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Abstract 

Natural-parameter road surface sample P.S.D. functions give realistic ranking of road 
quality parameters. There are bounded type variants to the normal and exponential proba­
bility functions and boundedness can be calculated from the spectrum. We can define a so­
called regular instationary class of stochastic processes. 

Introduction 

Research reported on in this paper was motivated by the desire to give 
more correct and detailed description of stochastic environmental influences 
on moving vehicles. In order to improve calculation and simulation methods 
a comhined approach seemed to offer most promise. Natural parameter 
analytical P.S.D. formulae, introduction of the sample spectrum concept, 
hounded type prohahility distrihution/density functions as well as definition 
of the so-called regular instationary class of stochastic processes has heen 
tried. 

Definitions and processes not specified in detail are those given hy 
Bendat and Piersol in Ref. [1]. 

Notation 
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power spectral density function 
frequency response matrix 
damping matrix 
(integral) scale parameter 
mass matrix 
probability distribution 
correlation/ covariance function 
measuring/evaluation base length 
stiffness matrix 
vehicle speed 
exponent 
boundary ratio 
space lag 
Taylor's scale parameter 
coordinate parallel to speed 
standard deviation 
time lag 
phase angle 
circular frequency 
shape function 
space frequency 

Superscripts: 

T 
* 

transpose 
complex conjugate 

1. Power spectrum analysis 

1.1 Analytical P.S.D. functions in terms of the 
natural parameters 
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Finite base-length power spectra of most environmental vehicle load 
sources have a characteristic negative pO'wer-Iaw type appearance for higher 
frequencies (Fig. 1). In characterizing the process there is little use of follow­
ing every little local peak or fold on the graph; instead of this smoothing by 
an appropriate analytical function can be recommended. 

For road/rail work there are several functions giving acceptable formal 
fit over the measured frequency range. Some authors are using simple nega­
tive power-law type functions, others are working -with polynomial quotient 
expressions. Some years ago the author proposed the scale parameter concept 
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Fig. 1. Truncated spectrum 
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Fig. 2. Definition of the integral scale parameter 
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for this purpose (See Refs. [4,5] and Fig. 2). From among the benefits offered 
by its use the determination of spectrum truncation errors and the possibility 
of a correct and fast direct spectrum space-time conversion may be emphasized. 
Mathematical proof for this idea has been given by Kovasznay [3]. 

Generally speaking, it may be said that the best choice of analytical 
spectrum functions are those written in terms of the so-called natural para­
meters. A full list of them as well as the appropriate calculation formulae are 
given in Table 1. 

10 
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Table 1 

Natural parameters of stationary stochastic processes 

Parameter 

Standard 
de.iation 

Scale 
parameter 
(integral) 

L 

Tavlor's 
scale 
parameter 

I. 

Exponent 0: 

x(;)(i = 0) 

Def.: 
s 

[ 1 r J1I2 Ux = lim S x2(~)d~ 
8-+00 .. 

o 

Calculation formula using 

auto correlation function 

Def.: 
C, 

L = Iim 12 r Ri~)d~ 
Cl-ex: aXb 

Def.: 

spectral density function 

Gz(n) resp. G.(Q) 

ui, = JGx(n)dn= 
o 

= J CiQ) dQ 
o 

Regression analysis 

Regression analysis 

1 
n max =;: 

Kovasznay [3] has also proved that the zero value of every (one-sided) 
autospectrum function has to be: 

(la) 

being equivalent to 

(lb) 

It is therefore practical to write spectrum functions in the form: 

(2) 
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For road/rail work we are using at present: 

4L 
GX(n) = a~ --I -4-:---\-" . 

1 + --LnJ 
ex-I 

(3) 

1.2 Process- and sample spectra 

Input time functions for vehicle service load simulation are generated 
from the P.S.D. function. In case of a four-wheeled vehicle we need four indi­
vidual representations originating from the same spectrum and having cor­
rect relative phase angles. Unfortunately, customary P.S.D. graphs are lack­
ing any information as regards the phase angle. After Rayleigh we define the 
auto-spectrum as the Fourier transform of the autocorrelation/autocovariance 
function having thus and by definition - zero phase angle for all frequen­
cies. Relative phase angles can be expressed only by means of cross-spectra. 
Input and output auto- and cross-spectra can be arranged in spectral matrices 
connected by the frequency response matrix Hyx(f) as follows: 

(4) 

The spectrum matrix is really a stopgap arrangement form unsuited 
for calculation of wheel displacements xi(t). It is therefore usual to assign ran­
dom phase angle values to the Fourier components for calculating simulation 
inputs. _!\lthough errors made this ·way tend to equalize themselves statisti­
cally, a better method ·would be highly desirable. Fortunately, basic features 
of Fourier series theory indicate that phase angles of every finite-length 
representation have to increase proportionally to the frequency f resp. n. 
This theorem, besides giving more realistic phase values, makes also possible 
to discard the spectral matrix form for theoretical work by s·witching over to 
the complex auto-spectrum vector Gx(f). In this concept Eq. (4) reads: 

(5) 

This way substantial computer time and space savings are realizable. Full 
theoretical legalization of the new method may be achieved in the follo\ving 
way. 

The classical auto-spectrum Gx(f) - i.e. a spectrum Gii(f) in the diagonal 
of the spectral matrix G=(f) - is in fact a (real type) ensemble spectrum 
of the process {x(t)}. Supplemented by the appropriate phase angle rp(f) it 
transforms into a (complex) individual sample spectrum. 

