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1. Introduction 

The mechanical drive systems especially in vehicle applications are 
subjected to stochastic load conditions, varying in a wide range of load levels 
and excitation frequencies. The efficient component design needs the detailed 
knowledge of system answer under service load conditions, even in the stage 
of preliminary studies and parameter optimalization. 

Hence, the numerical dynamic analysis procedures of complex drive 
systems, in order to optimize element characteristics and service properties 
are of prime importance [1]. 

Mechanical transmission systems contain generally a large number of 
gear trains, which introduce a supplementary excitation caused by a time or 
angular displacement dependent stiffness variation. 

This latter influences on the one hand, the dynamic overloads of the 
gear box elements and, on the other hand, reacts on the drive and driven 
system. The importance of this reaction effect is influenced by the stiffness 
characteristics of the connecting elements. 

Furthermore, we present and discuss a model for describing the gear 
stiffness function taking into account all the important factors and non­
linearities. 

For the gear transmission stiffness description it is sufficient to deal 
with a simple two mass system. 

In the model in Fig. la the 8 1 and 8 2 are the moment of inertia of the 
pinion and the wheel respectively, !PI' !P2 are the angular displacements, 
Tb1 and Tb2 the base circle radii, T1(t) and T2(t) the outer torques. The tooth 
contact elasticity is represented by a parallel connected spring and damping 
element, applied on the pressure line. 

The differential equation can be ,.,,-ritten in the following form: 

Mep + K~ + Scp + T = 0 (1) 
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Fig. 1. Dynamic model of the gear train 

where lU is the mass matrix, K is the damping matrix, assuming a speed 
dependent damping characteristic, T is for the outer loads, and cp, cP are the 
time derivatives of the angular desplacement vector. 

The S stiffness matrix, is the expanded form of 

si 1'2 ! bl 

I -1'011'b2 

I'bl I'b2 i 
o 

I'b21 
(2) 

The term Kq: gives the damping torque. The elastic torque component of the 
total torque is produced by the elastic force: 

FOz = S(l'bllfl - rbzlfz) 

where S IS the stiffness of the spring, and 

(3) 

(4) 

in the nominal ratio, (pz,-z the nominal angular position of the wheel, the J<pz 
by the tooth spring deformation introduced agular error, relative to the nom­
inal position, and Jo' the travel error measured on the pressure line, equal 
to the actual tooth deflection. 

2. Spring system model of the elastic tooth contact 

Considering the real tooth contact, the model is based on a parallel 
connected spring system, Fig. Ib, where S = s( If 1) is the single tooth contact 
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stiffness, depending on the contact point position [2]. Having j = I ... N(CPl) 
teeth in mesh, the resultant stiffness related to the actual travel error is: 

N 

S(CPl) = {~S/CPl) wj}/LlO' 
j=l 

where Wj is the j-th contacting tooth pair deflection. 

(5) 

So, during the rotation, s( CPl) varies as well, because of the variation 
of S(CPl) aud the number of tooth pairs in mesh, N(CPl)' In the case of errorless 
teeth and not considering the tooth mesh troubles caused by tooth deflection 
and "wheel rim deformations LlO' = Wj in Eq. (5), for all j. Assuming linear S 
single tooth stiffness, the stiffness function can be discribed, based on the 
theoretical tooth geometry, as a siugle variable periodic function, ,,,ith the 
period of the angle Q = 2n/z1, and at n l input speed of rotation, the frequency 
fz = 2n/ Qnl = ZI • nI' zl the number of teeth of the pinion, and fz the tooth 
frequency, Fig. le. 

The vibration of the gear train based on this simplified model had heen 
studied by several authors (see ex. [3] [4]) for the estimation of the inner 
dynamic overload factors, in the case of constant outer torques. Because of 
the parametric excitation, the process is governed hasicallY hy the rheonom 
vihrating phenomenon, presenting more resonance points even in the case of 

fz < fe' fe the natural frequency of the, system [5]. 
For entering the tooth manufacturing errors, different kinds of errm 

functions have heen introduced by several authors [5] [6], in the form of 
deterministic harmonic functions, or hy randomly genemted error values, 
for altering the actual tooth deflections and so the force - travel error re­
lationship, Eq. (3). The so defined error functions, being in weak correlation 
with the real tooth error excitation, give only an approximate rough qualita­
tive estimation. Especially, in complex system analysis over- or underesti­
mations can occur. 

