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Abstract 

This paper deals with elementary problems on complexes of abelian groups related 
to finite geometry, in particular to arcs and blocking sets of finite projective planes. Arcs 
contained in cubic curves led us to the notion of a 3-independent subset in abelian groups. 
Various examples of complete arcs containing only three points outside a conic were constructed 
by KORCHl\lAROS [6) using 2 -(m, n) isolated sets. In this paper we survey the known results 
and constructions concerning 3-independent and 2 (m, n) isolated sets. :Moreover we obtain 
some new bounds for their size and give some new examples sho'wing that the lower and upper 
bounds are sharp regarding their order of magnitude. Finally, we ,\ill show how the methods 
and constructions of the previous sections can be applied to the problem of blocking sets 
contained in the union of three lines and answer a question of CA::IiEROi\ [1]. 

1. Introduction and geometric hackgrolmd 

This paper deals with elementary problems on complexes of abelian 
groups arising from finite geometry. One of the central notions of finite geo
metry is the notion of complete arcs due to B. SEGRE (see [4], [5], [9], [10]). 

A k-arc in a projective plane of order q is a set of k points no three of 
which are coHinear. A k-arc is said to be complete if there is no (k + I)-arc 
containing it. As is well known, the maximum number of points that a k-arc 

can have is q + 1 or q 2 according to whether q is odd or even. A h-arc 'with 
this maximum number of points is called an oval. ?lIost constructions of com
plete arcs are based on the following general idea due to B. SEGRE, first used 
by LO~1BARDO-RADICE [7]: 'The points of the arc, w-ith a few exceptions, are 
chosen among the points of a conic, cubic (or generally: an algebraic) curve'. 
Taking about half the points of a conic and one point outside this conic, this 
construction is the "classical" SEGRE-construction. A modification of the 
SEGRE-construction can be found in the paper of KORCHJ\L,(ROS [6] in order 
to construct complete arcs containing one third or one fourth of the points of 
a conic and three suitably chosen extra points. His results are based on 
the notion of 2-(711,n) isolated subsets of cyclic groups. Section 2 deals with 
a construction of 2-( m,n) isolated sets in cyclic groups of order 2s (s even) 
and of order 2s+ 1. 
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Another interesting family of complete arcs is the arcs contained in 
cubic curves. Several results were proved about arcs in cubic curves by 
Dl COMlTE [2], [3], SZONYl [12], [13], [14] and VOLOCH [15], [16]. The last 
two authors used the notion of '3-independent sets' introduced in [12]. Roughly 
speaking, the notion of a 3-independent set is the translation of 'arc' to the 
language of abelian groups. We also mention that the proof of the completeness 
of the arcs is based on the HASSE- WElL theorem on the number of GF(q)
rational points of an absolutely irreducible algebraic curve defined over 
GF(q). Lower and upper bounds for the size of a maximal 3-independent set 
can be found in Section 3. 

In Section 4 we summarize the known constructions of 3-independent 
sets. The constructions come from [12], [13], [14], [16], but we present them 
in a slightly more general form. Comparing the bounds of Section 3 and the 
constructions of Section 4 one can say that the bounds are sharp regarding 
their order of magnitude. 

Another important notion in finite geometry is the notion of a blocking 
set. A set B of the plane is called a blocking set if B contains no line but each 
line meets B. Minimal blocking sets contained in the union of three lines (i.e. 
blocking sets of index three) are related to certain complexes of abelian groups 
(cf. CAMERON [1]). For example using maximal 3-independent subsets we can 
construct various minimal blocking sets of index three. In Section 5 we answer 
a question of CAMERON [1], and show how the methods of Section 3 can be 
applied to this problem. In particular these methods :yield a short proof of 
a theorem of SENATO [11]. 

2. 2a (m, n) isolated sets 

First recall the definition of 2-( m,n) isolated sets and some bounds for 
their size due to KORCHlIL.(ROS [6]. 

