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Abstract

A language over a finite alphabet X is called disjunctive if the principal congruence
P; determined by L is the equality. A dense language is a language which has non-empty
intersection with any two-sided ideal of the free monoid X* generated by the alphabet X.
We call an infinite language L completely disjunctive (completely dense) if every infinite
subset of L is disjunctive (dense). For a language L, if every dense subset of L is disjunctive,
then we call L quasi-completely disjunctive. In this paper. (for the case |X| > 2) we show
that every completely disjunctive language is completely dense and conversely. Characteri-
zations of completely disjunctive languages and quasi-completely disjunctive languages
were obtained. We also discuss some operations on the families of languages.

1. Introduction and preliminary

Let X* be the free monoid generated by the alphabet X. Every element
of X* is called a word and every subset of X* is called a language. Let X+ =
= X*\1, where 1 is the empty word. For a given language L € X¥, the rela-
tion P; defined on X* as

v = y(P) e (usw €L e uyv € L, Wu, v € X¥)

is a congruence. We call L regular if P; is of finite index and L is said to be
disjunctive if P; is the equality. L regular is equivalent to the fact that L is
recognized by an automaton. A dense language is a language which has non-
empty intersection with any two sided ideal of X* ([4]). L dense is equivalent
to the fact that L contains a disjunctive language (see [5]). We will call an
infinite language completely disjunctive (completely dense) if every infinite subset
of the language is disjunctive (dense). A quasi-completely disjunciive language
is a dense language L in which every dense subset of L is disjunctive. The
purpose of this paper is to characterize completely disjunctive, completely
dense and quasi-completely disjunctive languages. We also discuss some opera-
tions on those families of languages.
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In this paper, some time the free monoid X* needs to be equipped with
a total order < on X*. We call a total order < defined on X* strict if for
every u == v € X*, u < v if Ig (u) <lIg (v). A standard total order defined on
X* is a particular strict total order < such that for any u, v € X*, u << v if
lg (u) < lIg (v) and < is the lexicographic order on X" for all n > 1.

Now if < is a total order on X* and if A= {x, <x, < ...}, B=
= {y; <y, < ...} are two infinite languages over X, then following Shyr
we define the ordered catenction of A and B to be the set A \\ B = {x,5,i =
=1,2,3,...}. We extend the notion of ordered catenation to finite languages
in anatural way. To approach this if a finite language, say A = {a;, a5, .. ., a,},
then we consider A as {a;, a5, ..., a, 1, 1, ...} and A /. B means the same
as ordered catenation for infinite languages.

We call 2 word x € X7 primitive if x = 7, f¢ X* implies n = 1. Let
Q be the collection of all primitive words over X and let 9 be the order
catenation of i copies of (). For convenience welet 0¥ = @ U {1}. Let | X| > 2,
where !X means the cardinality of the alphabet X. Then for u,v ¢ X*,
uv € Q¥ if and only if vu € Q¥ for zll 7 > 1, and it is known that for i >> 1,
each QU is disjunetive ([53]. [6]). For a giver language L, if for every f = g
€ X+, 1g (f) = lg (g). there exist u, v € X* such that ufv € L ugv € L, or vice

versa, then L is disjunctive ([6]). Here lg (x) means thelength of the word x.

2. Charaeterization of completely disjunctive languages

Let us define the completely disjunctive and completely dense langunages
formally.

Definition. An infinite language L is called completely disjunctive (com-
pletely dense) if every infinite subset of L is disjunctive (dense).

By definition, it is clear that every completely disjunctive language is
a disjunetive language. Certainly, every completely dense language is dense.
And, clearly every infinite subset of a completely disjunctive (dense) is com-
pletely disjunctive (dense).

The following are some examples of completely disjunctive and completely
dense languages. If X = {a}, then the disjunctive langnage A = U _ (&)
is completely disjunctive, and the regular language B = (a")7 is comp_letely
dense but not disjunctive for n > 1.

For |[X| > 2, let <{ be any total order defined on X* and let X* =
= {%; << x5 < ...}.Thelanguage L = {xx,...x;]i > 1} is dense and discrete
and hence disjunctive. Clearly every infinite subset of L is disjunctive and

by definition L is completely disjunctive.
The following Proposition is immediate.
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Proposition 1. Let |X| = 1. Then every infinite subset of X* is completely
dense.