For more exact stiffness variation description, the following factors 
must be considered: 

The tooth deflection results tooth lIlesh heginning and end point 
variations depending on the actual load and errors. On these ir­
regular mesh zones, the ratio, i( f{!l) ,/ in' not even for errorless tooth. 
Manufacturing errors cause i(CPI) in on the whole mesh and the load 
distribution on the meshing tooth pairs is disturhed. The condition 
of LlO' = Wj in Eq. 5 is not valid. 
Profile corrections result in considerahle transmission characteristics 
improvement which must he handled. 
By direction change of the tooth normal force (caused eventually 
by vihrations or ahrupt outer load change) the hacklash zone is 
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passed with zero load, followed by the back profile mesh, 'with 
different stiffness. 
Based on recent results of tooth deflection measurements [7], the 
S(<PI) single tooth contact caracteristics are not linear. 
Friction force effect. (Not treated here.) 

For describing the above factors we can introduce a more detailed spring 
system model, Fig. 2. The parallel connected spring damper elements represent 
single tooth pairs, being in contact position, and are fixed on the pinion. For 
forward and reversed torque transmission, the spring characteristics are differ­
ent, s/<pJ = S;(<PI)' and the number of meshing tooth pairs is generally 
different too. In the case of torque direction reverse the h(<pJ backlash is 
passed at first, with zero force. In both load transmitting directions, for each 

Fig. 2. Tooth contact spring system model 

individual tooth pair, the actual fabrication error values, effective in the given 
contact point present as clearances relative to the ideal contact point position, 
corresponding to errorless tooth pair. This clearance value, expressed in form 
of travel error to contact on the pressure line is O/<PI)' depends on the actual 
<PI angular position of the pinion, so for the whole angular contact zone of the 
j-th tooth pair, it can be given by the contact function, defined as follows: 

(6) 

For complete characterization of a gear train, the contact function descrip­
tion is needed for all different profile pair combinations. 
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3. The contact function description [8] 

Let us consider the angular interval, where the j-th pair of profiles can enter 
into contact, Fig. 3. Considering at first enorless profiles and zero outer loads, 
the theoretical beginning and end mesh points are P and Q. On the mesh 
intcrval PA the ratio i(CPI) < in' and on EQ i(CPI) > in' not constant. Regular 
mesh conditions are only on the AE section 'with i = in. So, on the PA and 
EQ irregular mesh areas, if contact takes place, the rotation transmission is 
not uniform, causing a kinematic excitation, even in thc case of ideal teeth. On 
the irregular zones 6T( CPI) " 0, it can be given by tooth geometry calculations, 
not detailed here. The enorless contact function is then defined on the inter­
val (,cij < (PI < cpfj and 6T (CPI) = 0 on the regular AE zone, and 6T ,_ /0 on the 
rregular PA and EQ zones. Fig. 3. 
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Fig. 3. Contact function for profile pairs 

For profiles 'with manufacturing crrors, the contact function derives 
as transformation of the ideal one. The pitch enor results in a simultaneous 
translation in crI and 6 axle directions respectively, while the base circle 
error can he described by changing the slope of the straight line section on 
ffJ Aj < rpl < ffJEj; The profile form error can he characterized hy superimposing 
a wave form function on the base line. For the sake of hrevity, we assume a 
gear model without form error. 

For real gears with Zl and Z2 number of teeth, n = zlz2/k elementary 
contact functions can be given, on the basis of the individual errors, k being 
the highest common factor of Zl and Z2' The kinematic excitation function 
of a gear train can he derived by the successive composition of the 0kh) 

11 
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functions, where the succession order is strongly determined hy the tooth 
succession order. Being O;(Ch) ,'0/fP1) the period of the functionQ=2:;rzz/k. 
Because of the overlapping of the :Y. angular intervals, at each fP1 there is at least 
one pair of profiles in contact position. Under zero load conditions, the rota­
tion of the driven wheel is governed hy the contact function of the gear pair: 

O( rh) min {O i r 1) } . (6a) 
j=l..ll 

The general character of the contact function is represented in Fig. 4. The 
low frequency components are produced hy the pitch error accumulation 
variations, 'while the higher ones hy the individual pitch and profile errors. 
For all pairs of profiles the mesh begins and ends hy the irregular mesh zone. 

