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Abstract

This paper investigates the idea of using Luenberger’s reduced-order observer for oh-
taining state estimates of Active Suspension for vehicles. One of the major results presented
in this paper is the detailed development of the general solution to the problem of constructing
a reduced-order observer and its consequent application to the design of Active Suspension
systems.

1. Introduction

In the design of Active Suspension for vehicles, we use the common
state-space technique for compensation, namely linear state variable feed-
back (Ls.v.f.). One of the major problems in the implementation of Ls.v.f in
the design is that not all the internal states of the suspension system are easily
measurable although it should be noted that additional sensors [14] can often
be employed to mesure additional components of the states. Generally these
sensors are expensive and difficult to implement.

In most of the papers dealing with the design of Aective Suspension, eg.
[14]. [15], {16]. [17], [18], [19], [20], [21] the problem of measuring the inter-
nal states are but mentioned but not dealt with. In this paper the use of the
reduced-order Luenberger ohserver is proposed as one of the solutions to the
problem of internal state measurements. The solution is based on a special
linear transformation which iransforms the given time-varying continuous
state equations into an equivalent state space form which is very convenient
from the stand point of observer design. The design of the observer is based on
a unique observer configuration containing an arbitrary matrix L which ar-
bitrarily positions the eigenvalues of A — LC in the half plane Re(2) < 0.
This matrix L can be computed recursively using algorithms similar to Kal-
mans filter algorithms.

The organization of the paper is as follows. Section 2, deals with the
design of Active Suspension systems. Section 3. formulates the design of a
reduced-order observer associated with Active Suspension design and Section
4. gives experimental results. The conclusions are stated in Section 5.
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2. Design of active suspension

A two-degree-of-freedom linear model of a vehicle considered here is
given in Fig. 1. M, represents the sprung mass and 3, the unsprung mass.
Absolute vertical displacements of these are x, and x, respectively. k, and ¢
denote stiffness and damping ratio of the sprung mass, k, is the tire stiffness.
Suspension forces are supplemented by an active part u(t), which is a control-
lable variable. The system is excited by road unevenness r(t). The passive

x1

Fig. 1.

elements in the suspension were introduced to ensure the vehicle operating in
the case of active system failure and to realize a portion of control force which
need not be produced by actuator.
The main vehicle responses that are examined are:
1. The vertical acceleration of the sprung mass (%)
2. The vertical acceleration of the unsprung mass {%,)

3. Suspension deflection (x,)
4. Tire deflection (x,)

If we let %, = %, %, = «x,. then the following state differential equations in
state space form describe the open loop system (Passive Suspension).

(1) = Ax(t) Bu(t) + Dr(t),

¥(t) = Cx(t) -+ Bu(t) + Fx(t) (1)
where the matrices are given by:
0 0 1 0 0 0
0 0 0 1 0 0
A= —kJM, —kJM, —c /M, —c /M B= 1M,V D= 0
ks/ﬂfu _(ks -+ Ir’u)/ﬂju Csr/‘nftr —Cs/ﬂf[u - 1/"'1:Tu.x ku/‘rwu
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kM, kJM,  —cM, cJM, 1M, 0

1 0 0 0 0 0

C=i 1 0 o I"E=| o - F=
k’s«";jiu ~(A¢ + ku)/mu CS/A/IU —cs:'!jju —1/‘;‘/111 kull‘!y[u

In the design of active suspension, we need to determine the optimal
control force u(tj for the system described by Eq (1) which minimizes the
quadratic performance index  given by:

3= f[x’f(t')fzx(t) + u’(e)Ru() e

where , R are appropriately defined weighting matrices.
The optimal control force (control law) u(t) is given by

u(t) = —Kx(t) (4)
K= —(R -+ B'P+ B)B'PA (5)

where K is the steady state solution of Eq (5) and P is the n X n symmetric
positive detinite solution to the algebraic Riccati Equation:

P = ATPA — ATPB(R - B"PB)-1B"PA - Q (6)

For more detail of the solution of Riccati’s Equation see [11], [12], [13]. By
substituting Eq (4) for u(t) in Eq (1) we get the close- loop system. The control
law given by Eq (4) requires availability of all the states x(%). But, as will be
seen, not all the states can easily be measured. We consider now the possibili-
ties to design an observation (measurement) equation associated with the
state space model given by Eq (1). Denote by y(t) the measurement vector,
then the measurement

v{t) = Cx(i) + Eu(t) + Fr(r)

where Cis an mx n (n = 4), and m denotes the number of sensors to be applied.
The structure of the row vector in C depends on the specific measurement
situation. A general requirement is that the system given by Lq(1) has to be
observable from y(z).

