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Introduction

Let C be a large set of computers, on which we define a “<” partial
ordering. If a, b€C, then a < b if a is a submachine of b. Let P bea —non
void — set of problems. If p € P, then we define a p(p) relation on the following
way, if a, b € C, then ag(p)b if the problem p can be solved by a and b.

Now consider two “ideal” elements I ¢ 0 and the set CUI Uo on
which we define a A and a Vv operation as follows:

If a, b € C, then
alb if aNbeC, 1)
0 if alNbgC,

aho=oNa=o,aNI=ITNa=a, 0oNo=0, INI=1 (2)

a/\b:{

oANI=ITANo=0o
and
S B T
aNho=oVa=a, ayI=Iva=I eyo=o0 IyI=1I, (4)
oy I=1yo=1
Now consider the set P and we suppose that if p,q € P, then p Ug € P.

Let i be an ““ideal” element and on P U i we define a [} and a | | operation
as follows:

If p,q € P, then

_lphg i phgeP,
qu—{i if pNgqdP, ()
pi=iMNp=iilli=1, (6)

and ~
plLig=pUgq pli=p, i ]i=1 Q)
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If o« € C then we define a o(a) relation on the following way, if p,q € P,
then po(a)g if the problems p, g can be solved by a.

In this lecture the basic properties of the relational structures (C U o U I,
As Vs o(p)) and (P Ui, [, [, o(a)): (p € P, a € C) are investigated.

The results of this work have many useful applications for parallel and
distributed computation.

For the study of the field treated in this lecture, the reader is referred
to the works [1], [2]. [3], [4].

On the structure (C(Jo(JI, A\, V)

It is easy to see that (C Uo U I, A) and (C Uo U I, v) are idempotent
groupoids but in generally are not semilattices.

It may be formulated a question: if for a set C the triplet (C Uo U I,
A, V) is a lattice, what consequences are concerning the set C.

The answer is the following theorem [4]:

Theorem 1. The elements of the set C U o U I under the operations A, v
form a lattice if and only if for any triplet a, b, ¢ € C, the following two con-
ditions hold:

1°. aNbNcdgCorifaNbNeceC, then either bothe Nband b Nee
€ C, or none of them belongs to C,

2°.alUbUcédCorifalUbUceC, then either botha Ub and b Ue¢
€ H, or none of them belongs to C.

We can see that this theorem gives an exact limit for the applications
of lattice theory in the structure analysis of large computer systems.

If p € P, then denote by C(p) the set of all a elements of C for which
the problem p can be solved by a.

We suppose that C(Z) = C, and if p € P, then there is at least one «a
element of C for which p can be solved by a, and if b € C, then there is at
least one g element of P which can be solved by b.

Itis easy to see thatif p,q € Pand p € ¢, then C(p) 2 C(g). If p Ng € P,
then C(p N¢q) 2 C(p) U C(g), and if

p.q€P
then C(p U q) = C(p) N C(g), which is not empty, because we supposed that
p Ug ¢ P. Denote by C the set of all C(p), (p € P) sets.
Now consider the structure (E ucg,nj.
If p,q € P, then C(p) N C(q) = C(p Ug) €C and C(p) NC = C(p)€C,
further CNC=CeC UC.
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If 4, B, C ¢ CUC, then

(ANB)NC=4N(BNC), 8)
ANB=BNA )
AN A=A (10)

Therefore (E U C, N) is a semilattice, where C N 4 = 4.
Now on C U C we define a {j operation as follows: if p,q € P, then

~ | Cp Ny if pNgeP,
GMUC@%~{ C i pNgdP (11)
and
CEp)UC=Ccp) =C Cic=C. (12)
We can see that if p,q € P, then
C(p) U C(9) = C(q) U C(p)s (13)
and
c(p) G C(p) = C(p) (14)
further
(C(p) NC(g)) UC(p) = C(p Ug) JCp) = C(p) (15)
and
~ CpNg NCp)=C(p) if pNgeP,
C C NC(p) = . 16
(P UC@) NGP) = | ¢’ cp) — i) i pNg¢P =cp. OO
If A,B,Cc¢C UC and C¢ {4, B,C}, then
(A0B)JC=A[(BUO). (17)
Next we shall use the following notations:
(p-9)r = (C(p) U C(9) UC), (18)
plg: ) = C(p) U (C(g) U C(r)), (19)
where p,g,r € P.
IfpNgNr,pNg, qgNr¢P, then
(p-gr = C(P N q N T)s (20)

and

plg.r)=C(p Ng Nr). (21)
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IfpNg pNgNreP and g N7 4§ P, then

