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Abstract

A method has been developed for estimating the mass matrix for the dynamical model
with discretized masses of railway car bodies. This method relies on the comparison between
vibrations of real beams and of those with discretized, section-wise uniform mass distribution.
The objective funetion relying on the least squares method has been minimized by the SUMT
method. Implementation of the computation method is illustrated on hand of analyzing a
railway luggage truck body.

1. Introduction

This scope is strictly related to algorithmic modelling replacing heuristic
modelling in the strength analysis of railway car bodies exposed to vertical,
symmetric, dynamic loads. The continuum model will be replaced by a discre-
tized model relying on data of the continuum model, and the algorithm is
expected to suit mass and stiffness matrices [4, 5].

The method presented Lere lends itself to estimate the mass matrix of
the discretized model of railway car bodies.

2. Methed for estimaiing the discretized mass distribution

This method relics on the comparison between vibrations of real beams
and of those with discretized masses, namely:

In the analysis of bending vibrations, the car body is considered as a
Lbeam conform to [3]. In estimating the mass distribution m, the car body is
considered as a beam of mass sections [1], differing from the former beams
with continuous mass distribution by its sectional mass distribution. Masses
assigned to beam sections are expected to exhibit as small deviations between
vibration patterns of real and discretized-mass heams during test period T as
possible. Comparison refers to the case where both beams are hinged at both
ends.

In estimating the discrete mass distribution, in compliance with the car
body symmetry, the model beam is assumed to suffer linear bending alone.
Bending axes of every cross section are normal to the drawing plane, The beam
is only exposed to forces in the drawing plane, normal to the axis of the no-
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load beam and applied in the principal plane normal to the bending axis. In
addition, angular rotation of the displacing bar section is assumed to be small
enough, so that compenents normal to the axis of the beam at rest of the shear
forces tilted together with the beam section are equal to the shear forces them-
. selves. Cross sections of bar sections are supposed to be constant, and within
bar sections, no externzl forces are assumed to act.

In applying the method, regularities of the free vibrations of the con-
tinuum heam are assumed to be knowun. For that, knowledge of continuum
beam data E,, I, A,, H,, 0;, x; and F) is sufficient.

Here: E;, — elasticity constant of bar section ¢ of the continuum beam
i=1,2,...,N)
I, — second-order moment of inertia of bar section ¢ of the continuum
beam (1 =1,2, .... N);

A; — cross section of bar section i of the continuum beam (i = 1,
2, «.o., N

H, — length of bar section ¢ of the continuum beam (i =1, 2, ...,
N);

9; — specific density of bar section i of the continuum heam (i =
=1,2, ..., N);

x; — abscissa of point ¢ of the continuum beam (i =1,2, ..., p);

F, — deflection of the continuum beam at x; at time £ == 0 (7 = 1,
2, ... p)

With these notations and under these conditions, the problem of estimat-
ing discrete mass distribution is as follows:
Let us find m = (my, m,, . ... my.) such as to minimize scalar vector

function
T
gm)y= | (5(S#,1)— =(m)(S#,1))%ds (1)
i€T, 1% ¢
under conditions
0<m <K (v;el}, m=0(=icl* (2)
o, —a(m)| < e =12, ..., NS) (3)
M — = m; <o (4)
ST
where
Z(S#, t) — flexural displacement of the cross-sectional cintroid of the con-

tinuum beam at a fixed spot S¥ at time ¢. S# is the abscissa of
the centroid of bar section i of the beam of sectional mass
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Z™(Sf,t) — flexural displacement of the cross-sectional centroid — again at
S¥ — of the beam of discretized mass distribution m at time ¢
(i € JII*);

% — i-th circular eigenfrequency of the continuum beam (7 =1,

3

2, ..., NS);

ofm™ — i-th circular eigenfrequency of the beam of mass distribution
m(i=12, ..., NS);

NS — number of circular eigenfrequencies reckoned with;

N* — numeral of the discretized beam section;

e, Kand ¢ — fixed positive constants;

M — total mass of the continuum bheam;

I=1{12, ..., N%}

I* = {i ¢ I | no-mass, elastic bar section i of the discretized beam.}

Problems (1) to (4) have been solved by optimization method SUMT [2].

3. Practieal compuiation ouicoines

This practical computation method has beer applied for the railway
luggage truck body discribed in (3). The SUMIT method leads to the optimum
mass distribution:

i $;% {em) THM opt (dNs¥cm}
1 10 6.011
4 352.66 3.209
7 708.86 5.539
9 1064.66 6.885
11 1420.66 6.303
13 1446.66 6.909
16 2132.66 2.011
19 2484.4 2.057
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