Choosing the measurements of x; and x,, the matrix C, D. F have the
form:

1 0 0 0
Cl‘l = ‘ 0 1 0 OJ * El‘.! = [0]“ FIE = [O]

It can be deduced, that the system, i.e. the pair { A, C} is completely observ-
able. The measurements of suspension deflection (x,) and tire deflection
(x,) e.g. is not a simple problem. It was proposed in {14] that these states

4
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could be measured using on ultrasonic transmitter- reciever with laser heams.
But this unit is very expensive and difficult to realize.

Another possibility is to apply acceleration measurements. The vertical
acceleration of the sprung mass (&,;) can easily be measured using an aceele-
rometer mounted on the sprung mass M. We could also use the accelerometer
to find the vertical acceleration of the unsprung mass. But from the output
Eq (3) we see that if we choose (x,) then the output measurements contains
the noise signals.

Considering all the above mentioned facts, the most appropriate output
to choose is the vertical acceleration of the sprung mass. In doing so we have
reduced our system into a SISO case where the system is given by:

x(t) = Ax(t) -+ Bu(t)

y(t) = Ca(t) + Equ(t) (M
where C, = [~k /M, kM, —c/M, c/M] (8)
and E, =[l/m]; F,=[0].

It can also be shown that the pair (A, C,) is ohservable. This means that all
the other states can be reconstructed from the readings of X,(1) (accelerometer).
The structure of the matrix C; comes directly from the choice of the sensor.
and the output y(t) clearly represents the acceleration, x;.

One of the fundamental applications or the observer theory is the design
of feed-back controllers for linear regulator problem where some of the states
are inaccessible and must therefore be estimated using an observer,

In the design of active suspension we assume that only one of the states
can bhe accurately measured i.e. the vertical acceleration of the sprung mass.
The rest of the states are assumed inaccessible. The alternative considered
here is to use a reduced-order observer to construct an estimate of the inac-
cessible states x(t) and apply the suboptimal feed-back control law

a(t) = —Kx(1) + G¥(t) (9)

3. Reduced-order Luenberger observer and its application
to active suspension system

To formulate this problem we consider the following theorem:

Theorem 1. (see Wolovich 1974 pp 206).

Counsider the system Eq(1).

All (n) eigenvalues of (A—LC) can be completely and arbitrarily assign-
ed via L if the pair (A, C) is observable, any unassignable eigenvalues corres-
pond to the unobservable modes of the system.
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From the above theorem we can conclude that if our system Eq(1) is
observable, (which can be seen), then we can find the gain matrix L such
that all the (n) eigenvalues of (A — LC) are located at the left half plane
Re(2) < 0.

The n-dimensional system
x(t) = (A — L Qx(¢t + (B — LE)u(s) + Ly(z) (10)

is a full order observer for the system Eq(1) if %(#,) = x(t,) and x(t) = x(t),
t >t for all u(t), t > 1,
By substracting Eq(10) from Eq(1) we have

x(t) — %(t) = Ax(t) + Bu(t) — A%(r) + LCx(¢) — Bu(t) + LEu(t) — Ly(s)  (11)

or by combining terms in view of (1), that

x(t) — x(t) = (A — LE)(x(z) — x(1)) (12)
In view of the result presented in [6], it is thus clear that
x(t) — %(t) = elAL—0) [x(¢o — w(tq)] (13)

Comparing Eq(13) and Eq(10), we see that the stability of the observer and the
asymptotic behavior of x(t) — x(t) are both determined by the structure of
the matrix A — L € . This clearly shows that x(t) — x(t) approaches zero,
irrespective of its initial value if and only if the observer is asymptotically
stable.

If sve now let the new control law be given by

ut) = — Kx(t) + Gv(t) (14)
instead of the actual Ls.v.{ control law given by Eq(4) to compensate the given
system given by Eq(1) (e.g to attempt to arbitrarily assign all the controllable

eigenvalues of the closed-loop system) then by substituting Eq(14) for
u(t) in Eq.(1) and Eq(10) we have

[x(t) [A —BK [x(t)] BG
.= N + v(z) (15a)
ix()] |LC A—LC — BK} x(t)i [BG]

[v(2) C —EK][x(?)] EG) .

. N ; 15b

i(t)J [0 I } L"c(t), o o .