(p.g)r=Clp NgNr) (22)
and
Plg:7) =C(p)UC =C. (23)
IfqNr,pNgNreP and p Ngé P, then
(pg)r = CUC(r) = C, (24)
and
plg.7)=C(p NgNr). (25)
IfpNgNrePand pNgqNr§P then
(p.gr=C (26) and plg.r) = C. (27)
IfpNgNr¢Pand pNg,qNr¢P, then
(p.gr=C (8 and  plg.) =C. (29)
IfpNgpNgNr¢P and qNré€P, then
(pgyr=2C (30) and plg, ) = C. (31)
ItgNr,pNgNr¢P and pNg€P, then
(p.9r==C (32) and plg.r)=C. (33)
IfpNgNrgP and pNgqNré¢P, then
(pgr=C and (34) plgr) = C. (35)

Therefore we have to prove the following theorem:

Theorem 2. The elements of the set C U C under the operations N, {J
form a lattice if and only if for any triplet p, ¢, r € P it holds the following
condition:

pNgNré¢P, or if pNgNrgP, then either both p Ngq and ¢ N~
belong to P, or none of them belongs to P.

Next we consider some simple but important basic properties of the
relations o(p), (p € P) and <.

It is easy to see that if a,b,c € C and p,q € P, then
ag(p)b < a, b € C(p), (36)

if a,b € C(p) or a,b€C(p), then a(g(p) - g(q))b, further if a, ¢ € C(p) and
b, ¢ € C(p), then

a(o(p)a(q)) b- (37)
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Now we suppose that if a € C and p € P, then ag(p)o, 0o(p)a, 0o(p)o,
00(p)I, Io(p)o, Io(p)I and if a € C(p), then ag(p)I, Ip(p)a.

We can see that if a € C(p), (p € P) and b € C, then (a Vv b) o(p)a, (I v
v D), (a v De(p)a, (I v be(p)T, (I v Do(p)I. Hence if x € C(p) U T and
y €C U then y v x € C(p) U I. Therefore (C(p) U I, V) is an ideal of (C U I,
VI, V)and

CULV)= U (C(p)ULT). (38)
PEP
If ag(p)b, then (a v c)o(p)b V ¢), (a,b,c€C), but for arbitrary a, b

elements, of C

(@ v I)o(p)(b v I). (39)

Now we suppose that for all a elements of C,a < I, 0 <a, o <I. If
%,¥2€CUo0UITIandx <y, thenx v s <yy z butx A 2< y A zgenerally
does not hold. If a ¢ C(p) and a < b then b € C(p), from which ap(p)b follows.

We shall say that m is a maximal element of C if @ >> m; (a € C) holds
if @ = m. Denote by M the set of all maximal elements of C.

If a ¢ C, then denote by R(a) the set of all x elements of C for which
x < a If x, ¥ € R(a), then

A A
and
cr=1"07 % injee ()
further
oANTI=TNhNo=o, INI=1I xNo=0oANx=0,0A0=o0, (42)
INzx=axANl==x0oyl=Iyo=1I ITyl=1 xyo=o90yazx=x
ove=o0, Iyx=xyIl=1
If x,y € R(e) Uo U I, then
xAy=y A= (43) and TVYy=yV=a, (44)
further
Ay)ya=x (45) and (V) Ax=x. (46)

If x,y,z€ R(a) Uo U I, then generally
EAY)ANz==xA(yAz) (47) and (xvy)vz=2x2Vy(yvsz. (48)

Therefore we obtain the following theorem:
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Theorem 3. If M is the set of all maximal elements of C, then

(CUoUIL A, v)= U (Rm)Uo UT, A, ). (49)

meM

Remarks. If the conditions 1°, 2°, do not hold, then (C Uo U I, A, V)
is not a lattice, but the decomposition

holds, where generally (R(m) Uo U I, A, v) are not lattices. (49)

We can see that the following relations do not depend from the con-
ditions 1°, 2°:

Ifx,y,2€CUoUI then x Ay, x v y€CUo UI, and

xhy=yAx (50) EVYy=yV (51)

xA(xyy)=x  (52) v (x Ay) = = (53)

On the structure (P Ui, 1M, )

If p,g€ P, then

pLig=gqlLip (54)
and
p=plli=illp, i ti=1. (55)
If x,y,z€ Py i and i € {x,y,z}, then
EUy)Uz==x11( 13 (56)
If p,q¢ P, then
plig=gqllp (57)
and
Pmi:imp:imi:i, (58)
further
pNgUp=p i pNgeP, -
m = ) _ 9
(pTguip iip=p i pNedP. (59)
and
(pdi=i, EMiHJi=r,
GMp)uup=p, tL1p=p. (60)

