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Abstract

A method has been presented for the algorithmized estimation of equivalent second-
order moments invelved in the discretized model of railway car bodies. Assuming the deflection
function of the continuum model to be known, the objective function to he minimized as well
as the method of numerical solution are deseribed. Application of the method iz illustrated on
hand of a test problem.

Intreduetion

This scope is strictly related to the algorithmic, rather than a heuristic

modelling for the strength analvsis of railway car bodies exposed to vertieal,
symmetrie, dynamic loads [2, 3]. The continuum model will be substituted by a
discretized model relying on continuous model data, and the algorithm is
xpected to suit: computation of mass and stiffness matrices. A method suitable
{0 estimate equivalent stiffnesses for the discretized dynamic model of railway-

car bodies will be presented.

Stating the conditional extremum problem, and theoretical solution

Assumptions made in estimating the equivalent stiffness are:

a) The car body is beam hinged both ends, with N bar sections of con-
stant cross section and specific weight, with a permanent elasticity
constant and second-order inertia moment.

b) Real beam deflection f; at x; (i = 1, 2, ..., p) and characteristic 4,

0. E, Hi(1=1,2,..., N)are known, where:
A; — cross-sectional area of bar section i;

p; — specific density of bar section i;

E; — elasticity constant of bar section i;

H; — length of bar section i.

Applying these conditions and symbols, the problem of estimating second-
order moments of inertia becomes:
Let us find I, I,, ..., I, sothat function

P
H(Ly Iy ooy I = S| £ Iy Iy oo T)—f | )

i=1
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is minimized under conditions

I, <90 =12, ..., N) (2)
fe T T o L) — f,1 < (i € 1%) 3)
where e and y, (i = 1, 2, .. .. p) are given positive constants;

I* = 1 ie{l.2,..., p} flls sufficiffntly high; } .
flap Its I, o oo, Iy} — static deflection of the cross-sectional centroid at x; of
the continuum model beam, if I;is a Qecond-order inertia moment of the

cross section of bar sectionz (i = 1,2, ... , N).
This static deflection is expressed b).
N 1
ﬂ%%%~»M:ZMTW%l~wm @)
1=1 1
where y,; 1 =1, 2 , pil==1,2,..., N)are constant, to be calculated if
characteristics 4, o;, E and H; (i = 1 ..... N) are known.,
Problem (1) to (3) may be 1educed to plobl (5) to (7) helow:
Let us find I N PSR I:\’ s0 as to minimize function
P
K, Ly oo Iy = V/szhf—ﬁf ()
f=1
under conditions:
f,->0 (t=12 ..., N) (6)
{21‘:19Ie fil<e (tel) (7
=

In fact, problems (5) to (7) are convex programming problems to be
solved by the SUMT method [1]. Since thelocal optimum point of the problem
is at the same time the global optimum point, the solution accuracy may be
increased at will.

Practical computation results

Practical computations concerned a railway luggage truck body that has
been divided to seven bar sections, with geometrical and physical characteris-
tics according to Table 1:

Table 1
Bar Al Hi oi Ei
59‘5‘,“;‘3’1 {em?) {em) (dN/em3) (dN/em®)
1 220.43 150.33 1.19483 x 10> 2.1 108
2 331 192.33 3.4151 x10—*2 2.1 108
3 219.22 163.54 7.85044 < 102 2.1x10°
4 176.28 1533.5 12,10546 1072 2.1x 108
5 118.03 102.96 1.4536 x10—2 2.1x108
6 145.83 99.34 3.6163 x10—* 2.1x 108
T 258.11 252.4 1.19483 x 10—2 2.1 106
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The real static deflection diagram of the beam is seen in Fig. 1. The
calculated optimum vector of the second-order inertia moment is:

70.6845 % 107
0.7465 % 108
0.1920 x 108
0.8247 % 106
0.8247 < 108
0.1907 x 108
0.7477 x 108
10,6714 10° |

Iopt =

To check the result, obtained let us compare the deviations between real
and computed static deflections of the beam, as plotted in Fig. 1.
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