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I. Introduction

The theory of boolean spaces became a useful engineering tool for the
design of digital systems, both combinational and sequential ones. It was
also shown that well-known methods of
Karnaugh’s maps and Quine’s method can be easily drawn following the
principles of boolean spaces [2], [3]. This work has been done in order to make
this tool even more flexible especially for designing very bulky systems. The
question can be stated as follows. Suppose there is the matrix model of the
digital system to be designed but in advance we have some additional informa-
tion concerning the properties of an input matrix or acceptable forms of
boolean functions. Can we use this information for diminishing the dimensions
of the model? In the paper it is shown how to see the problem more formally
and how we can find its solution in some special cases. The idea to diminish
the model of a digital system to be designed is not new. Some results of parti-
tional automata [1] allow to represent the defined model by a less bulky one
if some additional properties of the model are known. However, the results
of automata theory are mostly very far from the possibilities of direct practical
implementation since the automata model seems to be too general for hard-
ware design. The paper presented has a practical engineering application for
diminishing the dimensions of the system model to be designed.

Loolean functions minimization like

. Preliminary

This is a very comprehensive description of the basic facts concerning
the theory of boolean spaces [3].

Let x be an n dimensional boolean vector; it means that its coordinates
take the value 1 or 0. For vectors of the same dimension n we introduce their
summation and multiplication, as normal boolean operations, performed in
componentwise manner. The vector negation, denoted by x, is a vector obtained
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from x by negation of its coordinates. Let X" denote a set of all n dimensional
boolean vectors. We distinguish two of them; the maximum vector denoted
by 1 and minimum vector denoted by 0, are vectors all coordinates of which
are equal to 1 or to 0, respectively. The system (X", +, -, —, {1, 0}) is called
n dimensional combinational boolean space, where -, -, — are the boolean
operations performed on vectors. Any combinational boolean space is a boolean
algebra. Let A4 be a subset of the set X"; we present the set A in the form of
a matrix whose every column corresponds to the hoolean vector; the matrix A
is called a boolean matrix. Suppose we have boolean matrix A and any n
dimensional boolean vector y. We say that vector y is combinationally depen-
dent on matrix A if there exists a function f(x, x,, ..., x,,) = y, where vectors
X;. %, . » » » X, constitute the matrix A and the function is a composition of
the boolean vector operations -+, + , —. We say that the matrix B is combina-
tionally dependent en matrix if and only if every vector y € B is combi-
nationally dependent on A.

For a given matrix A and vector y we say that the j-th row of matrix A
is of type one if and only if y(j) = 1, we denote this fact by R,(j) = T;. If
¥(j) = 0 then correspondingly the j-th row of A is called the row of type 0
and we denote it by R,(j) = T},

Theorem 1

Vector y is combinationally dependent on matrix A if and only if its
each row of type 1 is different from every row of type zero in this matrix,
with respect to the veector y [2].

By submatrix € of matrix A we understand a matrix made of a subset
of vectors of matrix A.

Theorem 2

For y(j) = 1 we can create an implicant taking the j-th row of submatrix
C of the matrix A if and only if R.(j) + R.(k), for all the k such that y(k)=0.

So the procedure of minimization of combinational dependence of boolean
vector y on matrix A looks as follows.

Algorithm

1. For each y(j) = 1 find a submatrix C of matrix A such that R.(j) +
L Re(R), if (k) = 0.

2. Create an implicant P; for the j-th row of subtable C satisfying the
above condition.
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3. For the set of the found implicants find the minimum cover. The
above algorithm was first presented by Kazaxow [4]. For two boolean vectors
%, X, of the same dimension we introduce the operator of sequencing as
follows:

y(j) =1 if [x,(j) = Lor y(j — 1) = 1] and
x; O X, =y such that x,(j) =0
¥(j) = 0 otherwise

The sequential boolean space is the following system (X", 4+, -, —, {1, 0},0),
s0 it is a combinational boolean space with the operator of sequencing added.

We say that boolean vector y is strongly sequentially dependent on
matrix A if there exist two vectors y,, y, such that y = y; O y, and if they
both are combinationally dependent on A.

For the given matrix A and vector y we say that the j-th row of A is
of type B, if and only if y(j)=1 and y(j — 1) =0 or j =1 and y(j) = 1,
we denote it by R,(j}) = B,.