The position of the 0i rp1) function relative to the Lla = 0 axis depends 
on the choice of the starting point. In each case, there exists a 0 < rr~ < Q 
for which o(fP~) < 0(r1). So, hy appropriete transformation, one can have 
0(rp1) > 0, so 0/ch) > o. The so defined ordered series of the elementary 
contact functions is one representation of all possible contact functions, he­
longing to real gears. This function contains further the clearance values for 
all profile pairs and pinion angular positions, for the spring model of Fig. 2 
relative to the reference point (rp~, o( r~)). (Fig. 4a.) 

In the case of intermittent torque reversing, the backlash h(r1) is passed 
hefore the contact on the opposite profile flanks. For this case, the contact 
functions o( q;I) and 0'( rpI) can he defined in the same way, and attached to 
the previous one hy the h(O) hacklash value, and (5(0) = o. Let he a > 0 
the value defined as 

a = max {o;(rh)} - h(O) (7) 
j=1..11 

Then the 0'; rr coordinate system 'with origin point in .:.::Ja = a, (rI = 0 and 
0' axis in opposite direction gives 0' > 0 values, Fig. 4h. This type of manu­
facturing error description permits us to enter into the dynamic calculation 
all kinds of manufacturing errors, descrihed hy the 6/q;J > 0, oj(r1) > 0 
contact function series, representing the clearance values and hacklash hefore 
entering into contact, measured in driven wheel travel error on the pressure 
line, related to the reference point. 

4. Generation of contact functions [8] 

The contact functions O(rpI) cannot he measured on real gears. However, 
the resultant of Eq. 6a is hy a constant factor related to the tangential com­
posite error of a pair of gears [10]. This can be determined by experiment 
and applied sometimes for gear verification. The individual 0ifPI) functions, 
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Fig. ,1. Gear train contact functions 

hO'wever, cannot be derived from it. They can only he calculated hy the 
ahovc method hased on the indiyidual tooth errors. 

Several characteristic values of the tangential composite error function 
are prescribed in standards by tolerance intervals according to the different 
gear precision classes. This permits us, in the case of contact function genera­
tion, to check the calculated realisation on the hasis of standardized values, 
excluding unrealistic excitation functions. 

ways: 

So, for constructing the contact function series, there are two possible 

for given gears, by individual tooth error measurement one can 
generate the rolling process to get the ordered series 
assuming the fact that the fabrication errors are of statistical 
nature, based on the probability density functions of the individual 
errors, one can by random simulation, generate the real gear model, 
and simulate the rolling. 

In each case, hased on the standardized tolerance values, the not allowed 
realizations can he excluded. 

11* 
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Figure 5 shows the steps of generation, in the case of independent error 
density functions. At first, gears 1 and 2 are created. This is followed hy 
rolling simulation with master gear, and the resultant contact function is 
checked. Ha,ing two realistic gears, the rolling of them gives the contact 
function of the serdce conditions. In this case, further errors as center dis­
tance errors, eccentricities etc. can he entered in the simulation. A final check­
ing is the last step for excitation function control. 
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Fig. 5. Scheme of gear generation 

5. Generalization of the tooth stiffness function [9] 

According to differential equation (1) and the stiffness matrix (2), the 
stiffness 'was defined hy Eq. (5), the elastic force related to .::10', the travel 
error. Maintaining the same structure of thc basic mathematical model, one 
can define the reduced stiffness for gears with manufacturing error, containing 
all excitation components. 

Let us consider one pair of profiles, with manufacturing error, character­

ized hy the r5kPl) contact function, in the .dO'; Ch plain, where r5kh) > 0, 
with reference point according to Eq. 7, Fig. 6a. Let U5 introduce the indi· 
cator function I j, defined on the rpL < (PI < q;fj interval, as: 

1 
o 

if Lla > r5kh) 
if 0 < Lla < r5iq;l) . 

(8) 

Supposing an actual tooth elastic force F Zj ' resulting a .::10' > 0 travel error 
of the wheel, 

(9) 

Relating the actual force to the actual travel error: 

(10) 
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S(rpl; L1a) the reduced stiffness of the j-th pair of profiles. In the case of fixed 
contact function, a two variable function of rpl and L1a, Fig. 6b is ohtained. 
Considering the overlapping of the individual profile pair action intervals, 
in the case of j = 1 ... N( rpl) number of teeth in contact position, the reduced 
stiffness of the gear train, hased on the spring model of Fig. 2 is: 

N 

S ={~Sirpl; L1a 
j=l 

(11) 
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Fig. 7. Reduced stiffness derivation for real mesh 

The s containing all the high and low frequency geometrical errors, the 
irregular mesh effects, the single tooth stiffness variation, the changing of 
number of teeth in contact, and actual load influence, describes totally the 
excitation effects introduced by the gear train, Fig. 7. 

