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1. Introduction 

Pulse-width modulation is a time modulation process ,\ith the pulse 
carrier wave. At pulse-time modulations, which are pulse equivalents of phase 
angle of harmonic carrier wave, take place linear dependence of time position 
of output signal edges on the modulating wave value. The magnitude and 
shape of pulses are not changed at such a process. 

The modulating wave may vary the time of occurrence of the leading or 
the trailing edge of the output pulses. The message-bearing signal to be trans
mitted is composed of discrete values and each value must be uniquely defined 
by the width of a modulated pulse. 

Pulse-1\idth modulation is sometimes referred to in the literature on the 
subject [3], [4], [7] as pulse-length or pulse-duration modulation. The research 
of that time process was carried on with analytical methods mainly at the 
first half of our century. Recently, numerical method of looking into products 
of some kinds of pulse-width modulation processes with the use of fast Fourier 
transform algorithm has widely been adopted. It is particularly effective in 
consideration of difficulties which occur at the defining of analytical form of 
spectrum components [1], [2], [5], [7], [9], [10]. The paper is a probation of 
an application development of analytical methods in the testing of unexamin
ing to date areas in pulse-width modulation processes. Results of that analysis 
can be used to modelling and optimalization of many deterministic dynamical 
systems with specified type of input functions in mechanics, electrical engineer
ing, power engineering electronics and telecommunication carrying the analysis 
from time to frequency domain. 

2. Area of the analysis 

The analysis taken up in the work refers to an analytical consideration 
of sinusoidal pulse-width modulation processes with auxiliary carrier waves 
from the piecewise linear function class. Pulse-width modulation output signal 
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can be categorized according to assumed forming method as a signal of modula
tion with the natural or regular sampling. For the case of regular sampling or 
so-called uniform sampling, pulse widths are proportional to message wave 
values at uniformly spaced sampling times and do not depend on modulating 
wave variation between the sampling times. For natural sampling, the output 
pulse widths are continuously depending on changes of the message signal 
values in the whole period of auxiliary "wave. 

At the open systems of sinusoidal pulse-'width modulation "with auxiliary 
waves harmonic modulating signal of the following shape is used: PM = 

= AM sin (U)i\lt + rpM)' where A .. Iv!' wM and rpM denote respectively magnitude, 
angular frequency and phase of the sinusoidal wave, and some piecewise linear 
signal. For would-be one-sided modulation at trailing edge modulated and 
leading edge fixed of output positive pulses the auxiliary wave ·we can de
scribe as follows: 

where Aa and Ta denote magnitude and period of the saw-tooth wave, respec
tively. For t·wo-sided modulating proceES, the triangular auxiliary wave assumes 
the shape: 

- (n + Ij2)Ta] + Aa AtE [en + Ij2)Ta); nE N U {O} . (2-2) 

Formation of output modulated pulses takes place during the comparing of 
the time curves (2-1) or (2-2) with sinusoidal function. Switching process of 
output wave occurs at the moment of equalling of both control signals, i.e. 
the modulating and auxiliary waves. So-called bipolar or two-level modulation 
takes place between two fixed values from the two-element set D2 C R = 

= {El; E 2 } or for unipolar modulation process a would-be three-level modula
tion, too, between values from the set D3 eR = {El; 0; E 2 }. Unipolar modu
lation depends on the polarity of output train, on polarity of the sinusoidal 
signal half-periods. 

Among analytical methods, the Bennett wall-model was applied to date 
·with a limited scale to examine mainly hipolar modulations with natural 
sampling [3], [4]. Adapted for conditions of regular sampling and three-level 
modulation conditions, the Bennett model will he presented. Modulation pro
cess ·with regular sampling of the harmonic wave may be examined without 
any restriction imposed on sampling frequency, instead, each modulation ,vith 
natural sampling ' ..... e can treat as a limiting case of the regular sampled modula
tion process. 



APPLICATION OF BENNETT WALL-MODEL 57 

3. Shapes of the Bennett wall-model 

We can use in the analysis of harmonic spectrum of pulse--width modula
tion ,vith auxiliary singnals the Fourier series expansion in two variables of 
an accessory periodical functionf(x, y) integrable in the Riemann sense in each 
regular area of domain given in the complex or real form, respectively: 