We call a language I © X* regular free if every infinite subset contained
in L is not regular.

Proposition 2. Let ]Xl = 1 and let L © X* be an infinite language. Then
the following are equivalent;

(1) L is completely disjunctive;

(2) L is regular free;

(3) L is quasi-completely disjunctive.

Proof. Since every subset of X* is either regular or disjunctive ([5]),
the equivalences of (1), {2) and (3) are immediate.

We call a language L semi-discrete if there exists k > 1 such that
ILNX" <k for all n >1. If k= 1. then L is a discrete language. Let
|X| > 2. For a semi-discrete language over X we have.

Proposition 3. ([3]) If L is a dense semi-discrete language, then L is
disjunctive.

In the rest of this paper. we assume that the cardinality of the alphabet X
consists of more than one letter.

Proposition 4. Every infinite regular language over X contains a language.
which is neither regular nor disjunctive,

Proof. Let L € X* be an infinite regular language. Then L contains a
regular language ux¥v, where x € X*, u, v € X*. Let L” = {uavjp is a prime
number}. Clearly, L’ is not a regular language which is also not disjunctive.
Thus L” is a language in L. which is neither regular nor disjunctive.

A word u € X7 is said to be non-overlapping if va = u = yv for some
v, x, ¥ € X* imples v = 1.

In order to show the equivalence of completely disjunctivity and com-
pletely density we first show the following lemma.

Lemma 5. Let u,v € X* with Ig (u) = lg (v). Then there exist x, y ¢ X*
such that xuy and xvy are non-overlapping.

Proof. Let a,b¢X with as==b and n=lg(u) = lg (v). Obviously,
b 2quba 2, b"2avba”? are non-overlapping.

Proposition 6. Let L € X*. Then L is completely disjunctive if and only
if L is completely dense.

Proof. (=) Obvious. («=) Let L’ be an infinite subset of L. We prove
that L’ is disjunctive. Suppose u = v(P;.) and u == v. We can assume that
lg (u) = lg (v) without loss of generality. Moreover, by Lemma 5, we can
assume that u. v are non-overlapping, let K = L\ X*pX*. We now show that
K is an infinite set. Let w € L” 1 X*»X*. First, we represent w by the fol-
lowing way:

(1) w = xx,0%,5...x50%, . .

(if) %, € X*0X*, i=1,2,...,n+ 1.
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Let f(w) = xjux,ux, ... xux, . .. Since u = v(P.), f(w) € L’. On the other
hand, by the fact that u, v are non-overlapping and x; § X*vX*, we have
f(w) § X*vX*. Hence f(w) € L’'\X*vX*. Obviously, {f(w)jw €L’ N X*vX*} is
an infinite set. Therefore, K is an infinite set. However, K is not dense, a
contradiction.

Proposition 7. Let A, B C X* and let AB be a completely disjunctive
language. If A (B) is infinite, then A (B) is completely disjunctive.

Proof. Let A’ be an infinite subset of A. Then for any finite subset
B’ ¢ B, A’B’is infinite and thus disjunctive. This implies that A’ is disjunctive
and A is completely disjunctive.

Proposition 8. Let A and B be two infinite languages. Then A B is completely
disjunctive if and only if both A and B are completely disjunctive.

Proof. (=) Proposition 7.

(<) Suppose AB is not completely disjunctive. Then by Proposition 6,
AB is not completely dense. Therefore there exists L © AB, an infinite
language which is not dense. Let
A" = {x € Alxy € L, for some y € B} and let B’ = {y € Bxy € L for some

x €A}

Since L is not dense, we have that both A” and B’ are not dense. But A’
or B’ is infinite, and this in turn implies that not both A and B are completely
dense, a contradiction. This shows that if both A and B are completely dis-
junctive, then AB is completely disjunctive.

The following can be easily proved:

Proposition 9. Let A, B © X*, where (A, <,), (B, < ,) are strictly ordered
sets. If A or B is completely disjunctive then 4 A B is completely disjunciive.

Proof. Suppose A is a completely disjunctive language. Let L. be an
infinite subset of 4 A B and let A, A B, = L, where 4, € A4 is an infinite
subset of A and B, C B. Since A is completely disjunctive, 4, is dense. Thus
L is a disjunctive language ([7]). Therefore, 4 A B is completely disjunctive.
Similarly, we can show that 4 A B is completely disjunctive if B is com-
pletely disjunctive.

