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1. We are going to prove the following inequalities with statical methods.

a) If £ is a non-negative random variable with the expected value M,
then the following inequality holds (Markov):

M . .
—>Ptz=e)=1—F(e) if &>>0. (1)
&

b) If £ is a non-negative random variable with the expected value M,
and its distribution function F(X) is concave in the section (0, - oo}, then the
following inequality holds:

M
E—g—gP{Ege)zl—F(s), e >0. (2)

¢) If £ is a non-negative random variable with expected value M, and
its distribution function F(X) is concave in the section (0, 4 o), then the
following inequalities hold:

71;2: PE=AM), 0<<A<2, (3)
)},3 = P> M), 0 <2< 4 (4)

d) If £ is a non-negative random variable with the expected value M,
and variance 6% then the following inequalities hold:

]

—>P(:=1— F(M)), 2 >0, (5)
1 c
—>PE>=AM), —<1, 1>0, 6
w = DE= M), — < > (6)

n
A

In this lecture — for the sake of brevity — we shall only deal with
inequalities (1), (2) and (3).
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2. For proving of inequality (1) let us consider a beam resting on sup-
ports at points 4 and B which has a span and an infinitely long cantilever
at the right hand side. Let the function of its external load be denoted by
f(X) which is given non-negative function (Fig. 1). Let A(¢) and B(e) denote
the reactions acting at the respective supports.

Assuming that the load function is the density funetion of the non-
negative random variable £, the resultant of the external load is equal to
the unity, and its distance from point 4 is equal to the expected value of ¢,
that is

oo

dfmf(x)dx =1, O_Y xf(x)dx = M. )

For expressing the reaction forces A(¢) and B(e) we write a moment
equilibriurn equation for point A:

B(g) - e — Exf(x)d& =0,

B(s)e =1 - M,
hence
Afe) =1 ——'/}—4—, B(e):ln—l——. 8
€ £

Markov’s inequality simply follows from the fact that the reaction
M
force B(g) = — cannot be less than the external load acting on the contilever
e

that is,

“Z:‘l‘ z% J f(x)dx =1 — F(e) = P(E>¢). qed.

3. For proving inequality (3), let us consider a beam with two canti-
levers, supported as seen in Fig. 2. Let the external load be the same as be-
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Fig, 2

fore expect that the origin of x is fixed at the end point of the cantilever at
the left hand side.

B)[a01 — llﬂ:le— ‘M.
1 R
Hence
B@Pv—iﬁ=1_—iﬂ3w 2 __1

P 1 21 P41 A+1
and

AW:I—%,MM:%. ©)

ol re

Now we must examine under what conditions reaction force B(2 =7

is not less than the resultant of the load acting on the cantilever at the right
hand side. That is, under what conditions the inequality holds

B(3) > [ fix)dx = 1 — F(AM) = P(& > AM).
‘M

For that purpose let the external force of the beam be divided into three
parts, and let the reaction forces be calculated separately for each part.

(3

0,———-—MJ of the beam (the

«) The external force acts on the section T
L

hatched part of the diagram in Fig. 3).
The moment equilibrium equation for point A is:

M

E%TM~X%MMV+QWPM—AZﬁﬂ=Q

A+

!
-rl\.

—
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T M

J F(x)dx + B.(})
0

3 Vs M
( M~X]F(x) At
A1 o

G M =0,
41
.M

L1
B.() = _’}2'M J F(x)dx. (10)
0

The equilibrium equation of forces is:

2
A1 M

A,0) + B.0) — [ fx)dx = 0,

o M

211 pds. (11)

M

e

3) The external force acts on the section (AM, --co) of the beam (the hatched
part of the force diagram in Fig. 4).

A

y HX) | e
-~ Te-o

Fig. 4
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The moment equilibrium equation for point 4 is:

oo

2 2
By() (201 — M| = ( |z ——2— M| fx)dx,
A)[ z+1] fx PRt
M
mw}fle{@—umﬂwa+PM~7%TMVL—ﬂmm,
T M T
By~ ﬂ4:-£—mqy—pum»+f@—wmwum%
i+l 41
iM
Y I
IMle—FVMerMJ@—mMU@h. (12)
M

The equilibrium equation of forces is:

Ay%) + By(2) = [ fx)dx = 1 — F(2M) ,

iM

A(2) = —

Atrlp
Amﬁf@——ﬂ%ﬁ@ﬂm (13)

2
A4+1

The external force acts on the section M, 20} of the beam (the

hatched part of the force diagram in Fig. 5.)
The moment equilibrium equation for point A is:

AM
B,(3) |20 —- zﬂ:fx_f M| f(x)dx
i+1 ) i+ 1
P
A
Yy f(x’)f’—’
'
< -~
}\ A 4 Y A 4 Y. BV A 4 " 2o
M - >
‘7\+] 'l AT()‘) 7%87(}\)
v I
AM ]
I

g%
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M=Ux "Tj.—i JF(x)];M— J Flx)d,

2
B,() m M= = MEOM) f F(x)dx,

B,(2) = FOM) =21 [ pa,

The equilibrium equation of forces is:

