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Introduction 

Let C be a large set of computers, on which we define a "<" partial 
ordering. If a, bEe, then as; b if a is a submachine of b. Let P be a - non 
void - set of problems. If pEP, then we define a e(p) relation on the follo'wing 
way, if a, bEe, then ae(P)b if the problem p can be solved by a and b. 

Now consider two "ideal" elements 1 # 0 and the set C U 1 U 0 on 
which we define a /\ and a V operation as follows: 

and 

If a, bEe, then 

a/\b={:nb 
if 
if 

a n bEe, 
a n b ~ C, 

(1) 

a /\ 0 = 0 /\ a = 0, a /\ 1 = 1 /\ a = a, 0 /\ 0 = 0, 1 /\ 1 = 1 (2) 

0/\1=1/\0=0 

b {a U b 
a V = 1 

if 
if 

a U bEe, 
a U b ~ C, 

(3) 

a /\ 0 = 0 V a = a, a V 1 = 1 V a = 1, 0 V 0 = 0, 1 V 1 = 1, (4) 

o V I = I V 0 = 1. 

Now consider the set P and we suppose that if p, q E P, then p U q E P. 
Let i be an "ideal" element and on P U i we define a n and a U operation 
as follows: 

and 

If p, q E P, then 

pnq={r nq if 
if 

p n i = i n p = i, i n i = i, 

p LJ q = p U q, p LJ i = p, i U i = i. 

(5) 

(6) 

(7) 
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If IX E C then we define a a(a) relation on the follov.ing way, if p, q E P, 
then pa(a)q if the problems p, q can be solved by a. 

In this lecture the basic properties of the relational structures (C U 0 U I, 
1\, V, e(p») and (P U i, n, U, a(a)); (p E P, a E C) are investigated. 

The results of this work have many useful applications for parallel and 
distributed computation. 

For the study of the field treated in this lecture, the reader is referred 
to the works [1], [2], [3], [4]. 

On the structure (C U 0 U I, /\, V) 

It is easy to see that (C U 0 U I, 1\) and (C U 0 U I, V) are idempotent 
groupoids but in generally are not semilattices. 

It may be formulated a question: if for a set C the triplet (C U 0 U I, 
1\, V) is a lattice, what consequences are concerning the set C. 

The answer is the following theorem [4]: 
Theorem 1. The elements of the set C U 0 U 1 under the operations 1\, V 

form a lattice if and only if for any triplet a, b, eEC, the follo-wing two con
ditions hold: 

10. a n b n c ~ C or if a n b neE C, then either both a n band b neE 
E C, or none of them belongs to C, 

2°. a U b U c ~ C or if a U b U eEC, then either both a U band b U c E 
E H, or none of them belongs to C. 

We can see that this theorem gives an exact limit for the applications 
of lattice theory in the structure analysis of large computer systems. 

If pEP, then denote by C(p) the set of all a elements of C for which 
the problem p can be solved by a. 

We suppose that C(i) = C, and if pEP, then there is at least one a 
element of C for which p can be solved by a, and if b E C, then there is at 
least one q element of P which can be solved by b. 

It is easy to see that ifp, q E P and p ~ q, then C(p) C(q). Hp n q E P, 
then C(p n q) ::J C(p) U C(q), and if 

p,qE P 

then C(p U q) = C(p) n C(q), which is not empty, because we supposed that 

p U q E P. Denote by C the set of all C(p), (p E P) sets. 

Now consider the structure (C U C, n). 
If p, q E P, then C(p) n C(q) = C(p U q) E C and C(p) n C = C(p) E C, 

further C n C = C E C U C. 
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'" 
If A, B, C E CUC, then 

(A n B) n C = A n (B n C), 

AnB=BnA 

A n A = A. 

Therefore (C U c, n) is a semilattice, where C n A = A. 
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(8) 

(9) 

(10) 

Now on C U C we define a (} operation as follows: if p, q E P, then 

C(p) (} C(q) = { C(p t q) if P n q E P, 
if P n q ~ P, 

(11) 

and 

(12) 

We can see that if p, q E P, then 

C(p) (} C(q) = C(q) (} C(p), (13) 

and 

C(p) (} C(p) = C(p) (14) 

further 

(C(p) n C(q») (} C(p) = C(p U q) U C(p) = C(p) (15) 

and 

(C( ) ~C(») nC( ) = {C(p n q) n C(p) = C(p) if P n q E P, (16) 
P U q P C n C(p) = C(p) if P n q ~ P, = C(p). 

If A, B, C E C U C and C E {A, B, C}, then 

(A (} B) (} C = A (} (B (} C). 

Next we shall use the following notations: 

(p, q) r = (C(p) (} C(q» (} C(r), 

p(q, r) = C(p) (} (C(q) (} C(r», 

where p, q, rEP. 
If p n q n r, p n q, q n rEP, then 

(p, q) r = C(p n q n r), 

and 

p(q, r) = C(p n q n r). 

(17) 

(18) 

(19) 

(20) 

(21) 
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and 

and 
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If p n q, p n q n rEP and q n r ~ P, then 

(p, q) r = C(p n q n r) 

p(q, r) = C(p) D C = C. 