Definition 2.1. Given any three integers 0 < m < n < s, a set J of 
integers is called 2-(m, n) isolated if it has the follo"\ving properties: 

(1) 0 E J, 
(2) each integer in J is less than s, 
(3) for every j EJ: 2j ~ m, n (mod s); if s is even then 2j ~ m, n (mod s/2), 
(4) for every j,j' EJ: j + j' ~ m, n (mod s), 
(5) if s is even, j ~ r (mod s/2) if j 7'" r. 
Definition 2.2. A 2-(m, n) isolated set J is called complete with respect 

to (4) and (5) if there is no e E J such that for J U {e} both (4) and (5) hold. 
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Remark 2.1. If we consider J as a subset of the cyclic group (mod 
s, +) then (3) is equivalent to 

(3') for every j E J: 4j -;-"- 2m, 2n 
and (5) to 

(5') for every j / E J: 2j . ~ 2/. 
Therefore using (1), (3'), (4), (5') one can define 2-(m, n) isolated sets in an 
arbitrary ahelian group. 
Define U(s) = {u: there are 0 < m < n < S and a 2-(m, n) isolated set J 

complete with respect to (4) and (5) such that IJI = u}. 

Theorem 2.1. [6] For any II E U(s) 

s/4 s/2 for s even and s/3 u < s/2 for s odd. 

In the ahove cited paper KORCH;\L(ROS posed the prohlem of constructing 
2-(m, n) isolated sets which are complete with respect to (4) and (5). For 
small values of s he found U(3) = {I}, U(4) = {1,2}, U(5) = {2}, U(6) = 

= {2, 3}, U(7) = {3}. 

Theorem 2.2. Let s = 2t, t even and (t/2) - 1 <k < t - 1 he fixed. 
Put m=2k 1, n=2t-l and J= {O,l, ... ,k}. Then J is a 2-(m,n) 
isolated set which is complete with respect to (4) and (5). 

Proof. We have to show that J is 2-(m, n) isolated and for each a E J 
(i.e. k + 1 < a <2t) there exists a j E J such that either 

( *) a + j = m (mod s) or 

( * *) a + j = n (mod s) or 

(* "* *) a = j (mod t) holds. 

The validity of the properties (1), (2), (4), (5) are obvious and 2j ~ m, 
n (mod t) is a consequence of the fact that t is even since 2j ~ / m, n, 2m, 2n 
regarding them as integers because the numhers m, n are odd numbers. For 
proving the completeness of J if k + 1 < a < t - 1, then 0 <j = t - 1 -
- a <k satisfies (*,). If t < a < t + k then 0 <j = a - t k satisfies 
( * "* *). Finally, if t + k ~ a < 2t 1, then 0 <2t - 1 - a = j < t - 1 -
- k k satisfies (* * ). 

A similar theorem can he stated for s odd. As the proof is the same as 
the proof of Theorem 2.2 we omit it. 

Theorem 2.3. Let s = 2t + 1 and (2t + 1)/3 < k < t - 1 he fixed. 
Put m = 2k + 1, n = 2t and J = {O, 1, ... , k}. Then J is a 2-(m, n) isolated 
set which is complete with respect to (4) and (5). 
This construction was used in [13] hut was not stated explicitly. 

Remark 2.2. Actually, our Theorems 2.2 and 2.3 show that U(41) :;2 

:;2 {I, ... 21 - I} and U(21 + 1) :::> {(21 1)/3, ... ,1}. 
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3. Bounds for the size of a maximal 3-independent subset 

First we recall the definition of 3-independence. 

Definition 3.1. Let G be an abelian group written additively. A subset 
T c G is called 3-independent if 

( .¥- ) ',' t + t' + t/l .' 0 for every t, t', t" ET. 

A 3-independent subset T c G is maximal if it is not a proper subset of an 
other 3-independent set. 

We remark that T is 3-independent if and only if 

T) n T) = 0, where T + T = {t + t': t, t' E T} holds. 

Before obtaining hou2lds for the size of a maximal 3-independent subset we 
mention that in elementary abelian 3-groups there are no 3-independent sub

sets at all (as Cl + a + a = 0 for every a E G in such groups). 

Theorem 3.1. Let G be an ahelian group which is not an dementary 
abelian 3-group and T c G he a maximal 3-illdepcndent subset. Then 

Moreover if Ti 
T= G \ H. 

[G(2. 