If we now transform the Eq(15) via the equivalance transformation
— I 0 — gt
Q~L _J—Q

4%
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we obtain the equivalent system:

[ () |1 [A—BE BK ]| s BG}
o= } i o+ v(t)
Lx(i})—i(t}j 10 A — LG [x(r) — x(1) [G i
®1 [C—EK EK] x y
t(t)l _ {C EX EKi x(t) ] . {E(Ji - (16)
ROt —1 |x(t)—%)| |0 |

From (16) we see that the entire n-dimensional “state”, x(i) — x(t} is not
controllable.
Furthermore

I {A—~BK BK]
“Tlo a—ic

= d—~ALBK x JI—A+1LC (17
where we use the notation = A for det A. A is a given matrix. From Eq(17)
it is evident that the characteristic polynomial of the overall system is just
the product of the characteristic polynomial of the observer and the characte-
ristic polynomial of the suspension system assuming perfect knowledge of the
states.

vit) $ o ult) R -
‘ L ] " The given system
!

Therefore by theorem (1), we note that given the system Eq(1), and if
the system is observable and controllable, then a pair {K, L} of gain matrices
can be chosen to insure complete arbitrary pole assignment and, therefore, the
asymptotic stability of the 2n-dimensional closed-loop system consisting of
the given system Eq(l), compensated by an exponential estimator (as de-
picted in Fig. 2) [6].

Using the matrices in Eq(16) the closed loop transfer function matrix
Ty 6 L(s) of the composite 2n-dimensional system can be found via

T(s) = C(sT — A)-'B (18)
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and is given by:
c_ex Exj|ATER CBEIP IBG el o
s) = ) 4
Tion(s) = Ho  aosize “lo TS @9

or

Ty 61(5) = {(€ — EK) (s )-1BG + EG)
Eq(19) is the same as the loop transfer function matrix of the actual Ls.v.f.

To implement Eq(10) as an exponential estimator of the entire state of
Eq(1), we need to set up an n-dimensional dummy system to approximate
the states of the original system. As pointed out in [6] the oder of the observer
can actually be less than n because the observed output provides a linear rela-
tionship y(tj = € x(1) 4 Eu(t) between the state variables. Therefore it is
sufficient to observe n—p of the states and then to calculate the final one from
this linear relationship.

We shail consider the scalar output case {p = 1) since we only use one
sensor i.e. the reading from the accelerometer mounted on the sprung mass
M, and employ the chservable companion form introduced in [6]. We shall
also follow the steps given in [6].

n-di-
ve can trausform it to an equivalent ob-
ee [6]), where

If we are given an observable system, Eq{(7). with C; equal te an

mensional (n = 4) raw vector, then v

(IJ

servable companion form via § ' (

(A.B,C,E} = (QTAQ.GTB.¢,Q'E,)
00 0 —aq, 7
110 0 —a; |
y :§ . {-and Sy=[00 1] (20)
B |
‘L_O 0. 1 — a;:—-l——!

From the structure of the A matrix it is clear that all (n) eigenvalues of A —
—LC; can be completely and arbitrarily assigned via the n-dimensional co-
lumn veetor

L=[I,1I L) =0Q"L  since
roo..0—{ +ea) 7
L 10..0—(,+a)
A_LC, = (21)
{00 . . 1—d,+a,,)i
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Which clearly implies that
I— A+ LG =24 (0, + L) (g 1)t a, L (22)

Using Eq(10) we can construct an n-dimensional state observer for the system
given by Eq(21). Similarily we can also construct a reduced order observer,
in our case (n — p) = 3, whose state x(t) = [x,(¢), 5(2),. . . , "”_](t)]T
exponentially approaches the (n—1) state variables Z,(1),x,(t), %, _,(t)
(excluding the externally measurable signal %,(t) == y(t) — E,u(i) of the
single output, observable, companion form system:

i(t) = A%(r) + B u(r); (23a)
y(t) = Cx(t) + Eyu(t). (23b)

As outlined in [6] we transform the system into observable companion form
using the transformation matrix P having the form

10. .0 —p, 7]
01 . .0 —p,
P= (24)
00 ... —p._»
L 00 0 1

where the P, are, as yet, unspecified real numbers. If we now set X/1) = Px(¢).
or x(t) = P~1X%(1), it follows that the system