If q n r, p n q n rEP and p n q ~ P, then 

(p, q) r = cD C(r) = C, 

p(q, r) = C(p n q n r). 
If p n q n rEP and p n q, q n r ~ P then 

(p, q) r = C (26) and p(q, r) = C. 

If p n q n r ~ P and p n q, q n rEP, then 

(p, q) r = C 

If P n q, p n q n r ~ P 

(p, q) r = C 

If q n r, p n q n r ~ P 

(p, q) r = C 

Ifpnqnr~P 

(p, q) r = C 

(28) and p(q, r) = C. 

and q n rEP, then 

(30) and p(q, r) = C. 

and p n q E P, then 

(32) and p(q, r) = C. 

and p n q, q n r ~ P, then 

and (34) p(q, r) = C. 

Therefore we have to prove the following theorem: 

(22) 

(23) 

(24) 

(25) 

(27) 

(29) 

(31) 

(33) 

(35) 

Theorem 2. The elements of the set C U C under the operations n, D 
form a lattice if and only if for any triplet p, q, rEP it holds the following 
condition: 

p n q n r ~ P, or if p n q n rEP, then either both p n q and q n r 
belong to P, or none of them belongs to P. 

Next we consider some simple but important basic properties of the 
relations e(p), (p E P) and 

It is easy to see that if a, b, c E C and p, q E P, then 

ae(p) b ~ a, b E C(p), (36) 

if a, b E C(p) or a, b E C(p), then a(e(p) + e(q»)b, further if a, c E C(P) and 
b, c E C(p), then 

a(q(p)q(q» b. (37) 
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Now we suppose that if a E C and pEP, then a§{p)o, o§(p)a, o§(p) 0, 

o§(p)l, le(p)o, le(p)l and if a E C(p), then ae(p)l, le(p)a. 
We can see that if a E C(p), (p E P) and bE C, then (a V b) e(p)a, (I V 

V b)e(p)l, (a V l)e(p)a, (I V b)e(p)l, (I V l)e(p)l. Hence if x E C(p) U I and 
yE CUI, then y V x E C(p) U I. Therefore (C(p) U I, V) is an ideal of (C U I, 
V I, V) and 

(C U I, V) = U (C(p) U I, V). (38) 
pEP 

If ae(p) b, then (a V c)e(p)(b V c), (a, b, c E C), but for arbitrary a, b 
elements, of C 

(a V I) e(p)(b V I). (39) 

Now we suppose that for all a elements of C, a < I, 0 < a, 0 < I. If 
x, y, z E C U 0 U I and x y, then x V z Y V z, but x A z ::;:: y A z generally 
does not hold. If a E C(p) and a b then b E C(p), from which ae(p)b follows. 

We shall say that m is a maximal element of C if a > m; (a E C) holds 
if a = m. Denote by .M the set of all maximal elements of C. 

If a E C, then denote by R(a) the set of all x elements of C for which 
x a. If x, yE R(a), then 

{x U Y if x U yE C, 
x V y = I if x U y ~ C, 

(40) 

and 

{x ny if x n yE C, 
x Ay = 0 if x n y ~ C, 

(41) 

further 

o /\ I = I /\ 0 = 0, I /\ I = I, x A 0 = 0 A x = 0, 0 A 0 = 0, (42) 

I A x = x 1\ I = x, 0 V I = I V 0 = I, I V I = I, x V 0 = 0 V x=x, 

o V 0 = 0, I V x = x V I = I. 

If x,y E R(a) U 0 U I, then 

xAy=yAx (43) and x V Y = Y V x, (44) 

further 

(x A y) V x = x (45) and (x V y) A x = x. (46) 

If x,y, z E R(a) U 0 U I, then generally 

(x A y) A z -;L x A (y A z) (47) and (x V y) V z " x V (y V z). (48) 

Therefore we obtain the following theorem: 
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Theorem 3. If NI is the set of all maximal elements of C, then 

(C U 0 U 1,1\, V) = U (R(m)U 0 U 1,1\, V). (49) 
mEM 

Remarks. If the conditions 1°, 2°, do not hold, then (C U 0 U I, 1\, V) 
is not a lattice, but the decomposition 

holds, where generally (R(m) U 0 U I, 1\, V) are not lattices. (49) 

We can see that the following relations do not depend from the con
ditions P, 2°: 

and 

and 

If x, y, z E C U 0 U I, then x 1\ y, x V y E C U 0 U I, and 

x 1\ y = y 1\ x, 

x 1\ (x V y) = x, 

If p, q E P, then 

(50) 

(52) 

x V Y = Y V x, 

x V (x 1\ y) = x. 

On the structure (P U i, n, U) 

pUq=qUP 

p = p U i = i Up, i U i = i. 

If x,y, z E P U i and i E {x,y, z}, then 

(x U y) U z = x U (y U z). 