PI'}. then there is a subgroup H of index t·wo such that 

Proof. First 'we prove the upper hound. By (o:C *) T + T and - T 
are disjoint. Obviously iT T: T[ so cr !- Tt + !T + TI > 2iTi yield-
ing ITi < :Gj2. iT =Gf2 implies iT' =T T which means that T is a 
coset of a suhgroup H. As iT. ,H! = !Gj2, the 3-independence of T implies 
T = C \ H. If G=Cz.>< H, H=C~, then every 3-independeut subset is conta
ined in G H. 

To prove the lower bound obsenTe that the maximality of T means 

that for every g E G \ T either g E - (1' + T) or 2g E T or 3g = 0 holds. In 

other words G T U (- (T + T» U {g E G: 2g ET} U {g E G: 3g = O}. 
As G is not C~ or Cz X C~, I{g E G: 3g = O}I IG 1/3. In order to 
estimate I{g E G: - 2g E T} i consider the suhgroups I = {x E G: 2x O} 
and D = {y E G: there is an x such that y = 2x}. Obviously, [DJ = iG: r:
H - 2g t E T, then t E D n T. The previously proved upper bound of this 
theorem, applying to T' T n D and D instead of T and G, yields that 

IT'; ID!j2, thus l{g E G: - 2g E T} II iD n Ti . il! !G'j2. Therefore from 

IG! > 'T[ + i - (T + T) i fG'j2 + (G1/3 it follows that ;GJ6 iT -+-
+ [T\2j2 (as :1' + Ti iT!· 'IT!j2), hence iTI < Cl • rlGI,. Here Cl = INs c. 

If .Ti " IGI/2 and T is a maximal 3-indepcndent set, then the upper 
bound of Theorem 3.1. can be improved using the following famous the
orem of KKESER (see [8, p. 6., Thm. 1.5]) 
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Result 3.1. (the theorem of KNESER) Let A, B be two complexes 
of the abelian group G. Then there is a subgroup H of G such that 

i) A + B = A + B H 

ii) lA + Bl lA + HI + lB H! - [HI· 
Theorem 3.2. Let T be a maximal 3-independent subset of the 

abelian group G with IT! < IGi/2. Then iTI 2IGI/5. Moreover if ITI > (lGI + 
+ 1)/3, then there exists a subgroup 0 -r:- H < G such that T = T + Hand 
ITI = (IG! + iH i)/3 where 3 is a divisor of rG: Ht + 1. 

Proof. By the theorem of KNESER there is a H < G such that T T = 

= T + T H and iT Tt > 2\T + H! IHI. By (* *) T + T . c G, 
thus H 7~ G. Since we can suppose IT! > CGI + 1)/3, H ,/ 0 by (* *) again. 
From lC! > IT T! ~- !-Ti > 2iT + Hi - [HI :T! > 3iT! - IHI it fol-
lows that IT: (!GI IH!)/3. As T + T H = T + T and T) n (T T) 

0, (- T H) n (T .L T) = {J, i.e. T + H satisfies (* * ). The maximality 
of T implies that T T + H. If iHi = iG'!/2, then ITI = /Gl/2 contrary to our 
assumption. The case IHi = ,G1/3 may not occur, and similarly in case of 
jHj = iGI/4 the conditions iTi < :C1I2 and T = T + H imply that T is a 
coset of H, thus IT! < IG!/4 contradicting [Ti > (Gi + 1)/3. So if !HI ,/ IG1/2, 
then IG: HI > 5. Hence iTI < CGI + iHi)j3 eGI iG!J5)j3 = 21Glj5. To 
prove the second assertion of our Theorem 3.2 recall that T T + Hand 
IT + T! 2iT[ - !HI. If 11'[ > (iG! 1)/3, then in this inequality we have 
equality, hecause otherwise iT Ti > 2!Ti holds and, by (* *), ICI 
> IT Ti + 1- Ti > 2!Ti + iTi 'would follow, which is a contradiction. 
Similarly G / / (T + T) U (- T) implies that :Gi iT T; Tt + IHi ;~~ 
> 21Ti lHI + ITI IH: = 3iT !, which is the same contradiction. There
fore we have IT TI = 21T! -- IHi, T = T + Hand G = (T + T) UT). 
Hence iT; = (IGI + IH!)/3 and as iT: is an integer IG: HI + 1 is divisible by 3. 