F(t) = AX(t) + Bu(t) (25a)
y(t) = C. JX() + Equ(), (25h)

where A = PAP-L, B =PB  and
€, = €,P-1, is equivalent to (23) and therefore to (7) as well. In view

of the special form of the transformation matrix, the dynamical equivalent
system Eq(?3) now assumes a special and rather useful form, since

|
ol -
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it follows that

0 0 . - TPo  TPoPi—2 do + Polly ]
10. S 51 Po—P1Pps— @+ P10,
PAP-1=A = 01. S P1— PaPo—z— Oy Pty @27)
0 —Pn-2 Ph—s— p211—2 — ;g + Py
—0 1 pn—'?_ - G, .
l-‘bl - Pobn h
b;’ - Plbr,
PB—B— ‘ (28)

l’zz—l - Pr:—‘zbn

b

Lo, -

€, and E; remains uneffected under the equivalence transformation. If we now
denote the first (n — 1) components of X(¢) by
() 7

%) )
X(t) =1 . and define B

l—:/;—‘n—l(t)_l

as the first (n — 1) rows of B then trom Eq(25a), Eq(27) and Eq(28) we can
obtain a concise state equation for (n — 1)-dynamical systems with x-{i) as

SH0) = A, 50 + ARE () + Bru(o) (29)

where A _, is the (n — 1) dimensional companion matrix obtained by elimi-
nating both the n — th row and the n — th column of A and A, is the column
vector consisting of the first (n -— 1) elements of the last column of A.
Noting that

3(6) = x,(1) + Equ?) (30)

and by substituting y(t) — Egu(t) for ¥(t) in (29.) the following relationship
holds:

(1) = &, %500 + Aay() + [Br — AgEsJu() (31)
If we now construct a dummy (n — 1) dimensional system

(1) = A,,%() + Aay(0) + [B; — A7EoJu() (32)
Then (1) — 2(t) = &, 4 [5(0) — %(1)] (33)
and (1) — &(t) = eM TR (1) — (1) (34)

Eqg-(32) represents an exponential estimator of Eq(31).
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With the right choice of the (n — 1) scalars pg, py, . . p,,_, We can posi-
tion the (n — 1) eicfem‘aluec of A,_;, which are equal to the zeros of A"~1 L
+ po_wA2 4 ...+ pi + p, in the half-plane Re(1) < 0, and from this it
is clear that Y(t) A 111 appr oach X-(t) exponentially.

From () = Px(t) and %(¢) = Q~"x(z), it follows that x(t) = PQ—7X(z),
or that the actual state x(t) is given by

y(t) — E

The results obtained for scalar output can be extended to multivariable cases

as indicated in [1], [2], [4], [8], [9].

x(t) = QTPTIE(t) = QP ? [‘;‘ﬁ(” 311@] (35)

4. Experimental results

In numerical caleulations the following values for a vehicle model were
taken:

M, = 250 kg;

M, = 25 kg;

E, = 5000 N/m;
e, == 250 Ns/m;
E, = 100000 N/m.

All the calculations are carried out using PC-MATLAB program. As was
indicated before, the design of an observer is possible if the pair {A, C;} is
completely observable. Using PC-MATLAB we construct the observability
matrix £ = [C;7 C,AT (C,A)T (C,A%)7)

where
0 0 1 0
0 0 0 1
A=1_ 20 —1 —1

200 —4200 10 —10

C,=[—20 20 —1 1]

then the observability matrix becomes

—20 20 1 1
22 —422 —_—
o 220 4: 0 9 9 (36)
1980 —37980 319 —4319

—870180 18146180  —41529 5529

It can easily be verified that O is of full rank and this implies that all the other
three states can be reconstructed from the knowledge of the *'single™ output,
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vi(t) == (¥;) + Egu(t). To illustrate the procedure outlined in Section 3. for
constructing state observers of total dimension 3 (p = 1), we must first reduce
the system given by Eq(7) to an ohservable companion form. In reducing the
system to an observable companion form we shall use the algorithm outlined
in [6].

In particular, we consider the observable system given by Eq(7), or
equivalently, the observable pair {A, C;} with €, of full rank. The dual of the
system Eq(7) is readily determined to be the controilable system

$(t) = ATE(t) — CTai(r) (37)

Since €,” is of full rank (= 4), it can be reduced to a controllable companion
form via an equivalence transformation .
We can rewrite the system [38] as

(1) = Ax(r) - Ba(r) (38)

where A = AT; B = CT. We can readily verify from the controllability matrix

o~

Z that the system is controllable.