The converse of the above proposition is not true as can be seen from
the following example.

Example 1. Let < be the standard total order defined on X* and let X+ =
= {x; < %, <...}, where x, = a € X. Let the languages 4 and B be defined
as the following two sets:

A= {xx,...5i>1} Uldlj=1g(xx,...x,) + 1,0 is even};
B={xx,...50i > 1} U{dj=1lg(xpx,...x,) + 1. n is odd}.
For the word x,%, ... x,, let j(m) =lg (x;x,...x,) + 1. Then

A = {x; < 2%, < &P < w5050, < xy5,%55, < I <L) and
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B = {x, < a/® < xy%, < 2150555 < al® < xyxamgx, < wymomgn,ng < al® <L)
It is clear that both A and B are not completely disjunctive while
A /B = {x,%,, 2,0, alDx x,, 12,05 %050, 15,557,079,

ai®x,xoxox,, . .. is completely disjunctive.

Proposition 10. Let L © X*, where (L, <{) is an infinite strictly ordered
set. Then the following are equuvalent:

(1) L is a completely disjunctive language:

(2) L™ is completely disjunctive for some n > 2

(3) L' is completely disjunctive for all n > 2.

Proof. (1) = (3) Proposition 9.

(3) = (2) Trivial

(2) = (1) Let L" = {w"w ¢ L} be a completely disjunctive language
for some n > 2 and let A be an infinite subset of L. Then 4" is an infinite
subset of L™ and thus a dense language. It follows that A is a dense subset
of L and L is completely dense. By Proposition 6, L is completely disjunctive.

We are now able to prove the main characterization of completely dis-
junctive languages.

Proposition 11. Lei {a. b} € X and let L © X*, where (L, <0) is an infinite
sirictly ordered set. Then the following are equivalent:

(1) L is completely disjunciive;

(2) L is completely dense;

(3) Ewvery subset of L is either regular or disjunctive;

(4) L\X*wX* is finite for all w€ X+,

(5} L™ is completely disjunctive for every n > 2;

(6) L™ is completely disjunctive for every n > 2;

(7) For every infinite language S, L N S is finite or disjunctive.

Proof. (1) = (2). Proposition 6.

(1) = (3). Immediate.

(3) = (1). Let D be an infinite subset of L. Then by (3) D is either
regular or disjunctive. If D is disjunctive, then we arve done. On the other
hand if D is regular, then by Propesition 4, D contains a langnage which is
neither regular nor disjunctive. This contradicts the condition (3).

(2) = (4). Let L'X*wX* be an infinite language for some w ¢ X 7. Then
L\X*wX" is an infinite language contained in L and by (2) L\X*wX* is dense,
a coniradiction.

(4) = (2). Suppose D is an infinite subset of L which is not dense. Then
there exists w € X7 such that D N X*wX* = @. Since D € LiX*wX* and by
(4) D is finite, a contradiction.

(1) < (5). Proposition 8.
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(1) « (6). Proposition 10.

(1) = (7). Trivial.

(7) = (2). Suppose L is not completely dense. Then there exists an
infinite subset A of L such that A is not dense. Thus 4 = 4 N L is neither
finite nor dense, a contradiction.

3. Characterization of quasi-completely disjunctive languages

We give the definition of quasi-completely disjunctive language formally.
Recall that the alphabet X consists of more than one letter.

Definition. A dense language L is called quasi-completely disjunctive if
every demse subset of L is disjunctive.

It is clear that quasi-completely disjunctive languages are disjunctive
languages and every dense subset of a quasi-completely disjunctive language
is quasi-completely disjunctive.

For any L € X* and x € X*, let L...x = {(u, v)uxe ¢ L}. The fol-
lowing is a characterization of the quasi-completely disjunctive language.

