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Introduction

In recent years the application of mathematical methods in the natural
and technological sciences is characterized among others by considering the
stochastic nature of the interesting problem, This results in random equations
with some random functions which determine the problem investigated.

In this paper we are concerned with boundary-initial value problems for
parabolic differential equations with random inhomogeneous terms, initial or
boundary conditions. Thereby, we consider especially these random influences
in the form of weakly correlated functions describing real physical phenomena.
These functions can be considered as functions without “distant effect” or as
functions of “noise-natured character””. That means, the influence of the
random function does not reach far and its values at two points do not correlate
when the distance of these points exceeds a certain quantity ¢ >> 0. This number
is called the correlation length and it is assumed to be sufficiently small in
applications. Hence the correlation function R, fulfills the relation R,(x, y) == 0
if |x — y| > = e. For an exact definition of weakly correlated functions see
[5, 8]. An essential advantage of the use of these functions is the use of results
of limit theorems for the random solution of the problem mentioned above.

In chapter 1 we consider a general randem boundary-initial value prob-
lem and its almost sure (a.s.) solution. The theoretical results of the weakly
correlated theory used in this paper are given in chapter 2. By application of
them we analyse in chapter 3 some special problems in the space and half-
plane to investigate the general effects of random inhomogeneous terms and
conditions. Large investigations with respect to bounded domains with a
random boundary condition can be found in [2, 3]. In chapter 4 we briefly
repeat them and we give additionally comparison results obtained by physical
and mathematical simulation.
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1. General problem and its a.s. solution

We consider the following boundary-initial value problem of heat con-
duction (w denotes the random input functions)

u, = adu+ fox, t,w), (x,t)€Gx(0, o)

u(x,0) = fa(x.w), x€G =G oG
A, (%, ) + Biu(x, t) = fp (%, 1, w), (x,t) €6;,%(0, o), E=1,2,...,n,
where G — R™(m < 3) is a simply connected domain with piecewise smooth
boundary 9G = CJ 0G, and n, denotes the outward normal to G,. Further,

k=1
the compatibility and the continuity conditions of the above problem are

assumed to be fulfilled.
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Fig. 1. Domain G

Then, the a.s. solution of (1), if it exists, possesses the form with the Greens
function G(x, t; x4, t,)

t
u(x, t, w) = J‘J‘G(x, t3 %g, tg) fo(%0s 2or W) dx4d2, +JG(x, t5%0,0) fa(xg, w)dxy —
0G G
(2)

t
Sr,i(%os tgr W) OG(x, 85 %, )
—a d dS(x,)dey+
J =, J (o) (o) o

0 2Gy.

J_fi_fg_fo_ﬂ G(=, 85 xq, 1) dS(xo) i

with K, ={k€{l,...,n}:4, =0}, Kg={1,...,n} — K,
This statement is obtained by generalization of results in [1, 9].
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Examples:
1. G = R™; then

—_— a2
G(xa i %, to) = H(t tO) — ex (— _Lx__;.t.o_l__ (3)
(475&(1& — to))ml. da(t — t,) |
with the Heaviside-function H.
2. G =R* = {x >0}; here
_ . 9 2
G, 15 xq, 1g) = Hit — 1) ‘eXp (__,(_’_‘__f"_q)_,) - exp [" L= xof )

(dalt — tg))2 | da(t — t,) da(t — t,)

(4)

for the boundary condition ;;?;G(O, 3 %5, 85) = 0, i. e. B=0.

3. For bounded domains GR™ we obtain the series statement

Clx, 13 0, 1g) = é‘fi(x)ﬁ(xo) exp (— adyft — 1)) (5)

where /A and f; are the eigenvalues and eigenfunctions of the adjoining eigen-
value problem with respect to the operator —4. For the stochastic analysis
we can separate the problem (1) by

Solw, 2, w) = (fofx, 8)) + fQ(xv t, w)
Sa(x w) = (fa(=)) + fA(xv w) {6)

fR,k(xa Z w) = <fR,k(x7 t)> + fR,k(x’ 2 w)a k= 17 LI ()

and
u(x, t, w) = {u(x, t)> + u(x, £, w).

Then, we obtain for & the presentation (2) with / instead of f.

