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Ahstraet

Heat transfer tests with perturbed flow indicate that the nature of the function
Nu=f(Re) for the main Nusselt number permits to distinguish between laminar, transient and
turbulent domains of non-isothermal air flow. Values of critical Reynolds numbers Re,. and
Re’ er separating laminar from transient, and transient from turbulent domains, resp., have
been found to depend on the perturbation frequency. With increasing frequency, Re, values
decrease. A relationship has been ziven for determining Re,,. Experimental observations agree
with conclusions drawn from the Tollmien — Schlichting theory of stability of laminar flows,

There are several publications referring to the phenomenon that in pulsat-
ing flow the critical value of Reynolds number involving timely average velo-
city is lower than it would be in steady state for the same mass flow. For in-
stanee, Darling [1] in his heat transfer tests with glycerol found the steady-
state Re, = 2500 value to drop to a value in the range from 1200 to 2600 in the
frequency range f < 17 Hz, without having reported frequency dependence of
Re,,. Elparin & al. [2] found in isothermal water flow the coherent values:

f 0 4.65 5.74 10.72 17.24 19.92
Re, 2310 1750 1699 1597 1533 1511

Unfortunately, without additional information, these data suit only
informative computations. In the following, effect of the mass flow oscillation
on the critical Reynolds number will be discussed, in order to refine computa-
tional relationships. Underlying test results have been obtained in perturbed
non-isothermal air flow in circular pipes [3]. (For other details and outcomes —
irrelevant to this subject — of these heat transfer tests see [4].)

Legend

kg

¢, — isobaric specific heat of air at temperature T, (J/kgK);
d — internal diameter of the test pipe;

f — perturbation frequency (Hz);

L — test pipe length (m);

m — air mass flow (kg/s): m = m(7);
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m — timely average mass flow (kg's); m = —-f m(7)dt;
n ~— exponent of Reynolds number:
) . ) zd
Nu — mean Nusselt number: Nu = —;
i
. . oy, mey(T,—T,
qw — heat flux to air (W/m?): ¢, = -~p—-:--—) :
dL
vod
Re — Revnolds number; Re = —
fd:
Re; — dynamical Reynolds number; Re; = "— ;
)
I
Re.,; — critical Reynolds number (interpreted in the text);
T, — air temperature at pipe inlet (K):
T, — air temperature at pipe outlet (K)
T, — mean air temperature in the pipe (K): Thw=(T,--7T,2)
Ty, — pipe wall temperature at inlet (K):
Ty, — pipe wall temperature at outlet (K);
ATy,  — mean logavithmic temperature difference (K):
rgY
| (T T)— (T—T)
Tyo—T,
Ipon2 2
Tuxl TO
vy — cross-sectional mean value of timely average velocity at inlet (m/s):
dint
vy = :
0,47
L T T 1t
o — mean heat transfer coefficient (W, m?K): = = e
J + In
2 — heat conductivity coefficient of air at 1elzupevatuxe T (W/mK);
v — kinematic viscosity of air at temperature T (] ;
0o — air density at temperature Ty and atmospheric pressure (kg/m?®);
o — fullness degree (interpreted in the text);
T — time (s).

In our tests, mass flow oscillation was produced by superposing periodic
perturbation on the steady-state flow by means of revolving valves precon-
nected to the heated test pipe. Dimensionless frequency f of perturbance has
been given in terms of the dynamical Reynolds number Re;. Timely course of,
perturbation was either sine half-wave or square wave in form. For the latter
case, to describe the perturbation, in addition to Re; and waveform, fullness
degree o, ratio of the square wave duration by the full period time, has been
introduced as third parameter. (In steady-state flow, ¢ = 1.)
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Obviously, in case of a square wave, fullness degree can be interpreted as
quotient of timely average by instantancous maximum of mass flow. Inter-
pretation ¢ = m/mmayx permits to extend the concept of fullness degree to
sinusoidal perturbations. Thereby the fullness degree suits to qualitatively
describe the amplitude of the longitudinal pressure gradient oscillation forcing
the flow to pulsate. hence, in final account, the perturbation intensity. A low
¢ value corresponds to a high-intensity perturbation, and a value ¢ =~ 1 to a
slight perturbation.