= 00 0000 

f(x, y) = ~ ~ cnmei(nx+my
) = ~ ~ knm[xnm cos nx cos my + 

n=-= m=-oo n=O m=O 

+ Pnm cos nx sin my + Ynm sin nx cos my + Ql1m sin nx sin my] (3-1) 

where Cnn = (1/4ll2) J J f(x, y)e-i(nx+mY)da; n, m E I (3-2) 
Q 

CXnm = (l/ll2) J J f(x, y) cos nx cos my da 
Q 

Pnm = (l/ll2) J J f(x, y) cos nx sin myda 
Q 

Ynm = (l/ll2) J J f(x, y) sin nx cos my da 
Q 

Qnm = (l/ll2) J J f(x, y) sin nx sin my da; n, mEN U {O} 
Q 

(3-3) 

and knm assumes the following values: 1/4 /\ n /\ m = 0, 1/2 /\ n V m = 0 or 
1 /\ n /\ m ~' 0, instead Q is a domain area for which f(x, y) has the primary 
period in relation to x and y variables: Q = {(x, y) E R X R: x E ll; ll) /\ 
/\ y E [-ll; ll)}. 

The shape of f(x, y) function is defined by applying the Bennett model 
for considered type of modulation and assumes different forms depending on 
modulation process sort. So, for instance for bipolar one-sided modulation 
with regular sampling f(x, y) assumes the shape as follov.-s: 

fl(X, y) = El /\ (x, y) E {(x, y) E R X R: 2lln < x < ll[1 + NI sin (y -

(wa/Cws)(x - 2lln) + <PM)] + 2lln} V E2/\ (x,y) E {(x,y) E RxR: 

n[l + lvI sin (y (Wa/CWs}(;1; - 2lln) + <PM)] + 2lln < x < 2ll(n + l)}n E I 

(3-4) 

where NI = AM/Aa denotes depth of modulation, wa and Ws pulsation of 
auxiliary and sampling wave respectively, instead' denotes so-called relative 
frequency of modulating and auxiliary signal. Fig. 1, illustrated the integration 
area of fl(X, y) shown with the function variability for following modulation 
parameter values: , = 18, NI = 0.9, <Plvl = -ll/6 and Ws = (1/6)wa• 
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Fig. 1. Integration area for bipolar one-sided modulation 

Fig. 2. Integration area for bipolar two-sided modulation 

Form of f(x, y) function for the following modulation processes: bipolar 
two-sided, unipolar one-sided and unipolar two-sided each with the regular 
sampling of harmonic signal are shown below by means of expressions (3-5), 
(3-6) and (3-7), instead Figs 2, 3 and 4, illustrate the integration area for given 
above modulation parameters and kinds of modulation processes. 

f2(X, y) = El 1\ (x, y) E {(x, y) E R X R: - (lIj2)[1 + 111 sin (y - (wa!Cws)' 

. (x - 21In) + CPM)] + 21In 
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.(X - 2IIn) + rpM)] + 2IIn} V E2 /\ (X,y) E {(X,y) E RXR: (IIJ2) . 

. [1 + NI sin (y - (wa/Cws)(x - 2IIn) rpM)] 2IIn < x < (- IIJ2) . 

. [1 + M sin (y (wa/Cws)(x - 2II(n + 1» + rpM)] + 2II(n + I)}; nE 1 

(3-5) 

Fig, 3, Integration area for unipolar one-sided modulation 

f3(X, y) = El /\ (x, y) E {(x, y) E R X R: 2IIn x < II[I + 1H' sin (y 

- (waICcus)(x - 2IIn) + rpM)] + 2IIn /1 y E [- rp/v! (wa/Cws)(x -

- 2IIn) + 2IIm; CfM + (wa!,ws)(x - 2IIn) + II(2m + I»)} V 

V E2/\ (x,y) E {(x,y) E RxR: II[I M sin (y - (wa!,ws)(x-

2IIn) rpA!)] 2IIn x < 2II(n + 1) /\)' E rpM + 
+ (Wa/CWs)(X 2IIn) !J(2m + 1); - Cf,'vl + (walCwJ(x 2IIn) 

+ 2II(m + I»)} V 0 /\ (x,y) E {(x,y) E RxR: II[I + NIsin(y

- (Wa/CWs)(x - 2IIn) + rpM)] + 2IIn < x < 2II(n + 1) /\ 

/\ y E [- rpA! + (wagws)(x - 2IIn) 2IIm; -rpM + (Wa/CWs)(X 

2IIn) + II(2m + 1») V 2IIn < x < II[I + NI sin (y -

- (waICws)(x - 2IIn) + rpM)] + 2IIn /\ y E [- rpM + 
+ (waICws)(X - 2IIn) + II(2m + 1); - rpM + (Wa/CWs)(X 2IIn) + 
+ 2II(m + I»)}; m, n E I (3-6) 
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f4(X,y) = El /\ (x,y) E {(x,y) E Rx R: (- IIj2) [1 + M sin (y-