2. Theoretical results of the weakly correlated theory

Random linear functionals of the form

ri(w) = ) Fi(x)filz,w)dx, i=1,2,...,n, j=1,2,...,1
D;

as well as

1
ri(w) = 21 rgw), i=12,...,n,
o
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are considered where (fi(x, w), ..., . fi(%, w))T is an a.s. continuous, weakly

correlated connected vector function with D < R™. The domains D; of D =
n

= U D, possesses a piecewise smooth boundary.
i=1
The essential object of the application of the theory is the following
limit theorems:

— Let Fy(x) € L(D) N Ly(D), where F;(x)=0 for x¢D — D, and

<fji(x)> Lepg<<oo,j=1,...,1 then it yields
.1
lim — (ry i j,e)=24,(Fij, Fij) (7)
g0 em
with
r’ Al(F ]Jl ) = ‘Y Filjl(x) Fi:jﬁ(x) alljz(x) dx
Di;ﬂDz

Thereby the intensity a;(x) between f; and f;, is given by

a,,<x>—-hm— j (@) Fiule + ) ds

#H0 Ke(0)
with K (x) = {zt € R" =[x — z| < ¢}.

— If further <lfjs(x)}P> Lep,<ooyj=1,....,1and p=1,2,..., thenit
vields in distribution
) 1
lim —— (ry (), . . ., ()T = (g,(w), . . ., . gn(w)T = g(w) (8)
el0 €77

where g(w) is normally distributed with (g} = 0 and correlation relations

1
<gpgq> = 2 2A1(ij1’ Fst)? p.-g=1,..

Jirda=1
That means practically for small ¢ r(w) is approximately normally distributed
and for the covariances it yields

(Tpjgier ~2 AL E s Fop) ™.

In the recent years these results were improved by determining the deviation
of the normal distribution and the next terms in the expansion of the moments
(see e.g. 15, 7]). We restrict us here to the result for the variance. For this

U(x)] Le< oo, foral xeD,,i=1,...,nand j=1,..., . I, is assumed

and the correlation function possesses an expansion in the foﬂowmg sense
I i@ fplx + 2)0dz = ay(x) &7 4 by(x) €™ 71 4 o(e™ )
Ke(0)

where a;(x) is continuous, b;(x) is bounded and o(¢™¥1) is uniform with
respect to x.
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Then it yields

<r?js> = 2—41(Fij= Fij) g™+ 24 (F Fij) eM*l 4 o(e™TH) 9)

ijs
where
2A(Fy Fy) = Fs(x)bﬂ(x) dx + lzj(x) S(x; 0, 1) dS(x),
D; Dy
and S(x;0,1) is a further characteristic of f,(x, w) concerned with the be-

haviour at the boundary of D,. Often the relation b,(x) = 0 is true for the
considered correlation function of f,.

3. Problems in the space and in the half plane

At first, we consider (1) in the form
u, = adu + fofx, t, w), (x,t) € R™x(0, o) (10)
u(x, 0) = fi(x, w), x € R™,
If we have fQ(x, t,w) = 0, and f (%, w) is weakly correlated with the according

properties mentioned above we obtain with (2), (3), (6) and (7), (8)

] 1 _
lim - u(x, t, w) = g(x, t, w) in distribution,
ERN

where g is a centred Gaussian field with

1
(Ux,‘ gi\?.),t., e
Nc( 1 01) ( 2 .‘)> (4‘?‘1561»)m<tlt2)m/2
- . 1 ;”‘1 o x‘o‘z I, — 103 i
e - L P2 R0 () d
J P l -1a( t t, J) a{xo) do

R™

and a ,{x) denotes the intensitv of f,. For a homogeneous initial temperature
A J A D
field it is a,(x,) = a, = const, and especially the variance is given by

a i 1 : a
(.0 =2 [oxp [ 2l — moft| dry— —2A— 24,
(dezat)™ | 2at V 8zat™
Rﬁl

Moreover, 24, = 0 hoelds for b,(= b;) = 0. Hence we have in this case

(Wx, 1)) A a,e™(8zat)™? = u(t)
up to the order o(e™™1).

Figure 2 shows for m = 1 the behaviour of the approximated normalized
dispersion in compzrison with the exact results. Thereby a, = o2 = (f3(x))
is used and it has to be noted that the exact resulis could only be determined
by numerical integraiion methods. We can state a good agreement after a
short, with ¢ decreasing, time t.
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Fig. 2. Exact and approximate standard deviation
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Fig. 3. 1st and 2nd order approximation of the variance

Figure 3 gives an impression for the behaviour of the variance in the
case of random sources f, but deterministic initial temperatures, i.e. f,=0.
Thereby fQ(x, t,w)=sin (t)f,(t,w) was considered where f,(¢,w) was assumed

L : ; g
to be stationary with intensity a; = > =<{/}t)) =1 and S(x;0, 1)=— <
Moreover, the abbreviations ¥,¥; were used in the following sense

(WP, 1)) =~ g2 _2{ — i sin(2t)J & — %: sin? (t)e? =

= |[V1(e) + V,(0|V()
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Remark: The coupling of the two cases considered above is possible, if
e.g. fQ(x, t, w) = h(t) fo(%, w) and (fy(x, w), f,(x, w))T is weakly correlated con=
nected.