Heat transfer tests showed the mean Nussel number in perturbed air
flow to depend on the Reynolds number, the dynamical Reynolds number and
in certain cases, on the waveform. Two typical measurement results have been
plotted as function curves Nu = f(Re) in Fig. 1. These curves have been record-
ed under pulse-like (top: ¢ = 0.4) and sinusoidal (bettom: ¢ = 0.395) per-
turbations at the same frequeney (Re; = 183) and about the same fuilness
degree. The peculiar course of these curves is tvpical of all the curves recorded
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throught the ranges of frequencies 35 <l Re; <Z 490, and of fullness degrees
0.2 << ¢ <1 involved in our tests, hence Fig. 1 may underlay general state-
ments on the critical Reynolds number.

Similarly to steady-state flow, also in perturbed flow three distinct
ranges of Reynolds numbers appear in the diagram, where variation of the
Nusselt number is described by different functions Nu = f(Re). In both ex-
treme ranges these are power functions of the form Nu = KRe". According to
our tests, in the range of low Reynolds numbers, exponent n is rather close to
n = 1/3 typical of unperturbed laminar flow, and in the range of high Reynolds
numbers, ton = 0.8 to 0.83, typical of steady-state turbulent flow. In themiddle
range, relationship Nu = f(Re) cannot be approximated by a power function,
it has rather to be given as Nu = f(Re. Re;, ¢, waveform).

Existence of the outlined three Re ranges permits to define domains of
laminar (n #= 1/3) and turbulent (n »~ 0.83) flow in perturbed non-isothermal
flows, without a detailed knowledge of their microstructures. Transient flow
domain, with mean Reynolds numbers, lays in between. This definition is a
symptomatic one, since it relies on the effect: integrated effect on heat transfer
intensity — rather than on the change of the flow microstructure (or its comp-
letion). Remind that the same is done in hyvdredynamiecs separating the three
domains according to the nature of variation of the friction coefficient.

In isothermal steady-state pipe flow. i the range Re < Re.; the laminar
flow form is known to be stable against any kind of perturbance. Here the value
of the critical Reynolds number is determined by the turbulence degree of the
incoming flow, and the pipe wall roughness. In our test equipment, Re, = 2264
for unperturbed flow. Beyond the critical Revnolds number, turbulent nodes
appear in the flow, and for a further incrcase of the Reynolds number, dura-
tion of the turbulent statc increasingly grows compared to that of laminaratany
fixed place in the pipe. At the upper critical Revuolds number Re = Re'(, tran-
sition to turbulent flow form has been completed. In our test equipment,
Re’,, = 3700 was obtained in unperturbed flow. The three typical. distinct do-
mains in perturbed, non-isothermal pipe flow testify of a mechanism analegous
to the described one. Accordingly, critical. and upper critical Revnolds numbers
will be understood as Re = Re’,, and Re = Re’, values separating laminar and
transient, as well as transient and turbulent domains of flow, respectively.

According to the top diagram in Fig. 1, in case of pulse-like perturbation
the critical Reynolds number, stability limit of laminar flow is sharply de-
fined by the inflection point of curve Nu == f(Re). On the other hand, in the
bottom diagram, the limit between laminar and transient domains is blurred in
sinusoidal perturbation, namely there the curve Nu = f(Re) passes smoothly,
with a continuous tangent. To avoid uncertainty of the numerical value of Re,,.
the critical Reynolds number for sinusoidally perturbed flow will be considered
by convention, as the Re value where the Nusselt number exceeds by 39, the
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Nu = 0,574 Re®%% value valid in the laminar domain. The Re,, value can be
graphically determined as exemplified in Fig. 2, yielding Re,, = 1531 for the
eritical Reynolds number of flow sinusoidally perturbed at a frequency
Re; = 183.

Since, according to Fig. 1. curve Nu = f(Re) smoothly passes the limit
between transient and turbulent domains either under pulse-like or sinusoidal
perturbation, the upper critical Reynolds number has to be defined by conven-
tion for either type of perturbation. Accordingly. the upper critical Reynolds
number Re’,, of perturbed flow is considered to be the Re value where the
Nusselt number approximates to 979, the value obtained from the actual
expression of the power function Nu = KRe" valid in the turbulent domain.
Tke numerical Re’,, value can be graphically determined by analogy to the
method sketched in Fig. 2.

