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There are many results known about the oscillation of the solution of
the equation

y' 4 at)fly) =0 )

Let us consider the conditions in paper [1]:
Let f(u) be a continuous, differentiable function on (— oo, 0) U (0, o),
uf(u) >0, us20, and f(u) > 0, furthermore for x >0 let
¥ du T du
— < o, — < o, (2')
Vit == 7t

In the case of the fulfilment of the condition

x

}om(t)dt = oo (3)

x

each solution y is either oscillating or tends to zero monotonously.
Consider now the equation

y" 4 a(t) f(y(z(2))) = 0 (4)
where t(t) =t — 4t, 4t > 0 and 4t € Cfz,, =0),

lim oft) = + oo G)

{00
') >« >0 (6)
for ¢ € [t, <o)

Theorem 1. Let
a) aft) € Clty, o=);
b) f(u) € CI(— o0, o), uf(u) >0, us20, f/(u) > 0:
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¢) For each x > 0 condition (2) is satisfied [‘}(—lf)
u
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Suppose that
[t at)di = 4 =0 (7

then the equation has no monotone solution.

Preof. Suppose that y(t) is a monotone solution and y(t) >0 on the
interval {t,, oo), then according to (5) y(-c(t)) > 0 for some t > t,. Multiplying
both sides of equation (4) with 7(¢)/f(y(7(z))) and integrating partially from
t, to t we obtain:

(s)y’(s) (o) Ol @)y () go— e\
fly (T(S>) f(y r(s)) FHy () tf Heate)
) _ (20T 4 Jf(y (@) (DT O () 4 _
fyz) f( (%(s))) FAy(x(s)
o Ya(s Tty (8)
J M )
“(t)y’ (1) Sa(e)ds - F0 @)
F(y(z®)) J s)) J He)als)d F(r(z))
=(e)y( w) (DT g _ [ oraraterds - FE(0)
e f 7(5(xo) f T e
y((t) t
Wy ®) [ ds (oo Tty ()
f(r(z®)) = J () f A(Sefe)ds | F(y(z)) ©

The first integral on the right side is bounded from above because of
(2) and on the ground of (7) the inequality (8) implies

)y ()
f(y(z@)

when t —co.

Thus for a k >0 and t, > ¢,

Wy ) _ o
Fy(=®)) ©)
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respectively
T(t)y (z)7' () ,
—m e < — k(1)
Fy(z@)
ie.
YlEoTe _ 70
f(y(=@) ()
for every & > &, > t;. Integrating from ¢, to ¢ we obtain
NCI )
‘ ,__s_ < In [ T(t2) ] . (10)
J - f(s) 7(2)

y(e(t:)

The expression on the right side tends to —oco when ¢ —co. According to the
properties of y(¢) and the assumptions we have a contradiction. Thus the
theorem is proved.

I.V. KaMENYEV investigated the oscillation properties of the nonlinear
second-order differential equation

[r(x)y’]" + a(=)f(y) = 0 (11)
under the conditions f(u) is a continuously differentiable function on the

interval (—o0, 0) U (0, oo) uf(u) >0, u=0, f'(u) >0 and for each ¢ >0

wdu T du

o, | <o, >0 (F 12

)i =7 Jpw ™ " .

5du —Edu

)7 =7 ) f
0

as well as 0 < p(x) € C? [x,, o) is such a function that

< oo, e>0 (D) (13)

[ o(x) a(x) dx — oo (14)
- dx
f ox) 7(x) ()
furthermore
o'(x) >0; R'(x) <O (F) (16)
0'(x) <03 R'(x) 20 | (D) 17
§ IR #)]dx < o (18)
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where R(x) = r(x)p’(x).
Consider now the equation

[r(@) y’]" + a(t) f(y(z(®))) = 0 (19)
Theorem 2. Let

a) 0 < r(t) € CYty, oo);

b) aft) € Clto, =03

&) f(u) € C'[(—o0,0) U (0, )], uf(u) >0, u 0 and f'(u) > 03
d) 0 << o(t) € C?[t,, o) and such a function that

T o(v(@) a(t) dt = oo (20)
T @
e == .
Furthermore (5), (6), (12) and (13) are satisfied as well as
o’(e(1)) > 0; R'(t) <0 (22)
Q’(t(t)} <0; R() >0 (23)
[ R/ (w)ldu < oo (24)

where R(t) = r(t)o’(z(t))7’(¢) which are assuring separate cases in which the
equation (19) has no monotonous solution.
Proof. Before we would turn to the proof we make a preliminary note.
In the case when condition (13) is satisfied, for every u
u
F(u) = é(—tl
J 70
and F(u) > 0.