If p,q, € P, then
(pup)Tip=(pUg Np=p, (61)
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and
(puui)Mi=i, plli=4i, pllp=p,
pU)Tp=p, GLIYTTi=1. (62)
If p,g,r € P, then
pugur=pu@un=pUqUr, (63)
and if x,y,z € P U4, then
(1Y) Uz=x01(y L 2)- (64)
If p,q.r € P, then it can be proved that
(pMgMr=pM(gmr) (65)

if and only if the following conditions hold:
3 pNgNr¢Porif pNgNr¢P, then either both p Ng and g 7
belong to P, or none of them belongs to P.

If x,y,z¢€ P Ui, then
xMy)Mz=x(yMa). (66)
Therefore we have the following theorem:

Theorem 4. The elements of the set P U i under the operations [, | |
form a lattice if and only if the condition 3° holds.

Denote by P(a); (a € C) the set of all p € P problems which can be
solved by a. If a,b,b Nc €C, then P(a Nb) € P(a) N P(b) and if a,b,a U
U beC, then P(a Ub) D P(a) U P(b).

We can see that if a € C and p,q € P, then

po(a)g = p,q € Pla), (67)
and if @, b € C, and p, r € P(a) further ¢, r € P(b), then p(o(a)o(b))g. If a,b€C
and p, q € P(a) or p,q € P(b), then p(co(a) + ¢(b))g. If p € P(a); (¢ €C) and
g € P, then

_pNg i pNgePp
qu—{i if pNgqdP, (68)
and ¢ i=1¢l1q=1{717=1. Therefore (P(a) Ui,1) is an ideal of the
groupoid (P Ui, 1) and
(PUi, M)y =y (Pla) Ui, ). (69)

a€cC

Denote by P the set of all P(a); (a € C) sets.
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On the P U P Ui set we define two operations as follows: if a, b ¢ C, then

P(a) A P(b) = {P(“in ) ﬁ . Rzgg (70)
P(a)Ai = iAP(a) = i, iNi = i, PAP(a) = P(a)AP = (71)
— P(a), PAi — iA\P =i, PAP =P,
P(a) v P(b) = {P(“iu b) j : 8 Z g g (72)
(73) Pla) yi=ivy Pla)= Pla), i yi=i, Py Pla)—
= Pla)y P=P,Pyi=iyP=P, Py P=P.
If a,bcC, then
Pla (b P(a) = Pla if aNbecC,
(P(a) A P(B)) v P("‘):{if/P(a))iP((a)) “ if a nbgc = Pla),
(74)
and
Payb) A\ Pla)= P(a) if aUbgC,
(Pla) v) P(b) A P(a):{P/\ P(a) = P(a) if aUbg¢c — T
(75)
further
(P(a) Ai) Ai=(Pa) yi)Ai=i,
(P(a) /, P) y P = (P(a) y P) A P = P, (76)
(Pri)vi=(Pyihi=i
Therefore if %, v, € PUPU 1, then ‘
(77) Ay yx=x and (78) (xvy Ax=ux

It can be proved — as we did previously — that (13 UPUIL, A, v)isa
lattice if and only if for any triplet a, b, ¢ € C, the following two conditions
hold:

4° aNbNcgCorifaNoNcecC, then either both a Nb and b Ne¢
belong to C or none of them belongs to C,

5 aUbUcé¢CorifaUb UceC, then either both a U b, b U ¢ belong
to C or none of them bhelongs to C.
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Entropy of the pairs (p, C) and (a, P)

We can see that the following entropy concepts are very useful tools at
the analysis of the structures (C Uo U I, A, v), (P U1, M, ).

If H is a finite set, then denote by p(H) the number of the elements of H.

We suppose that C and P are finite sets.

If p € P then we define the entropy of the pair (p, C) as follows:

C(p)) - 1(C(p))
p,C) = — i < lo e
w(C) u(C)
_ #{C) ;( él;C(P)) Zlog #(C) ;( g)(C(P)) _ (79)

If a € C, then we define the entropy of the pairs (a, P) as follows:
wP@) - w(Pa)

&(a, P) = — ~lo —
B == T e
u(P) o(P)

Finally we set up two open problems.

Problem 1. Determine the basic properties of &(p, C) when (C Uo U I,
A, V) is a lattice.

Problem 2. Determine the basic properties of £(a, P) when (P U1, M, )
is a lattice.
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