If p, q E P, then 

p n i = i n p = i n i = i, 

further 

and 

(p n q) U p = { (p.n q) U p = p 
~UP=P 

if 
if 

(p n i) U i = i, (i n i) U i = i, 

(inp)Up=p, iUp=p. 

If p, q, E P, then 

(p Up) n p = (p U q) n p = p, 

p n q E P, 
p n q ~ P, 

(51) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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(p U i) n i = i, P n i = i, P n p = p, 

(p U i) n p = p, (i U i) n i = i. 

If p, q, rEP, then 

(p U q) U r = p U (q U r) = p U q U r, 

and if x,y, z E P U i, then 

(x U y) LJ z = x U (y U z). 

If p, q, rEP, then it can be proved that 

(p n q) n r = p n (q n r) 

if and only if the following conditions hold: 
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(62) 

(63) 

(64) 

(65) 

30 p n q n r ~ P or if p n q n rEP, then either both p n q and q n r 
belong to P, or none of them belongs to P. 

If x, y, z E P U i, then 

(x n y) n z = x n (y n z). (66) 

Therefore we have the following theorem: 

Theorem 4. The elements of the set P U i under the operations n, U 
form a lattice if and only if the condition 30 holds. 

Denote hy Pea); (a E C) the set of all pEP prohlems 'which can be 
solved hy a. If a, b, b neE C, then Pea n b) ~ Pea) n P(b) and if a, b, a U 
U bE C, then Pea U b) ~ pea) U P(b). 

We can see that if a E C and p, q E P, then 

pa(a) q <='> p, q E Pea), (67) 

and if a, b E C, and p, r E pea) further q, T E P(b), thenp(a(a)a(b»q. If a, b E C 
and p, q E Pea) or p, q E P(b), then p(a(a) + a(b»)q. If p E Pea); (a E C) and 
q E P, then 

pnq={r
nq if 

if 
(68) 

and q n i = in q = i n i = i. Therefore (P(a) U i, n) is an ideal of the 
groupoid (P U i, n) and 

(P U i, n) = U (P( a) U i, n). (69) 
aEC 

Denote by P the set of all Pea); (a E C) sets. 
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On the P U ji Ui set we define two operations as follows: if a, b E C, then 

Pea) A P(b) = {P(a
i 
n b) if 

if 
a n bEe, 
a n b ~ C, 

(70) 

P(a)Ai = iAP(a) = i, i/\i = i, PAP(a) = P(a)AP = (71) 

= Pea), PAi = i/\P = i, PAP = P, 

Pea) V P(b) = {Pea; U b) if
1
:
f 

a U bEe, (72) 
" a U b ~ C, 

(73) Pea) V i = i V Pea) = Pea), i V i = i, P V Pea) = 

= Pea) V P = P, P V i = i V P = P, P V P = P. 

If a, bEe, then 

(P(a) A P(b») V Pea) = {:0a ~(:? V ~~:~ = Pea) 

and 

(P() ) P(b) A P( ) = {Pea U b) /\ Pea) = Pea) 
a V a P A P( a) = P( a) 

further 

if 
if 

if 
if 

a n b E C, = Pea), 
an b ~ C 

(74) 

a U bEe, 
= Pea), 

a U b ~ C 
(75) 

(P(a) /\ i) /\ i = (P(a) V i) ;\ i = i, 

(P(a) /\ P) V P = (P(a) V P) /\ P = P, 

(P /\ i) V i = (P V i) A i = i. 

(76) 

Therefore if x, y, E PUP U i, then 

(77) (x /I. y) V x = x and (78) (x V y) /\ x = x. 

It can be proved - as we did previously - that (P U P U i, A, V) is a 
lattice if and only if for any triplet a, b, eEC, the following two conditions 
hold: 

4 0 a n b n c ~ C or if a non eEC, then either both a n band b n c 
belong to C or none of them belongs to C, 

5° a U b U c ~ C or if a U b U eEC, then either both a U b, b U c belong 
to C or none of them belongs to C. 
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Entropy of the pairs (p, C) and (a, P) 

We can see that the follo<wing entropy concepts are very useful tools at 
the analysis of the structures (C U 0 U I, A, V), (P U i, n, U). 

If H is a finite set, then denote by ft( H) the number of the elements of H. 
We suppose that C and P are finite sets. 
If pEP then we define the entropy of the pair (p, C) as follows: 

~( C) = _ {[(C(p») -"':"10 {[(C(p)) 
p, {[(C) g {[(C) 

_ ft(C) - V(C(p») -"':"log V(C) - V(C(p») . 
V(C) V(C) 

(79) 

If a E C, then we define the entropy of the pairs (a, P) as follows: 

{[(P(a») ,2 -log ,u(P(a») _ ~(a, P) = _ 
V(P) ,u(P) 

pep) - v(P(a») 2 I v(P) - ,u(P(a») __ og . 
v(P) fl(P) 

(80) 

Finally we set up two open problems. 
Problem 1. Determine the basic properties of ~(p, C) when (C U 0 U I, 

A, V) is a lattice. 
Problem 2. Determine the basic properties of ~(a, P) when (P U i, n, U) 

is a lattice. 
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