10* 
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1.3 Spectrum parameter ranking with a linear vehicle model 

To illustrate the aforementioned by an example, driver vertical accelela­
tion standard deviation G a on a bus going with a speed V over three different 
roads was calculated. The spatial, 8 degree of freedom bus model was character­
ized by its mass matrix M, damping matrix K and stiffness matrix S respec­
tively. Results are shown in Fig. 3. 

Graph a) is for a smooth cobbled road (Ref. [2] spectrum G; Gx = 2.245 
cm, L = 2.91 m, cc = 2.844). Points b) are calculated for a black top surface 
(Ref. [2] spectrum E; Gx = 3.2 cm, L = 45 m, cc = 2.068). The short graph 
c) belongs to an earth road (Ref. [8] spectrum 8; Gx = 5.783 cm, L = 15 m, 
cc = 2.463). Inspection of the graphs reveals two peculiarities. 

First, driver acceleration, increasing at first sharply with speed, attains 
a maximum and then decreases slightly again. 

As for the second, a comparison of graphs a) and b) indicates a seemingly 
contradictory state of affairs. We usually regard Gx as the measure of road 
quality and yet road b) of Gx = 3.2 cm shows off much better than road a) 
of Gx = 2.245 cm. Explanation for this "reversal" is that the asphalt road 
has a much longer scale length L. 

A theoretical survey using the same bus model over synthetic roads 
of systematically varied parameters has been arranged. A base road having 
Gx = 2 cm, L = 10 m and cc = 2 has been chosen. 

Variation of the standard deviation Gx gave results as shown in Fig. 4. 
Upper graph points (squares) are for the maximum acceleration Ga for all 
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Fig. 3. Driver comfort as function of speed on three different roads 
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Fig. 5. Influence of L on driver comfort 
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speeds while the lower ones (full squares) represent results at V = 50 km/h in 
urban traffic driving. Both sequences of results are fitting well to a power 
function regression with exponent 4. Relative error standard deviations for 
the regression are 1.273 X 10-3 and 1.816 X 10-3, respectively. However, 
this is not to be taken as a physical law, it serves only for having a measure 
of parameter influence. 
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Fig. 6. Influence of Cl: on driver comfort 

Results of scale length (L) variations yield graphs in Fig. 5. The influence 
of this parameter, too, is considerable. It can be approximated by e~""ponents 
of 1.6 and 1.65, respectively. 

Variation of the road spectrum exponent 'X gave points in Fig. 6. Re­
gression would give for them negative power exponents around 2.1 and 2.7. 
Nevertheless, we have to rank this parameter as the third one because of its 
inherently restricted range of variation. 

In short, ride smoothness and in consequence road quality, depends 
not only on the surface roughness standard deviation, all three parameters 
have to be taken into account. 

2. Bounded prohability functions 

2.1 Coordinate transformations for boundary generation 

Because of the finite energy of our systems correct statIstIcs should he 
of the bouuded type. Yet, all functions used for probability assessment are 
invariably of the ideal, unbounded type. In automotive vehicle design this 
is not a freak theoretical problem, if misinterpreted, it may have serious 
economic consequences. So it has been investigated if and how bounded prob­
ability functions of exponential resp. normal character can be generated. 
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As explained in detail in Ref. [6] an upper bound at x* can be made 
e.g. by the transformation 

x* 0 
x->-x---= x--­

x* - x 0- yx 

writing for the boundary ratio 

0= )Jx* 

The transformed exponential function reads then: 

P = 1 - exp (_ x _0_) . 
0- yx 

(6) 

(7) 

(8) 

Correlation coefficient and other fitting control calculations showed 
results hardly distinguishable from the unbounded case, at least within the 
ranges available in normal field ·work. (See Fig. 7) 

A similar transformation may he arranged for the normal (Gauss) 
statistics having an unhounded standard deviation s. This transformation 
is using for the boundary ratio 

and it reads 

x* 
0=-

x* 
x-+x--­

x* -x 

S 
(9) 

0- xis 
(10) 

The equation giving a bounded normal probability density reads then: 

c [1 (X 0 )21 P = ~ exp - --:- - - j 
: 2rrs 2 s () _~ 

S 

(lla) 

Fig. 7. Bounded type exponential probability distribution functions 
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with 

(11b) 

This distribution, too, is fitting quite well to its ideal predecessor (see 
Fig. 8). 

xis 

Fig. 8. Bounded type normal (Gauss) probability density functions 

2.2 Conditions for the boundedness of the statistics 

For want of a reliable method for indicating the boundedness of statisti­
cal field data distributions and for the positive proof of the existence of a 
boundary a search for spectrum criteria has been made. 

Starting from basic Fourier-series relations it can be shown that a 
stationary process is upper bounded if and only if (see Fig. 9): 

a) its spectrum is bounded (Gx(n) < C) and 
b) either Taylor's scale parameter }. > 0, or the exponent of the spec­

trum 0: > 2. 
Particulars of the proof are in Ref. [7]. 
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Fig. 9. Conditions for the boundedness of process statistics 

3. Regular instationary processes 

153 

Research for vehicle dynamics applications is going on concerning 
instationarities characterized by the stationarity of the transformed represen­
tations 

f(t) . x(g(t)) 

f(t) and g(t) being continuous and smooth functions. 
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