Similarly we say that the j-th row of matrix A is of type B, if and
only if y(j) = 0 and y(j — 1) = 1.

Theorem 3

Vector y is strongly sequentially dependent on matrix A if and only if
each row of type B, is different from every row of type 0 and each row of
type B, is different from every row of type one in matrix A, with respect
to vector y [2].

III. Partitional Dependence

Let  be a partition of matrix X into a set of submatrices X, X,, ... X,
such that for each X;$4X; X, NX, =fFand X, + X, + ... + X, =X.

It means that no vector belongs to any two submatrices but each vector
belongs to any one submatrix.

Suppose now that there exists the partition «, dividing matrix X into
k submatrices. Moreover, matrix B is combinationally dependent on each
submatrix X,.

For a given vector y € B we denote the disjunctive normal form of
combinational dependence of vector y on submatrix X; by f%X,). Accordingly
by f%(X;) we denote the conjunctive normal form of the combinational depen-
dence of vector y on submatrix X,

4
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Definition 1

The disjunctive partitional dependence of a given vector y on a given
matrix X at the partition w, we call the following expression

y = fAX) + ) + -+ fAXY = fUX).
Similarly by y = f4(X,) + f4(X,) + ... + f(X,) = fYX) we denote the con-

junctive partitional dependence of the vector y on matrix X at the partition x,.

Definition 2

We mean by sequential disjunctive dependence of the given vector y on
the given matrix X at the partition =, the following expression

y = [fiX) + fiX) + - -+ FAEDIOMAXY) + f5(X) + .-« + fiX)]=
= f34(X)

where subexpressions in brackets represent correspondingly disjunctive parti-

tional dependences of vectors y, and y, such that y =y, O y..

Aceordingly we denote the sequential conjunctive dependence of a given
vector y on given matrix X at the partition 7y by the following expression

y = [5(X0) + f5(Xa) + -+ FHX)] O [fHXD) + f5(X) + -+ + f5(X]=
=f§°(1x)-

IV. Inclusion of Combinational Systems

Let £ be a set of expressions presenting the dependence of matrix Y on
matrix X.

By I" we denote an arbitrary subset of Q, it can be, for instance, a set
of all disjunctive normal forms of the combinational dependence or the set
of all conjunctive normal forms of it and so on.

Let I'?_ mean the set of all the partitional disjunctive normal expres-
sions presenting the combinational dependence of matrix ¥ on matrix Xj
correspondingly, I';_ means a set of all the partitional conjunctive normal
forms of combinational dependence of these matrices.

Definition 3

By switching system we mean the following triple (X, ¥, I"), where X
and Y mean the input and output matrix, respectively, and I" represents a
defined set of combinational dependences of ¥ on X,

If for a given system I" = £, we omit it at the switching system specifi-
cation and such a system is denoted by the pair (X,Y). Let the switching
systems (X, Y, "> and (V, Z, &) be given.
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The following definition is valid for combinational systems and sequential
ones as well. But if we speak about sequential systems then I" and ¥ mean
some expressions representing the sequential dependence of matrix Y on
matrix X (for details see chapter V).

Definition 4

System (X, Y, I is included in system (V, Z, ¥) if there exist two
one-to-one mappings hy: X — V, byt Y — Z such that if [Y = f(X)] and
fX) €I" then Z = hy(Y) = f(h,[X]) and f[h(X)] € ¥.

Definition 5

We say that systems (X, ¥, I") and (V, Z, ¥) are equivalent if system
(X,Y. I is included in system (V, Z, ¥} and system (V, Z, ¥> is included
in system (X, Y, I").

Let = and 7 be two partitions on the set of indices {1.2,...,m} such
that every block of partition = is included in any block of partition 7.

To denote the one-to-one mapping h, we will use the following equivalent
description: h;: X — V: V= hy(X); v; = hy(x;). We denote by X a submatrix
of matrix X such that the indices of its vectors belong to a bleck of partition z.
Accordingly by V, is denoted a submatrix of matrix V such that the indices
of its vectors belong to a block of partition 7.