Now we can turn to the proof, suppose that equation (19) possesses monotone
solution y(z) under the following conditions

¥(t) >0 for every ¢ >1t; >1, (25)

From (19) multiplying it with g(v:(t))/f(y('c(t))) and integrating from #;, to
t we obtain:

r(s)o(z(@))y’ ) [ _

f@W@WMh_ﬁ®M$W$W®&¢

EICON I (G0 F(y(x6) |
(el @)y @ sy <”9@@Dy<ﬂds s
FAr(zs) f f(y(ze) f“( ))ete)ds
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respectively

re(r)y) fr(s)Q(T(S))y’(S)f’(y(f(s>))y’(r(8))f’(s) o

fy(zm)) x FHy(z(s)
s)g(-cs)) (s) ds + C — t z(s)) a(s)ds. 26
j oo m))) + tjg( (s))afs) (26)
Since f’(y(t)) > 0 therefore
r(t)g( )y(rt))<c| ——t 7{s))a(s)ds 27
) ©) — [e())ate) (27)

t
where
t

W) = | r(s)o’(z(s s y(t )ds—— ERs y(‘r(s))
®) j()-(())()f(y 0 J()f(y Dsas

tl 1
Now we prove that conditions (22)—(24) assure the boundedness of
W(t). Therefore let us consider the folowing three cases:
1. Let condition (22) be fulfilled then on the ground of Bohne’s theorem

, W)
W) =28 I’ y(zs)T'(s) 50 Bty J 4 ¢
y(T(S))) « f(z)
V()
2. Let condition (23) be satisfied, then on the ground of Bohne’s theorem
R ¢ , R y(E)
W(t) — (tl) Y (T(S))T (S) ds = (tl) S- ‘__:'_.<_ .
o) e )5

3. Let condition (24) be satisfied

¢
— -]3- F( T(S)))R (s)ds < C, = C3 + MN + MJ[R (s)|ds , (63 C3J
o

l'x
where 0 < F(y(z(t)) )) < M, |R(t)] < N respectively R(t)F(y(z’)) < MN. Then
there is such a D that W(t) << D and thus from (27) we obtain

o)y (x®) _
- f(y(z@))
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respectively
y' (=) < 0. (28)

Thus y'(t) <0, t >t, > 1.

Let t; > t,, such that

C+D— jt o(z(s))a(s)ds < — k, t>1,,
then (26) implies l
r()o(z®)y’(t) J r{5)o(ws)y () (o) (x)e () 4, -
F(y(z)) FH(y(2(5)))

or

r(s)o(z(8)y 2(x(s) £ (y(x(s))7’(s) r(®)o(z®)[—y'(z®)]
K ds s
+J Fy(=(s)) = F(r(x)) Pt
(29)

Extending and integrating (29) we arrive at

r®o()[—y'()] . [y —y' ()]
fly(o) f(y()

FO@)=y' @l [ jr(s)g(r)[—y’(r)] S @)=y @],
f(y() fy(x) fly(@)

respectively
ro@)l—y'(0)]  fy@) =y (9]
Fly) Jf(y(@) @)=y (@]
=
fly@)

K'{_j ()o@ =y (] f @)=y @],
fly() fy(2)

(K+f o) y(r)]f(y(f))rfds]zhw, >,

fy@) fy=®)
i.e.
FOe) _ o, [ rselny ™) -
7w = f Py T
Making use of (29) we obtain

fe) _ Oe)—y'Gol %0
o) = flyGw) =t (30
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respectively

Y) <y/(0) < — fylee) s t)) ®

From (30) making use of condition (21)

()<yt3)—f(y(rt3)))J ()) - — oo

arises, when ¢->co, which is in contradiction with (25). Thus the theorem is
proved. The case, when y(t) < 0, is proved in the very similar way.
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