Remark 3.1. One can easily check llsing T = T H, that from 
iTI = 2:Glj5 it follows that T = (ll + H) U (-ll + H), where II ~ H. 

Remark 3.2. The second assertion of Theorem 3.2 states that from 
ITI > ((G: + 1)/3 it follows that iT:/iGi E 1/2, 2j5, ... , kj(3k 1), ... } . The 
examples of the next section 'will show that these values can actually occur 

for iT:j[G!. 

4. Constructions of maximal 3-independent subsets 

In this section we collect the known constructions of maximal 3-inde
pendent sets. For the sake of completeness after a construction we mention 
its geometric consequences. Let us start with the extreme cases regarding 
the upper bounds mentioned in Theorems 3.1 and 3.2. 
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Example 4.1. Let G be even and H be a subgroup ofG with IG: HI = 

= 2. Then T = G\H is a maximal 3-independent subset of G. 
Remark 4.1. The arcs corresponding to T = G\H were investigated 

by ZIRILLI [17] and VOLOCH [15] if G is the group of an elliptic cubic. 
Before proving that the possible values of ITI/IG! mentioned in Remark 

3.2 and in Theorem 3.2 can actually occur, recall a definition and an obser
vation from VOLOCH [16]. 

Definition 4,.1. A 3-independent set T c G is called complete if 
for every yE GIT there are t, t' ET such that y + t + t' = O. A complete 
3-independent set is said to be good if t . ~ t' can he supposed in the previous 
condition. 
(In VOLOCH'S paper this was the definition of the 'maximal 3-independent 
set'.) Obviously, a complete 3-independent set is maximal. 

Proposition 4.1. (VOLOCH) Let f: Gl ->- Gz he a subjective homo
morphism of finite ahelian groups, and X c Gz he a complete 3-independent 
set. Then f-I(X) C Gl is a complete 3-independent set. 

Proof. This is Lemma 1 of VOLOCH [16]. 
Example 4.2. (VOLOCH) Take 1 prime 1 == 2 (mod 3), 1 -;-'- 2, G = 

= (mod 1, +), T = { : 1, : 3, ... , : (2r - I)}, where r = (1 1)/6. Then 
/Ti = 21' and T is a complete 3-independent subset of G. 

Proof. This is §. 1. (2) of VOLOCH [16]. 

Proposition 4.1 shows that the groups having a suhgroup of index 1 
admit complete 3-independent sets 'with cardinality (1 + 1) JG1I31, i.e. the 
values 2/5, 4/11, ... , (1 + 1)/31, ... do occur for 1 prime, as iTI/IG:. 

Example 4.3. (VOLOCH) Let 1 be a prime 1 = 1 (mod 3), 1 > 13 
and G = (mod 1, +). Then T = { 1, 1, 3, 4, ... , (1 - 1)/3} is a complete 
3-independent set with JTI = (1 1)/3. 

Proof. This is §. 1. (3) of VOLOCH [16]. 

Proposition 4.2. The examples of Example 4.2 are unique up to 
group isomorphism. 

Proof. For the proof let G = (mod p, +) and T he a maximal 3-inde
pendent set of size ITI = (p + 1)/3. As in the theorem of KNESER (see Result 
3.1) we have necessarily H = 0, and hy §. 3. (* *) IGI > jT + T/ + ITI 
and IT + TI > 21TI - 1, in these inequalities we have equalities if ITI = 
= (p + 1)/3. (The special case of the theorem of KNESER for (mod p, +) is 
usually called the theorem of CAUCHy-DAVENPORT, see MANN [8, p. 3, Corol
lary 1.2.3]). In particular, IT + TI = 2ITI- 1. But in this case T is an arith
metic progression, hy a theorem ofVosPER (see MANN [8, p. 3, Theorem 1.3]). 
So let T = {aI' az, ... , ak = a l + (k - l)d}, k = (p + 1)/3. Since the map-
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pings mu: x -- llX are group isomorphism, we may suppose that d = 1, i.e. 
T = {t1' t1 + 1, ... , t1 (p - 2)/3}. T is 3-independent, hence 0 ~ T giving 
(p 1)/3 t1 P (p - 2)/3 - 1 = (2p 1)/3. Now the only pos-
sibility for tl is t1 = (p + 1)/3, because otherwise (2p 1)/3 and (2p + 2)/3 
are both elements of T and this is a contradiction, because (2p - 1)/3 
+ (2p - 1)/3 + ('Jp 2)/3 =2p _ 0 (mod p). 
Therefore T = {(p + 1)/3, ... , (2p 1)/3}. Multiplying T by 2 we get lhp 