& = [E .'—Tx}g, AR, A?’é], the matrix consisting of the first n{ = 4) lin-

early independent columns of &.
—20 220 1980 —870180
= 20 —4220 —37980 18146180 (39)
D . | —9 319 —41529 S
| 1 9 — 4319 5529

a

The transformation matrix € is chtained from the centrollability matrix € by
setting §,, the first roaw of §, equal to the last (4—th) row of S-1, and recur-
sively computing the remaining rows of ¢ by successive postmultiplication of
sach proceding row of @ by A. We first calculate &1

502500 —25227.27  —300000 —45454.54
| 25000 0 527500 —27500
ST e 1075 4
ST 605 51 1375 —2307.72 (10)
6.256 0.57 125 —11.36
7, = 10-7% [6.256 0.57 —125 —11.361] then
7, 256 0.57 _125  —11.36
S @A | _ ol |—125 1136 0 —2272.72
U= ogx| =1 0 _9272.72 0 s545454 | G
73,4 0 4545454 0 9090909.09
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and
0 —80000 0 —20
= 0 0 —4000 20
e 42
Q —80000 —4000  —20  —1 (42)
Lo 0 20 1
Their respective transpose are:
—6.25 —125 0 0
= 0.57 —11.36 —2272.72 45454.54
T __ —7%
Q=10 —125 0 0 0 (43)
—11.36 —2272.72 —45454.54 9090909.09
0 0 —80000 O
= —80000 0 —4000 0
—T _ 4
CT=1 —4000 —20 20 (44)
—320 20 —1 1
Q7 reduces the original system {A, C;} to observable companion form
given by
i) = As(t) + pu(t);  y(t) = €i(t) + Equ(r) (45a) where
0 0 0 —80000
A = = I 0 0 —4000
— O-TAOT — 43
A=QUAR= 1 1 o _a2m0 (45b)
6 o 1 —11
—320 ]
B_q-B— | 10 15
B ~ | —o0.88 (150)
—0.04
C=¢C0"=[0 0 0 0 1] (464)

Since x,(2) == y,(¢t) — Eu(t), we need only

estimate %, &, and x,. We do this

by first employing the equivalence transformation P

1 0 0
0 1 0
P=10 0 1
0 0 0

If we now set X(¢) = Px(t) or £(t) =

() = Ax(r) +

E,u(r)

y(6) = Cx(t) +

2
—3
—5

1

(46)

P-1%(t), it follows that the system
Bu(t) (47)

where
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0 0 —2 —1851127.16
- 1 0 —3 4161873
— —1
A =PAP 0 1 —5 —4577.70 (48)
0 0 1 319
319.9
~ . |_13587
B=PB=1_1s66 (49)
—0.044

is equivalent to Eq(45a).
The matrix € is clearly unaffected by the equivalence transformation P
Let us denote the first 3 components of (z) by

%m=:F4 50)

B_3 as the first 3 rows of B. If we now define A, as the 3-dimensional companion
matrix obtained by eliminating both the 4-th row and the 4-th column of i
and let A, represent the column vector consisting of the first 3 elements of the
last column of X, we can obtain a concise dynamical equation for the 3-di-
mensional system with the states X,(z). It follows that

$u(1) = AFo(t) = 2,500 + Byu(t) (1)
and since y(t) = E,(¢) — Eju() we obtain by subsituting ¥(t) — E,u(z) for

x,(t) in Eq(64) the relationship
£(t) = Ag%,(1) + A,3(t) + [By — A,E,]u(r) (52)

We now claim that the following 3-dimensional system is an exponential esti-
mator of Eq(52), i.e.

2(1) = Au%(1) + Agy(r) + [By — A,Eq]u(t) (53)
then
0 0 =2 —79988 0.04
S0 =1 0 —3|500)+=|—3980 |y(5)+]0.052 |u@)  (54)
6 1 =5 —4187 16.088

b

0 0 — —179988 0.04
i)=]1 0 —3|%@)--|—3980 |y(t)+]0.052 [u() (55)
0 1 -5 —4187 16.088
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It therefore follows that the system given by Eq(55), which can readily
be constructed, represents an exponential estimator of ¥(t), X,(t), X,(t), since

0 0 —2
SH—sm=[1 0 —3/[50)—0)] (56)
0 1 -3

An exponential estimate of the complete system X(t) can now be sbtained
from X,(t), X,(t), %5(t) via the equivalence transformation P: i.e.
a
Xy

£(t) = Pix(t) o B | 2 (57)