Taking into account the case of load reversing, the s' reduced stiffness 
for the reversed mesh can be defined in the same way, and preparing the two 
contact functions by Eq. 7, the general shape of the stiffness function is 
represented in Fig. 8. So, the s stiffness factor in matrix (2) as a two-variable 
value, and the displacement vector are as follows: 

s = S(9?I; LlD') 
s = 0 

• _ \ 9?1 I ' <p-
9?2 

LlD' > O/9?I) 
0j(9?I) - h(9?I) LlD' ::::: O(9?I) 

(12) 

This model permits us to take into account the nonlinear operating curve of 
the single tooth contact stiffness. 
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Fig. 8. General shape of the reduced stiffness function 

6. Reduced stiffness for normal and modified profiles 

On the basis of the reduced stiffness of Eq. (10) all kinds of profiles can 
be handled. Further more 'we present some characteristic applications for 
normal and modified profiles. 

6.1 Normal profile 

In the case of errorless teeth the reduced stiffness is S(ifl; .du) = S(<PI)' 
S defined by Eq. 5, not depending on the load, Fig. 9a, assuming linear single 
tooth deflection characteristics. However, evcn in this case, considering the 
irregular contact area, only the reduced stiffness can be interpreted, and the 
load influence alters the stiffness function. For gears with contact ratio near 
2, at higher loads 3-tooth contact can occur. In Fig. 9b the nominal contact 
ratio e = 1.8, and as highcr loads the curve shape is significantly altered. 
In the case of nonlinear Sj single tooth stiffness the curve shape is changed as 
well, because of the smoother load pick-up of the real teeth, Fig. 9c. 

For profiles with error, only the reduced stiffness can be given, resulting 
in an irregular function variation. In Fig. 10, the same gear contact is repre­
sented with linear si ifl) values, and positive and negative pitch errors. The 
reference level for b( <PI) is taken on the profile pair with negative pitch error. 
The .du = const plain sections show important variations, especially for smaller 
load levels. In the case of increasing load, s ~ s, the error influence becomes 
relatively smaller, and the vibration characteristics tend to the ideal one. 
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Fig. 9. Stiffness functions for normal profile 

Fig. 10. Stiffness function for gears with pitch error 
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6.2 lVIodified profile 
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The modification of the profile is applied for gear transmission character­
istics improvement and noise reduction [8]. In this case, for stiffness de­
scription, only the reduced stiffness can be applied, taking into account the 
profile change in the contact functions. Even for errorless teeth, the stiffness 
function is considerably changed. 
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In Fig. lla one period of the stiffness function for errorless teeth is 
represented, with the same base tooth geometry as previously, but modifica­
tions are applied. The load influence is well reflected, and the elevated exci­
tation at lower load levels. In the neighbourhood of the design point, reduced 
excitation is present. In ideal case, all excitation can be eliminated. 

In Fig. llb the Fz = S(tt'l; L1a) . L1a = const. curves are shown, which 
are the sections of the stiffness surface with a hyperbolic cylinder. Beside 
the shape change, the phase is altered too by the load. Fabrication errors 
introduce further variations, eliminating sometimes the beneficial effects of 
the modification. 

7. Conclusious 

For the dynamic analysis of complex drive systems, the gear train 
introduced excitation description is needed. Introducing a general spring 
model, all important excitation components can be handled by the analytical 
description of the ordered series of the contact functions, representing the 
tooth error and mesh troubles caused nonlinearities. With appropriate choice 
of the reference level, the reduced stiffness can be defined, containing all ex­
citation effects. The flexibility of the model permits to handle different types 
of single tooth characteristics. 

By contact function generation, real error effects can be simulated and 
checked on the basis of standardised tolerance values. The model permits 
further the treatment of modified profiles and the evaluation of their effects 
on the complex system, operating under variable load conditions, as it is in 
vehicle applications. 

The model discussed is strictly valid only for gears having zero ·width. 
For real gears, the alignment error should be considered too. It can be de­
scribed as a further excitation effect, not detailed here, influencing the reduced 
stiffness function [9]. 
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