In agreement with statements for lquid media in (1) and (2), all our
measurements in perturbed flow unambiguously showed, also for non-isother-
mal air flow, that pulsation lowers the critical Reynelds number value. Beyond
this general statement, results also showed lowering of the critical Reynolds
number to be independent of the fullness degree in perturbation of either
waveform, and to depend solely on the perturbation frequency. In conformity
with Fig. 3 showing function Re, = f(Re;), an increasing frequency involves
a decreasing critical Reynolds number. According to a more detailed analysis,
critical Reynolds numbers for flow perturbed by sine half-waves, and by
square waves, are obtained from:

Re., = 3007 Re;—01%¢ (Ref > 59)
and
Re,; = 2920 Rep— 0144 (Rey > 35)
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respectively, By the way, relationships similar to those above can be deduced
for relationship Re’., = f(Re;).

The relationships above between the critical Reynolds number of per-
turbed flow, and the perturbation frequency hecome obvious upon considering
that at the essentially unsteady-state flow is at its maximum, the instan-
taneous value of the Reynolds number exceeds the steady-state value proper to
the timely average. Thereby, in fact, the laminar flow becomes unstable at a
Reynolds number exceeding the Re,, value formed with the steady-state timely
average. While in the phase of pulsation up to the other peak, the arising
turbulence has the less time to decay, the higher the perturbation frequency.

Still another parallelism will be pointed out between deductions possible
after the Tollmien— Schlichting theory [5] on the destabilization of laminar
flow, concerning the eritical Reynolds number for flow along a plane, and our
statement on the frequency dependence of the critical Reynolds number for
pipe flow.

This theory attributes the arise of turbulence to the amplification with
time, beyond a certain Reynolds number, of small-amplitude perturbation
waves arising in laminar flow from external causes, propagating in the flow
direction. In this theory, an arbitrary undulatory motion is produced by
Fourier’s summation as resultant of fractional oscillations of different frequen-
cies. Such a fractional oscillation for flow in plane x(x, y) is given by flow
function:

(% y: T) = qly) exp [((yx—f7)]-

Here x, and y are respective coordinates along, and normal to, the laminar
basic flow at velocity vy; ¢(y) is an amplitude function; >= —1; y is
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a real number related to wavelength /1 of the fractional oscillation as
Ad=2aly. = p, 4 ip; is a complex magnitude, 5, the circular frequency
of fractional oscillation, while numerical value of ' expresses decay of the
fractional oscillation. For f; <Z 0, the fractional oscillation of frequency j,
decays, while for §; > 0 the oscillation intensifies and the laminar basie flow
becomes unstable. Fractional oscillations with 8; = 0 define the stability
limit. Determination of these so-called neutral oscillations may be reduced to
the solution of the cigen value problem related to the Orr —  Sommerfeld
fourth-order differential equation. For details see c.g. [6] and [7].

Figure 4 is a sketch of nmeutral curve ;= 0 in the coordinate system
(Res, Sh). computed by Schlichting for the boundary layer of a plane, where
Rey; = vyd/v and Sh = §/vy are Reynolds, and Strouhal numbers, resp., for
boundary layer thickness 6. Each of the straight lines with asymptotes f,7/v,>
starting from the origin can be considered as run diagrams of a fractional
oscillation of frequency f,. A perturbation wave of given frequency — while
propagating from its place of origin in flow direction — passes through points
of straight line f,7/v,2 = const in this diagram. Initially it passes across the
stable domain outside the neutral curve, then, crossing the neutral curve at a
definite amplitude, it gets to the domain of instability. Here its amplitude will
grow. If the perturbance was a priori strong enough, it leads to eddying, and at
last, to turbulence of the basic flow. This theory has fairly been supported in
tests by Nikuradse [8] applying artificially produced perturbations of given
frequency.

What is of interest for us is the intersection between any of the straight
lines f,v/vy? = const and the neutral curve, namely abscissae of these points
define the Reynolds number (v,6/v), critical for the given frequency f;.
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Schlichting (7) has obtained the following critical Reynolds numbers Re,,, for a
plane:

10° Br vy 129 9.2 756 623 513 4
Rey, 635 735 810 895 1000 1150.

These values show the critical Reynolds number of the boundary layer along the
plane to decrease with inceasing frequency f,. Although no numerical agree-
ment may be expected because of different geometries, and different definitions
of the Reynolds number. still our statements on the effect of the perturbation
frequency of non-isothermal pipe flows on the critical Reynolds number can he
stated to agree with the Tollmien — Schlichting theory.
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