X3

Xy

i

= y,(t) — Eju(t) is a known measurement from the accelerometer which need

where x,(t), x,(), Z5(¢) ave the states of the 3-dimensional observer and x,(¢)
not be estimated.
5. Concluding remarks

By using the feedback of states of a completely controllable and comple-
tely observable realization of original state space representation, we can obtain

a unew internally stable, minimal-order ochserver realization whose eigenfre-

Fig. 2).
= J
O

quencies are completely under our control (see Fig
The application of exponential estimators or Luenberger reduced-order
observers in the design of active suspeunsion clearly solves the problem of realiz-
ing the optimal state-feed back control since we can obtain and feed back all
the internal states as indicated in this work.
However, introducing an observer in the close-loop, generally resuits in
an increase in cost form compared to that obtained when the optimal control

law is implimented.

References

1. LUENBERGER, D. G.. “Observing the state of a Linear Systems” IEE Trans. on Military
Electronies, Vol. MIL-8 pp. 74—88. April, 1964.

. LUENBERGER, D. G., “*Observers for Multivariable Systems”, IEEE Trans. Auto Control.
Vol. AC-M. No. 2 April, 1966 pp. 190—197.

3. Bass. R. W. — Gura, L.: “High order systems Design via state space consideration.”

Preprints 1965 JACC, Rensselear Polytechnic Institute, Troy, Ny. pp. 311—318.

4. Cuavane. D. G.: “Design of observers of Reduced Dynamies”, Electron. Lett., 5 No. 10
pp. 231214 May 15. 1969.

.Brasu, F. M. and Prarson, J. B.: “Pole Placement using Dynamic Compensations”,
IEEE Trans. Autom. Control. AC-15, pp. 34—43 1970.

. WorovicE, W. A.: “Linear Multivariahle System”, Springer-Verlag. NY 1974.

. Karcatr, T.: Lectures on Linear Least-Squares. Estimation, CISM Course and Lectures
No. 140, Springer-Verlag, NY 1978,

|51

ot

-1



10.
11.

12.
13.
14.
15.

16.
17.

18.

19.

20

21

2]

LUENBERGER OBSERVER FOR VEHICLES 12

8. KarvaTH, T.: “Linear Systems” Prince-Hall, Ine., NY 1980.
9.

Novar, L. M.: “Discrete-Time Optimal Stochastic Observers”. in control and dynamic

~ systems, Vol. 12 (C. T. Leonades ed.). Academic Press. NY 1976. pp. 256 —311.

AstroMm. K. J.: Introduction to stochastic control Theory, Academic Press 1970. NY.

Karmax, R. E.. — Fare. P. Arsos, M. A.: Topics in Mathematical. Sytems Theory.
McGraw-Hill NY 1960,

Caex, C. T.: Introduction to Linear System Theory. Holt. Rinehartand Winston, NY 1970.

KwakeErRNaak H. — Sivax R.: Linear Optimal Control Systems. Wiley, NY 1972,

Troxpson, A. G.: “Optimal and Suboptimal Linear Active Suspension for Road Vehicles™,
Vehicle System Dynamies, Vol. 13. No. 2, 1984, pp 61 —72.

Sacms, H. K.: “An Adaptive Control for Vehicle Suspensions”, Vehicle System Dynamics,
Vol. 8, No. 2—3. 1979, pp. 201--206.

RoreExBERG. R. W.: *Vehicle Suspension’ Moscow, Masinostrojenie, 1972,

Zosory, I.. — Szapé. A.: Identification of the Hydrodynamic Drive-System Characteristic
Curves.

ZoBORY, 1., — GYORIK. A, — SzaB6, A.: Dynamic Loads in the Drive System of Railway
Traction Vehicles Due to Track Unevennesses.

MicHELBEKGER. P.: ng Loadi Analysis Under Operational Conditions For The Design of
Commercial Road Vehicles. Acta Technica 100 (1987) No 1—2 pp. 126-138.

. MICHELBERGER. P., — BoxoOR. J.. — KEREsSZTES, A., — VARLAKI P.: Dynamic Modelling

of Commercial Road Vehicle Structures from Test Data. Proceedings of XX. FISITA

Congress, Vol. 4 Vienna, 1984, pp. 4. 96—4. 104.

. MicEELBERGER, P., — KEeresztes, A., — HorvaAtH, S.: Modelling problems in the

dynamic design of autobuses. Proceedings of Int. Conference on Vehicle Structures,
pp. 195 — 200, Cranfield, 1984.

Ocaan-Lam Fulion Tony H-1521, Budapest