Secondly, we consider the following problem in the half plane:

u, = adu
u(x, y, 0) = uo(x, y)

u(%, 0,t) = fr(t, w)
in the domain G = R x R™.
Then we have for u = u(y, ¢, w) the simpler problem

u, = adu,,, u(y,0)=0
1, (0, £} = fglt, w) = filt, w) — (fp(t)

having the solution (cf. (4))

4

. aexp(_z__?f*__]
u(y, 1, w) = -]—:— 1ta(tt Frlte, w)dty=
T ¢ %

0

t
Y F(t — ty, ¥) falte: w) dt,
o

where F €L,,(0,1) for all y 0.
By using the limit statement (7) we approximately obtain for a weakly
correlated f,(¢, w) the variance

@y, 0y ~ — 228 By {- s
T 2at

where a; denotes the constant intensity of f, and Ei(.) is the exponential
integral function. Considering the compatibility condition fx(0,w) = 0 a.s.,
the intensity cannot be constant. Figure 4 shows the deviation from the
instationary case where the smoothing function

h(e) = t/c for 0<t<e¢
o for t >¢
is used for fp(t, w) = h(t) f,(t, w) and f, possesses the intensity a,.
We can state that with increasing times ¢ or decreasing values of ¢ the
compatibility condition can be neglected.
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Fig. 4. Normalized variance in dependence on ¢

4. Analytical and simulation results for a bounded domain

Now we turn to a problem in a bounded domain G
6= {x3): bl <R 0<y<IL)
with an inhomogeneous random boundary condition
u, = adu, u(x,y,0) =0
(%, ¥y 0)|aay, = Fr(®> ts w) = fr(®, 1, w) — {frl®, )
[an (=, 5 8) + o ulx, 5, )6y, = 0, k= 2,3.4

where G, k=1
and x = R.

By using (2), (5) and (6) and “averaged” solution u,(x, ¥, t, w) = (u, w;)g
with an averaging kernel w, € C57(G), |w,| = 1 and h sufficiently small can be
obtained in the form (ef. (5))

..., 4, denotes the boundaries for y =0, x= — R, y =1L

t R
ah(x7 ¥t w) = S‘ S‘ F(xoa t— to)fR(xov g, w) dxodto
0 —R
with

Fxg,t —t) = — a ;fzz(o)fm(xo) exp (— ady(t — to)(fi» 105)

possessing strong convergence properties (see [2, 3]).
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Assuming again a constant intensity we obtain for a weakly correlated
function f(x, t, w) with respect to (x,1)

(%15 1o 1) U(Zgs Yos £0)) = 24,6% 4 A3 + o(eF)
for small & where

24 — aa < (o> W1)(fim> Wa)
A, = R, I%': Ofm(O)f;fm(O) 4+,

(exp(— a(dy(t; — t15) + Ayp(ts — 1,5))) — exp (— adyt; + Ayta)) +
. (atm/(ZLZRz))é

o220

1for gp=oay3=c;, =0

with 5“=“'“¢0 =1 0 otherwise.

And, for by = 0 it can be shown that 24, = 0, too.

This approximation result could be confirmed by physical measurements
with electroanalogical model-simulation for some realistic values. A good
agreement between the measured (x) values and ours (- --) can be seen in
Fig. 5 where two correlation functions R,, are used. Especially it was ¢/2R =
= 0.07 and &/t = 0.15.

A
x 4___ k
T
[ N
> k) ~
S e
= ZT o \\Q ‘\Q_‘~
\‘-. b‘“---._..____ R
= S I TT TP
“‘——n--_-o. R;
0 | ! | | Lo
0 5 10 15 20 25

Y, Hm

Fig. 5. Measured and approximated standard deviations

If fo(x, t, w) = cfi(t, w) where the compatibility conditions are neglect-
ed we obtain

Culag, ¥ B)U(%s, ¥os £)) A~ aay 2.0 J21(0) or(O) W, W,

kh,m
(S wl)(f hms Wg)

Akl"%"/lhm (EXP - aAkl(tl - tm) + Ahm(tz - tlg))) -

—exp (— (adyt; + Apmts))
R
where W, =c¢ [ f,(x)dx.
~R
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Fig. 6. Simulated and approximated standard deviations

This result was confirmed by a mathematical simulation of the weakly

correlated function fi(i, w). Thereby the simulation procedure described in [6]
was used. Figure 6 shows the simulated standard deviations (x and o) of
two simulation series in comparison with our approximated (—) ones. Here,

it

]

(91}
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was ¢ = 1 and &/t = 0.21.
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