Proposition 12. Let L © X* be a dense language. Then L is quasi-completely
disjunctive if and only if for every x == y € X' ¥, the language L, = {uvluxv € L
and uyv € L} is not dense. 4

Proof. (=) Let » = y € X* and suppose L, = {uv'uxv € L and uyv € L}
is dense. Then the language

L= {uxvl(u.v)€L...xNL...y} U{uyvi(w,v)€L...xNL...y}
is dense. Indeed, by the assumption that L, is dense for every w € X*, there
exist u’, v’ € X* such that uwwwv’ ELX_‘,. Thus v'wwv” = uv € ny for some
uv’ € X* and uxv, uyv € L. This then implies that uxe. uyv € L,. Since either
u or ¢ contains w as a subword, we see that L; N X*wX* == ¢ and L, is dense.
Now, by the definition of the set L;, we see that x == y(P, ). Then L, is a dense
subset of L which is not disjunctive, a contradiction. This shows that L.,
is not dense. )

(<) Let L, be a dense subset in L. Since L., = {uvjuxv € L and uyv € L}
is not dense, there exists w such that X*wX* NL, = 0. Now for every
u, v € X*, if uw,xw,v € L then uw,yw,w § L where w = we,, w,, w, € X*. Since
L, is dense, there exist u’, * € X* such that u’wxw,w” € L. Thus v’wwv’ € Ly
and u'w yw,v’ § L,. Therefore L, is disjunctive and L is qusi-completely

disjunctive.

Proposition 13. Every semi-discrete disjunctive language is a quasi-com-

pletely disjunctive language.

Proof. Follows from ([3]).
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Proposition 14. Let A, B © X¥*, where (4, <,), (B, <,) are two strictly
ordered sets. Then the following are equivalent:

(1) A or B is dense;

(2) AB is dense;

(3) A » B is dense;

(4) A /. B is disjunctive;

(5) A A B is completely disjunctive.

Proof. The equivalences of (1), (2) and (3) are immediate.

(1) = (4). Theorem 3 of ({7]).

(4) = (5). Assume that A A B is disjunctive. Let Ly A L, be a dense
subset of 4 ~ B.Then by the equivalence of (3) and (4), we have that L, / L,
is disjunctive and we are done.

(5) = (3). Trivial.

It has been shown that the language |J;,Q® is quasi-completely dis-
junctive ([1]). But the language Q is not quasi-completely disjunctive.

For example, let the langnage L = {q € Q|lg (¢) is a prime number} is
a dense subset of @, which is not disjunctive.

Proposition 15. Let A, B be two languages. If AB is quasi-completely
disjunctive, then one of A and B is quasi-completely disjunctive.

Proof. Certainly AB is dense. Then clearly one of A or B is dense. Let us
assume that A is dense. Let A’ < Abedense and let B’ € B be finite. Then
A'B’ is a dense subset of AB and therefore disjunctive. That A’ disjunctive
follows from the fact that A’B’ is disjunctive and B’ is finite (see [10]). Thus
A is quasi-completely disjunctive.

Similarly, we can show that if Bis dense then B is quasi-completely
disjunctive.

From the above we can conclude that for two languages A and B, if AB
is quasi-completely disjunctive, then both A and B are quasi-completely dis-
junetive.

In general, the catenation of two quasi-completely disjunctive languages
may not be quasi-completely disjunctive. This can be seen from the following
example.

Example 2. The language Q = |J;5,0® is quasi-completely disjunctive
but QQ is not quasi-completely disjunctive. Indeed, QQ = {f|€Q,i >4} U
U {p'¢lp = q€0Q.i,j > 2} and there exist x ¢y € X* such tha_ta((?(?_)xy =
= {uvluxv € QQ and uyv € QQ} is dense. Let A = {uaav|(u,v) €QQ...aa N
NQQ ...bb} U {ubbv|(u,v) € QQ ...aa N QQ ...bb}. Itis clear that for every
x € X*, aaxx, bbxx € A and hence A is not a quasi-completely disjunctive
language.
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4. QOperations on the quasi-completely disjunctive langnages .

We now study some operations on the family of quasi-completely dis-
junctive languages. Let CD(X) be the family of all completely disjunctive
languages over X (which is equivalent to the family of all completely dense
languages over X), and let QCD(X) be the family of all quasi-completely
disjunciive languages over X.

Proposition 16. Let L ¢ QCD(X). If L= A U Bwith A N B = 0§, then A or
B is disjunctive.

Proof. Immediate.

The converse of the above proposition is not true in general as can be
seen from the following proposition. Let us first present a lemma, which is
due to Iro, KaTsura and Suyr ([2]).

Lemma 17. ([5]) Let %, v, u, v € X" (x == v) and let a, b€ X (a==b). If
m > mex {lg (x), 1g (y)} then uxab™ € @ or uyab™v € Q.