A(3) + B,(3) = FOM) — F b—j:_l M}

AM
241 2
4,0) =221 [ Fayds — F[—2— M),
A AzM_J (z)de {z+1 )
e

We can check our results summing up the reactions as follows:

A7) + AgR) + A 2) =1 -—1~

2

B.(3) + By1) + B,(}) =

%=

By so doing we can write for reaction B(}) the following equation:

2
M

l=_}'+1JF( ) + (1 — F(QM)) +
pE 2M
0
+ FoM) — 222 [ Py
(a0) ”Ij (#)ds.
i:INf

oo

1 )\v
—=1— FQOM FOM —;———
- (M) + FaM) + =

M

AM
f (x — 2M) f(x)dx —Of Fx)dx|.

(14)

(16)
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1
From this equation it follows that inequality — = 1 — F(1M) holds

. . . A2

if @(1) is a non-negative value, where
- am
}\1 + 1 ’ -
D,(A) = F(AM) —}—W J(x — AM) f(x)dx — J F(x)de . (17)
|
M 0
The sign of @(1) is equal with that of @,(1), where

oo
~

M
Dy(4) = 2 MF(OM) —{—J (x — AM) f(x)d=x —JF(x)dx = al D,(2).
A1 A41
iMm 0
(18)
With some rearrangements we can write:
\ M iMm
Dy(2) = ; i 1 MFQAM) + M — ZM(I — F(AM))— | xf(x)dx —~JF(x)dx,
o 0 0
\ M M
@) =~ % - MF(M) — (2 — )M + AMF(.M) — f Fx)dx — f of (%)dx,
+ 22 0 0
Oy(}) = ——— MF(AM) — (A — 1)M. 19
{4 =~ 1 (AM) — ( ) (19)

Now let us examine under what condition @,(1) will be non-negative.

1
If = >1— F(AM), than

21 =
22 . 22 1
By(3) = MFGM) — (b — )M > _" 1————}M—(}-,—1)M,
A+ 1 AF1l 22
o) > (et _nrr1]=M [).2-1—,124—1,
241 22 11 2
M ) .
D) > ———|1—Z]|=0, if 2>2>0. qed
A1 2

The proof of inequality (2) using more abstract mathematical considerations
is as follows:

M = | xf(x)dx = { af(x)dx + | xf(x)dx,
0 0 €

M = | xf@)dx + § [¢ + (& — 9)1f@)ds,
0 &

M = (1 — F(e)) + [ of()dx + | (x — &)f(x)dx,
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M = e(l — F(e)) + [ xf(x)dx + § (x — e)f(x)dx + §(x — &)f(x)dx,
0 £ 2

2e

M > ¢(1 — F(e)) + [XF(®)]§ — | F(x)dx + [(x — &) F(x)]* — § Flx)dx +
0 [

. 8(1 — F(Ze)),
M = e(1 — F(e)) + eF(e) + eF(2e) + — eF(2e) — j:F(x)dx,
0

M= (1 — F(e)) + e — eF(e) + 2eF(e) — S‘F(x)dx,
0

M > 2¢(1 — F(e)) + 2eF(e) — | F(x)dx .
0

We can easily see in Fig. 6. that the inequality
2e

2¢F(e) — | F(x)dx >0
0

holds, if the diagram of F(x) is concave in section (0, + o)
In this way, the validity of inequation (2) is also proven.
A

: F(x)

-

F(AM)

O
>
<
fae)
>
7

AM

Fig. 6

The presented statical method can also be used for proving inequalities
(4), (5) and (6).
The proof of (5) and (6).
If £ is a non-negative random variable, with expected value M and
variance ¢2, that is
{flxydx =1, f[xf(x)dx = M, [(x— MPf(x)dx = o®
0 0

0
and

oo

[ 2f(x)dx = M2+ o2
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Let the load function xf(x) (Figure 7.)
Moment equilibrium equation for point 4 is:

B()AM = { x(xf(x))ax = [ 2*f(x)dx = M?> + o?,
0 0

M2 4 o
JM

B() =

The reaction force B(1) cannot be less than the external load acting on the
cantilever

References

PregoPA, A.: Valészinfiségelmélet. Miisz. Konyvkiadé, Bp. 1962,

RENyI, A.: Valészinfiségelmélet. Tankényvkiadé. Bp. 1954.

RavmagrisMsa Rao, C.: Lineare Statistische Methoden und ihre Anwendungen. Akademie
Verlag, Berlin 1973.

SEBESTYEN, L.: Markov’s Inequality in the Case of Random Variable of Concave Distri-
bution. Period. Politechn. 29, 225 (1985).

. SEBESTYEN, L.: Tschebiche’s Inequality in the Case of Random Variable of Special Distri-

bution. Period. Polytechn. 29, 233 (1985).

. Barapis, B.—SEBESTYEN, L.: Goodness of Fit with the Help of a Sharpened Bernoulli

Inequality. Period. Polytech. 30, 139 (1986).

o oo wE

Dr. Lukacs SepesTyEN H-1521 Budapest