Theorem 4

System (X, y, I't_> is included in system (V, z, I“fr> if and only if the
following conditions are satisfied:

1. There is one-to-one mapping h;: X — V.

2. For each y(j) = 1 there exists a minimum matrix X_ such that
Ry (j) + Ry (k) whenever y(k) = 0.

3. There exists submatrix V, and exists 2(I) = 1 such that V, = (X))
and Ry (j) = Ry _(1).

4. Ry (1) # Ry _(u) whenever z(u) = 0.

Proof

Assumption 2 implies that the set I's_ is not empty.

Assumptions 1, 3 and 4 imply that if there exists a minimum disjunctive
normal form of combinational dependence f(X) such that y = f(X) then must
exist a form of combinational dependence z = f[h,(X)].

4%
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If matrix V, satisfying assumptions 3 and 4 is included in any matrix
VI, then VI also satisfies these assumptions. Therefore for any f(X) = y dis-
junctive normal form of combinational dependence of vector y on matrix X
there exists a disjunctive normal form f[h (X)] = =.

Therefore ]’gx is included in I'Y, so the system (X, y, I'? > is included
in system (V, z, I’fy).

We can extend the theorem 4 as follows:

Let I'f;, be a set of all the normal disjunctive forms of combinational
dependence such that any implicant in there has no less than ¢ laterals.

Substituting I'?_for I'Y_~we can modify theorem 4 by replacing assump-
tion 2 by the following one.

2. For each y(j) = 1 there exists a submatrix X, with no less than ¢
columns such that Ry (j) + Rk (k) whenever y(k) = 0.

The proof of the so modified theorem 4 can be done by analogy to the
proof of the original theorem. This modified theorem can be used in order to
diminish the model of a combinational system which is to be implemented
with demultiplexers and decoders.

The other analogy we can draw by replacing a set I'_‘,i,x by the set of all
the normal conjunctive forms ;..

If we want to extend theorem 4 on multi-output systems then we have
to add the following assumptions

(1) There exists a one-to-one mapping h, such that Z = hy(Y).

(ii) For each vector y € Y there exists vector z = hy(y) satisfying the

assumption of theorem 4.

V. Inclusion of Sequential Systems

Similarly as it was done for combinational systems we introduce the
classes of sequential dependences.

Let 25 be now a set of all the expressions representing the sequential
dependence of matrix Y on matrix X.

By I'S . we mean a set of all the partitional sequential dependences of
matrix Y on matrix X.

By notation I'S? we mean the set of all the expressions representing the
sequential disjunctive dependence of matrix Y on matrix X. Correspondingly
IS is the set of all the expressions representing the sequential conjunctive
dependence of matrix Y on matrix X. Similarly as it was done for combinational
systems we introduce the sequential systems like (X, Y, Q°%), (X, Y, ng),
(X,Y, Fi;} and so on.

Let be given two sequential systems (X, Y, I'S?) and (V, Z, ¥ such
that each block of partition wy is included in some block of the partition 7.
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Theorem 5

System (X, y, I'S? is included in system (V,z, I'S,» if and only if the
following assumptions are satisfied.

1. There is one-to-one mapping h;: X — V.

2. For each ¥(j) + y(j — 1) or (y(j) = 1 and j = 1) there exists a mini-
mum submatrix X_ such that Ry (j) + Rx (k) whenever y(k) { ¥(j).

3. There exists z(1) +2(l — 1) or (3(1) =1 and ! = 1) and exists sub-
matrix V, = hy(X,) satisfying the following requirement Ry (j) { Ry ().

T

4. Ry () $ Ry (u) whenever z(u) $ 5(I).

Proof

We have two special cases of assumption 2

@)y =1land yGj—1) =0

(i) ¥(j) = 0 and y(j — 1) = 1
case (i) implies that vector y, = f{(X), but case (ii) implies that y, = fX)
while y = y, O ¥,. So it implies that the set I'52 is not empty.

Assumption 1, 3 and 4 allow us to say that for each disjunctive form
of sequential dependence fo4(X) € I f; there exists a form of sequential depen-
dence f3(V) € I'S, such that F34X) = hy[f3(V)]. Therefore I'>?is included in
I'$? so system (X, Y, 32 is included in system (V. z, I's%).

By some analogy we can construct a theorem allowing to state whether
or not a given conjunctive sequential system is included in some other one,
but constructing such theorem one must remember that then we have to find
a minimum submatrix X for each y(j) such that Ry (j)+ Ry (I) whenever

YO 50 — 1) and 3() 5())-
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