Proposition 18. Let G = 4 U B with A ) B = §. If A is not disjunciive,
then B is disjunciive.

Proof. Let 2=y X" n>1l.x=y(P,). Let ws==zlg(w)=1Ig (3.
Suppose @ 5= b € X and m > lg (xiw). Because @ is disjunctive, we can find

®»

+

u, v € X such that uxwab™v € Q. Then uywab™v and uxzad™v ave primitive. Since

x = yv(P,) and uxwab™ ¢ 4 we have uywab™ € A and hence uywab™v € B.

Now if uxzab™v € B, then since uxweb™ € (¢, we have that w 2 2(Pp)
and we are dome. if on the other hand uxzeb™v € B then uxzeb™v € A and
uyzab™v € 4 (¢ B). Since uywab™v € B, we have w £ 5(Pg). This shows that
w = 3(Py) and B is disjunctive.

Proposition 19, Let A, B € QCD(X). Then L = A U B is disjunctive.

Proof. Let 4, B € QCD(X). Suppose L is not disjunctive and there exist
x==y€X*, x=7y(P) Since A, B<QCD(X), by Proposition 12, both A4,
and B, are not dense. Thus there exist w and w’ such that X*wX* N A4, = 0
and X*w X* N B,, = 0. Now for every u, v € X*, if uxwv € A then uywv € 4
or vice versa, and if uw’xv € B then nw’yv ¢ B or vice versa. Since 4 is dense,
there exist u, v € X* such that uxww’yv € 4 and uyww'yv € A. By the assump-
tion that x = y(P,), uyww'yv € B and uyww'xv§ B hold. We then have
uyww’xy € 4.

Similarly, if uyww’sxv € 4 then uxiww’zv € B and wxww’yv € 4. We thus
have xmiw’y = yww’x(P,), a contradiction. Therefore, 4 U B is disjunctive.

The following is immediate.

Corollary 20. Let A be a regular language and let L < A. Then L ¢ QCD(X)
implies that A\L § QCD(X).

Certainly, if L is a quasi-completely disjunctive language then L =

= X*\L is pot quasi-completely disjunctive.
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Dense languages have been characterized by Savr ([8]). We give another
characterization for the dense languages.

Proposition 21. Let I © X*. Then the following are equivalent:

(1) L is dense;

(2) L contains a completely disjunctive language;

(3) L contains a quasi-completely disjunctive language;

(4) L contains a disjunctive language.

Proof. (1) = (2). Let <_ be a total order defined on X* and let X+ =
= {x,, %y, %3, .. .}. Let

L' = {ugw@w, .. xpjumas, . oaxp, €L,1 > 1} € L.

Since L is dense, L’ is dense. It is clear that every infinite subset of L’
is demse. Therefore L’ is completely dense and hence L’ is a completely dis-
junctive language.

(2} = (8) and (3) = (4) are immediate.

(4) = (1). Proposition 4.20 of ([6]).

Tt is obvious that CD(X) € QCD(X). Since @ € QCD(X) and @ ¢ CD(X),
we have CD(X) is a proper subfamily of QCD(X).

5. Lattice properties

In this section we consider the family of languages
M(X)= {06} U{F < X*{F is a finite set} U CD(X).

Then by the previous result we see that M(X) is a semigroup under catenation
operation. The relation © on M(X)is clearly a partial order, and the semi-
group M(X) has a lattice property. Indeed,

Proposition 22. If A, B € M(X), then 4 U B € M(X) and 4 N B ¢ M(X).

Proof. If A or B is finite or empty, then we are done. Assume that 4, B ¢
CD(X). For every infinite subset S € 4 U B. S contains an infinite subset
of A or B. Thus S is dense. By Proposition 11, 4 UB ¢ CD(X). If 4 N B
is finite, then A N B ¢ M(X). If A N B is infinite, then 4 N B is an infinite
subset of A. Thus 4 N B ¢ CD(X).

We have the following proposition.

Propesition 23. (M(X), <, N, U) forms a distributive lattice for every
finite alphaber X.

Proof. For every 4, B¢ M(X), 4 U B is the minimum set such that
A, B < 44U B and A N B is the maximal set such that 4 N Bc 4, B. It

is easy to see that
AUBNC=AUB)YNAUCL) and
ANBUC=ANBUMANCQ).

Therefore, (M(X), <, N, U) forms a distributive lattice.
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