3-independent sets mentioned in Example 3.2. 
Using the idea of the previous proof we are able to generalize Example 

3.2. This generalization 8ho"ws that for every value k/(3k-l) there are infinitely 
many groups G admitting complete 3-independent subsets of 8ize k[Gif(3k 1). 

Example 4.4. Let 1 = 3k 2. The 8et T {h L ... , 2k + I} is a 
complete 3-independent suhset in (m,od 1, -+). 

Proof. We haye to pl'o\-e that (T -+ T) n (- T) (j and (T + T) U 
U (- T) = G. As (k 1) = 'lk + 1 (mod 1), T = - T. T is an arithmetic 
progression, so T T is also an arithmetic progression, namely {2h + 
+ 2, ... , 2(2k + I)}. Here 4k -+ 2 k (mod 1) proyil1g that T is a complete 
3-independent set. 

Now we turn to the inyestigation of the lower hound. The first result 
sho"ws, by taking G (mod p, +) >< (mod p, +), that the lower bound of 
Theorem 3.1 is sharp regarding its order of magnitude. 

Example 4.5. Let G = A>< B, IAI, lB\ > 4 and suppose that neither 
A nor B is elementary ahelian 3-group. Choose a E A and b E B whose order 
is not 3. Put 

T = {(a,y) :y ,~ 2b} U {(x, b) :x ," - 'la}. 

Then T is a complete 3-independent subset in G. 
Proof. As the proof of Theorem 1 of [12] can he followed step hy step, 

we omit it. 
Remark 4.2. The smallest known complete arcs of PG(2, q) have 

cardinality Cq3!4 and come from the complete 3-indcpendent suhsets construct
ed in Example 4.5 (see [12], [14], [16]). 

Example 4.6. Let G = (mod m, +) >< (mod n, +) and k he an arhitrary 
integer hetween 1 and m/3, "where m, n > 4. The set T = TI' U T z U TIff 
is a complete 3-independent set of G, where 

T{ = {(x, y) : 1 < x <h and y, ' - 2}, 

T z = {(u, 1): II E U = { 2, -3, ... , - 2k}}, 

T~ = {(x, - 2): 1 <x< k and x + III + llZ " 0 for every Ul' llZ E U}. 

Moreover ken - 1) < iT! kn+ m. 

7 
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Proof. This is a slight modification of Lemma 4. in SZOl'<"YI [13]. 
In the previous examples the direct decomposability of G played an important 
role. The following class of 3-independent sets shows that even in groups of 
prime order there are small maximal 3-independent subsets. 

Example 4.7. Let 1/2 <x < 1 he fixed. Choose a prime q hetween p"/2 
and p"/4 and let 1111 he the maximal integer which is relatively prime to q 
and satisfies mlq'< p/2. Now 1111 + 2q > p/2. Suppose that p == k (rnod m), 
III = mlq and let k == a]g + a~ml (mod m). (Here aI' a2 are uniquely deter
mined.) Put 
Al={cq: 0<c<ml butc 7 ,-a l ,2a1 } U{dml: 0<d<qbutd7'-a2,2a~} 
and finally let A = Al U {(11 m: a1 E AI}' 
Then A is a 3-independent suhset of G = (mod p, +). ]\Ioreoyer ' 2(q 

m l ) lOp", and :G (A A)I < 109 + 6m1 < 20p". Therefore a maximal 
3-independent set B containing A satisfies lE :::::: 'lOp". 

Proof. This is Theorem 2.1. of [14]. 

Finally, we summarize the information contained in sections 3 and ,t 
in a theorem. 