- (wal'ws)(X - 2IIn) + TM)] + 2IIn < x < (IIj2)[1 + M sin (y -

- (wal'ws)(X - 2IIn) + TM)] + 2IIn /\ y E [- TM + (wal'ws)(X -

- 2IIn) + 2IIm; - TM + (wal'ws)(X - 2IIn) +II(2m + I))} V 

V E2 ;\ (x, y) E {(X, y) E R X R: (IIj2) [1 M sin (y - (wa!Cws)(x 

- 2IIn) + TM)] + 2IIn < x < IIj2)[1 + 111 sin (y -

- (wa!Cws)(x - 2II(n + 1)) + TM)] + 2II(n + 1) /\ )" E [- TM + 

+ (O)al'ws)(x - 2IIn) + II(2m + 1); - TA! + (O)ajCws)(x - 2IIn) + 

+ 2II(m + I»)} V 0 /\ (x,y) E {(x,y) E RxR: (IIj2)[1 + 

M sin (y - (wajCws)(x - 2IIn) + TM)] + 2IIn < x < (- IIj2)[1 + 

+ M sin (y - (wa!Cws)(x - 2II(n + 1») + TM)] 2II(n + 1) /\ 

/\ y E [- TM (waICws)(x 2IIn) + 2IIm; - TM + (wagws)(x -

- 2IIn) + II(2m + 1») V (- II/2)[1 + NI sin (y - (wa!Cws)(x 

- 2IIn) + TM)] + 2IIn < x < (II/2)[1 + NI sin (y - (wa!Cws)(x -

- 2IIn) + TM)] + 2IIn /\ y E TM + (wa!Cws)(x 2IIn) + 

+ II(2m 1); - rpM + (wa/CwJ(x - 2IIn) + 2II(m + I»)}; m, n El. 

(3-7) 

Each of those functions is the Bennett ',vall'-model for suitable modulation 
process after comparing with the surface given by following parametric 
equation: 

(3-8) 

the train of width modulated pulses. Application of the Bennett model adopted 
for any kind of sinusoidal pulse-width modulation with auxiliary earrier wave 
permits to obtain analytical form of otput signal spectrum. The direct looking 
into such a type of expansion is not possihle in eonsideration of analytical 
uncertainty of output pulse switching point which is essential at the classical 
Fourier analysis in one time variahle. So, the (3-1) expansion of one of the 
(3-4), (3-5), (3-6) or (3-7) functions 'vith the coefficients given hy (3-2) or (3-3) 
expressions and 'vith regard to the (3-8) relationship gives harmonic spectrum 
of the appropriate modulation process in the form of douhle Fourier series. 
Modulations ,,;ith natural sampling are respectively limiting cases for modula
tion processes with regular sampling. And so, for example, the bipolar one
sided modulation with natural sampling can be obtained from the bipolar 
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Fig. 4. Integration area for unipolar two-sided modulation 

Fig. 5. Integration area for bipolar onc-sided modulation with natnral sampling 

one-sided modulation process with regular sampling on the assumption that 
Ws approaches infinity. Appropriate shape of accessory f(x, y) function of the 
Bennett model and the function variability for that kind of process and for 
given above modulation parameters one may illustrate as follows: 

f5(X, y) = El 1\ (x, y) E {(x, y) E R X R: 2IIn < x < II[I + M sin (y + 
+ <PM)] + 2IIn} V E z 1\ (x,y) E {(x,y) E Rx R: II[I + M sin (y + 
+ <PM)] + 2IIn < x < 2II(n + I)}; nE I (3-9) 
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We can notice that curves defining the f5(X, y) function variability areas are 
non-distorted sinusoids depending thereby on the 'natural' way widths of 
output pulses. 

4. Conclusion 

The Bennett wall-model adopted for the miscellaneous processes of sinus
oidal pulse-width modulation with auxiliary waves has heen presented in the 
paper. To date, for instance, in the works [1, [2], [3], [4], [5], [8], one makes 
capital of the simplified Bennett models in a limited range to obtain generated 
harmonic spectrum by some types of modulation mainly at the cancellating 
assumptions as follows: cP M = 0 and (J)s = (J)a' That does not permit us a look 
to the influence of the sinusoidal signal phase and unrestricted sampling fre
quency on the mechanisms of spectrum formation. Numerical methods of 
Fourier analysis were used to date at the outmost for processes with regular 
sampling defined only for sampling frequency equal to the auxiliary wave 
frequency or its doubled value. That permitted to differentiate so-called sym
metric and asymmetric regular sampled modulation. 

The proposed analytical method is an alternative for numerical fast 
Fourier transform allowing by the simple way to pull out extremes of an 
assumed objective function optimizing used modulation process or to utilize 
the resulted splitting at the analysis of transient states of dynamic ohjects 
exposed to such a type of input. 
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