefore a maximal
3-independent set B containing A4 satisfies B! < 20p*

Proof. This is Theorem 2.1. of [14].

Finally, we sommarize the information contained in sections 3 and 1
in a theorem.
Theorem 4.1. Let G be an abelian group which is not an elementary
abelian 3-group, and T C G be a maximal 3-independent subset. Then
a) ¢ I'IG] < [T < [Glf2.
b) if [T > ((G| + 1)/3, then [T} = (G| + [H))/3 where |G: H| = 2 (mod 3)
and for every 1==2 (mod 3) there are infinitely many groups G having
a complete 3-independent subset of size (1 - 1)|G|/31.
¢c) for every 0 < ¢ <{1/3 and & >0, there is a maximal 3-independent set
T of G = (mod p, --)x(mod p, +) satisfying
(¢ — 261 < [T/ < (¢ + 9G]
d) for every fixed o, 1/2 <o < 1 there are C,, C, such that for every p > p,
prime (mod p, ) has a maximal 3-independent subset T satisfving

Cp* < {TI < C,p*.

5. Blocking sets of index three: a translation for abelian groups

Definition 5.1. A subset S of a finite projective plane is called a block-
ing set if S meets every line but contains no line. A blocking set S is
minimal if S\ {x} is not a blocking set for every x € S. The following definition
due to CaAnERON [1] is related to certain blocking sets. This connection will he
explained in Proposition 5.3.

Definition 5.2. Let G be an additive abelian group of order n, and
m a positivei nteger. We say that G — m if there are nonempty subsets

A, B, C of G such that




ABELIAN GROUPS ARISING FROM GEOMETRY 99

() 064+ B+ C
(i) (4, B, C} is maximal subject to (i);
(ii) {4| 4+ |{B| + Cl = m.
Proposition 35.1.
a) If |Gl =n and G — m then Dd n - /4 — 12y <m < 3n/2,
1G(m
H|

b) If ©: G — H in anepimorphism and H — m, then G —

¢) G — n < d for any proper divisor d;of n.
Proof. This is §. 3. (3.4.) in CaMERON [1, p. 49].
We remark that the upper and the lower bounds are essentially sharp.
Example 35.1. Let G = (mod p. -+)x (mod p, +) A= {(x.4%):
r=0,1,...p—1}, B={(—x —xN:x=01..,p—1}, and C=
= {(0.yv): y=12,....p—1}. Then (4, B C) shows that G —3p — 1.
Proof. One can easily check that 4 - B=6G'C, 4 + C=6G'4=0C
'(— B), B+C=6 B=GG"(— A) proving G —3p — 1.
As a partial converse to Proposition 5.1. (c) we prove the following.
Proposition 5.2. If G — m w 1th m > |G| + 1. then there is a subgroup
H of G such that m = |G| + H
Proof. The proof of Theorem 3.2 based on the theorem of KNESER
proves Proposition 5.2 as well, so we give only the outlines of the proof. Let
A, B, C ¢ G show that G — m. Choose a subgroup H to 4. B by the theorem
of K~xeser (Result 3.1). Here obviously H = G and bv m > G+ 1 we get
H=0.Nowd+B=A4-+ B-+ Hand {4+ B[>| Hw——EBT’HJ-—
— |H . By the maximality of (4. B, C) necessarlly A= ri . H B=B - H,
C=C+ H=G (4- B). Again m >> |G| -~ 1 implies that [4 + Bl =
A+ H + B+ H — |H| thus 4|+ B + |C| = |G| + H]|.
As a by-product we obtained a theorem of SExaT0 [11]; if m = 3/G|/2, then
A, B, C are cosets of a subgroup of index two.
As complete 3-independent sets yield triplets (A4, 4, 4) showing G — 3|4],
the results contained in Theorem 4.1 can be applied in the present case. Fi-
nally, mention should be made of the geometric consequences of the results.
Definition 5.3. A blocking set S is called ablocking set of index
three if it is contained in the union of three lines.
Theorem 5.1. Let S be a minimal blocking set of index three. Then
one of the following holds:

) 18] =2

i) |S] = 3(g — 1)

111) |S| = 3¢ + 1 — m, where (GF(q) ) —m, and q >2
) S| = 3¢ — m, where GF(q)* —

Proof. This is §. 3. (3. 5.) in CameRON [1].

7%
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