Theorem 4.1. Let G be an abelian group which is not an elementary 
ahelian 3-group, and T c G be a maximal 3-independent subset. Then 

a) Cl fiGI < ITi < IG!!2, 
h) if iT! (lG! + 1)/3, then ITl = (Cl + !H)/3 where ;G: H[ 2 (mod 3) 

and for every 1 = 2 (mod 3) there are infinitely many groups G having 
a complete 3-independent subset of size (1 + 1)iGi/31. 

c) for every 0 < c 1/3 and e > 0, there is a maximal 3-independellt set 
T of G = (mod p, +) X (mod p, +) satisfying 

(c e);GI::;;: iT! < (c E)iG!. 
cl) for every fixed x, 1/2 0( < 1 there are Cl' Cz such that for every p > Po 

prime (mod p, has a maximal 3-illdependent subset T satisfying 

5. Blocking sets of index three: a translation for ahelian groups 

Definition 5.1. A subset S of a finite projective plane is called a block
ing set if S meets every line but contains no line. A hlocking set S is 
minimal if S {x} is not a blocking set for every x E S. The following definition 
due to C.HIERON [1] is related to certain blocking sets. This connection will he 
explained in Proposition 5.3. 

Definition 5.2. Let G be an additive ahelian group of order n, and 
m a positivei nteger. We say that G -+ m if there are nonempty suhsets 
A, B, C of G such that 
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(i) 0 ~ A + B + C; 
(ii) (A, B, C) is maximal suhject to (i); 

(iii) IAI IBi + ICI = m. 
I I i ' I i 

Proposition 5.1. 

a) If :GI = nand G -+ m then 3(1I"n 1/4 - 1/2) m < 3n/2, 
iGlm 

b) If e: G ->- H in an epimorphism and H ->- m, then G ->-~ • 

c) G ->- n d for any proper divisor d;of n. 
Proof. This is §. 3. (3.4.) in CAillERON [1, p. 49]. 

Wc remark that the upper and the lower hounds are essentially sharp. 
Example 5.1. Let G (mod p, >< (mod p, +), A = {(x, X2): 

x = 0, L .. . ,p - 1}, B = {(- x, - x2): x = 0,1, .. . ,p - 1}, and C = 

= {(O,y): y = 1,2, ... , P - I}. Thcn (A, B, C) shows that G ->- 3p - l. 
Proof. Onc can easily check that A B = G' C, A C = GAG 

, (- B), B + C = G' B = G', (- A) proving G ->- 3p - l. 
As a partial converse to Proposition 5.1. (c) "we prove the following. 

Proposition 5.2. If G ->- m ',"ith m > :GI 1, then there is a suhgroup 
H of G such that 111 = iGI Ill. 

Proof. The proof of Theorem 3.2 based on the theorem of KKESER 
proves Proposition 5.2 as well, so we give only the outlines of the proof. Let 
A, B, C c G show that G -, m. Choose a suhgroup H to A, B hy the theorem 
of K::"ESER (Result 3.1). Here obviously H G and hy In > :GI + 1 we get 

H = 0. Now A B = A + B + H and lA + BI > lA + Hi + IB + H] -
IHi. By the maximality of (A, B, C) necessarily A = A H, B = B H, 

C = C + H = G (A + B). Again 111 > :Gi + 1 implies that lA BI = 
lA + IT jB + H; - lH! thus !Ai i

B
! + !Ci = !GI lHI. 

As a hy-product \\"e obtained a theorem of SE::"ATO [11]; if In = 3:GI/2, then 
A, B, Care cosets of a suhgroup of index two. 
As complete 3-independent sets yield triplets (A, A, A) showing G -+ 3 lA \' 
the results contained in Theorem 4.1 can he applied in the present case. Fi
nally, mention should he made of the geometric consequences of the results. 

Definition 5.3. A hlocking set S is called ahlocking set of index 
three if it is contained in the union of three lines. 

Theorem 5.1. Let S he a minimal hlocking set of index three. Then 
one of the following holds: 

i) IS\ = 2q 
ii) ISI = 3(q - 1) 
ill) ISI = 3q 1 - In, where (GF(q), +) ->- In, and q >2 
iv) iSI = 3q - In, where GF(q)* ->- 111. 

Proof. This is §. 3. (3. 5.) in CAillERON [1]. 

7* 
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